
Virtual Browser Project: Secure and Efficient Web

Access Using a Containerized System

Komaragunta Pooja Sree1, R Manoj Kumar2, Keerthipati Monish3, Abdul Jaleel D4 and

Kukkala Nandini5

{poojasree.k10@gmail.com1, manojkumarmdk7@gmail.com2, monishkpt@gmail.com3,

abduljaleelit@gmail.com4, knandini2711@gmail.com5}

Department of Computer Science & Technology, Madanapalle Institution of Technology & Science,

Madanapalle, Andhra Pradesh, India1, 2, 3, 5

Assistant Professor, Madanapalle Institution of Technology & Science, Madanapalle, Andhra Pradesh,

India4

Abstract. The Virtual Browser project aims to provide a secure, containerized web

browsing environment leveraging DevSecOps principles. With the increasing prevalence

of web-based threats, traditional browsers expose users to significant security risks,

including malware, phishing attacks, and unauthorized data breaches. By implementing a

Virtual Browser within a controlled containerized infrastructure, this project ensures an

isolated execution environment that prevents direct exposure of the host system to online

threats. The architecture integrates various security and automation tools such as GitHub,

Jenkins, SonarQube, Dependency-Check, Docker, Trivy, and Docker Compose, ensuring

a streamlined workflow that prioritizes security at every stage of development and

deployment. This paper explores the technical implementation, security measures,

benefits, and potential applications of the Virtual Browser concept in enterprise and

research domains. Furthermore, it discusses how embedding security automation in the

development pipeline mitigates risks and enhances operational efficiency. Through

continuous integration and monitoring, the system remains resilient against evolving

cyber threats, making it an effective solution for secure web access in modern IT

infrastructures.

Keywords: VirtualBrowser, Containerization, DevSecOps, Web Security, Malware

Protection, Phishing Prevention, Secure Web Access, Continuous Integration (CI/CD),

Docker Security, Vulnerability Scanning, Automated Security Testing, Cloud-based

Browsing, Cyber Threat Mitigation, Secure Development Lifecycle, Enterprise Security

1 Introduction

Traditional web browsers are now exposed to numerous threats and malware, and more

susceptible to a wide range of attacks, including phishing, drive-by downloads and zeroday

attacks. These new methods, along with existing ones, are part of the push-and-pull battle

between cybercriminals and business owners, many of whom never stood a chance despite

having deployed security mechanisms like antivirus and threat prevention. That data

represents real risk to people, to businesses and government agencies, and the breach of all

this personal data has caused financial loss, exposed millions of individuals to further

compromise, and has resulted in systems being exploited.

Companies and users tend to trust traditional protection features like antivirus programs,

firewalls, and the secure surfing add-ons. However, such solutions are unable to offer all-

round protection against APTs. Traditional browsers run in the host system, they can be

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358165

mailto:poojasree.k10@gmail.com
mailto:manojkumarmdk7@gmail.com
mailto:monishkpt@gmail.com
mailto:abduljaleelit@gmail.com
mailto:knandini2711@gmail.com

attacked directly and the third-party data can be accessed; meanwhile, the mal-ware scripts

can be directly injected into the compromised websites. Furthermore, users might accidentally

download malware or be from nonce attacked by phishing attacks, which did not help the

integrity of the system.

And with the internet becoming an essential part of everyday work and life, it is time to take a

more intelligent, and isolated view on web browsing. Virtual Browser - Your Own Cloud

Browser A leading browser isolation program Virtual Browser guarantees security, and as

such makes sure that any potential threat is fully contained within the container. This

segregation third party containment ensures the system is never infected with malware, data

leakage is contained and machine exploitation is curtailed.

A Virtual Browser is a virtualized application that runs in its own isolated environment and is

isolated from the host operating system, so there is no interaction between the incidents within

the browser session and local resources. Such a model greatly shrinks the attackable area and

mitigates the security issues that the traditional browsing will cause. Virtual Browser is

containerized, so the execution is controlled, resets are automatic, and browsing data is

secure, offering a clean and secure environment for each session.

This project uses modern DevSecOps principles to ensure the security and efficiency of the

Virtual Browser deployment. Thanks to technologies like Docker, Trivy, SonarQube and

Jenkins the solution is able to not only isolate the browsing sessions, but it constantly scans for

vulnerabilities, providing a decent security level. The addition of automated security scans

and live monitoring also boosts the robustness of the Virtual Browser, providing an efficient

tool in combating online threats.

This paper discusses the need for the Virtual Browser explaining its implementation, benefits,

and applications in security, research, and corporate domains. It discusses how enterprises can

benefit from this approach, to better (1) their security posture, (2) to comply with industry

standards and regulations, and (3) to strengthen the privacy of end-users. The study also

stresses the importance of automation in keeping a secure browsing environment and how

secure DevSecOps practices simplify the deployment and operations of Virtual Browsers.

Using real-life deployments and industry best practices this study aims to deliver a forward

looking analysis of the Virtual Browser as a form of next generation cyber security.

2 Literature Review

There have been a number of studies and papers on the topic of secure and isolated browsing

environments. The following are the main contributions of the existing literature:

• Secure Browsing with Containers: Previous work have shown the utility of containerization

technology (e.g., Docker) in significantly improving browser security by separating web

processes from the host operating system. Smith et al. (2020) emphasized that sandboxed

environments block malware dissemination and unauthorized access to sensitive resources.

• DevSecOps in web security: A research by managers in Fujitsu notes that it is essential to

bring security into the software development process and fostering a security-first mindset.

Research by Johnson et al. (2019) on how CI/CD pipelines with security tools (e.g.

SonarQube and Dependency-Check) enhances software trustworthiness. This provides a cure

to the insecurity problem for modern web apps.

• Container Vulnerability Detection: The use of Trivy, Clair, and other vulnerability scan

tools have been considered for identifying security vulnerabilities in containerized

applications. A study by Lee et al. (2021) compared these solutions, and they showed that

automated scanning reduces security vulnerabilities, and comply with international security

standards and best practices such as OWASP.

• Secure Browsing from Cloud: The cloud bases the secure browsing [19] solution on the

hosted virtual browsers to avoid malware attacks. Based on its slipped activity, cloud-based

browser isolation eliminates the phishing and ransom threat by frost the browser sessions in

remote sandboxed sections, a research by Patel & Kumar (2022) revealed.

• Performance Overhead in Virtualized Environment: The increase in the security level

achieved by containerization has been paid for with some performance trade-off, according to

a study. Work by Anderson et al. (2023) focuses on optimization methods to compromise

between security and efficiency. Efficient resource allocation and containers orchestration are

important for handling this performance problem.

Table 1. Literature Review

Study Focus Area Findings

Smith et al. (2020) Containerized

Browsing

Demonstrated that browser isolation in a

container prevents malware infections from

spreading to the host system.

Johnson et al.

(2019)

DevSecOps for

Web Security

Highlighted the importance of embedding

security tools like SonarQube and

Dependency-Check in CI/CD pipelines for

proactive threat mitigation.

Lee et al. (2021)
Container Security

Scanners

Compared tools like Trivy and Clair, finding

that automated scanning significantly reduces

container vulnerabilities.

Patel & Kumar

(2022)

Cloud-based Secure

Browsing

Explored how remote browser isolation can

effectively mitigate phishing and ransomware

attacks.

Anderson et al.

(2023)

Performance

Overhead in

Virtualization

Examined the trade-off between security and

performance in containerized applications,

emphasizing optimization strategies.

These works (table 1) serve as the foundation for the Virtual Browser project that combines

containerization and security automation to implement a secure web-browsing context. The

relevance of proactive security tactics and automation in contemporary web security tools is

highlighted in the literature.

3 System Architecture

The Virtual Browser is a secure containerized platform that is designed to eliminate the risk

from web content and provide a high performance scalable solution. The system design

entails a stack of layers that focus on providing security, reliability, and crawl efficiency for

deployment and execution of the virtualized browser.

At the heart of the system is Docker, which is leveraged to containerise browser instances.

The browsing session is isolated from the host system so no interaction can be made. This

way, local files and system configurations cannot be corrupted by malware, phishing attacks

and unwanted scripts. Containers are also ephemeral, this means they get clobbered on close,

so no data wile persist, which is a bonus for your privacy and security. The browser contained

in a container can be run in multiple environments and scaled according to organization

requirements.

For a safe development pipeline, the design also includes continuous security scanning and

automation. Trivy and Dependency-Check examine the container images for known

vulnerabilities before they are deployed, minimizing the chances of leveraging a tainted

component. SonarQube is used for static code inspection that notifies suspected security

weaknesses in browser configurations and scripts. For your productions builds to be insecure

or non-optimal.This ensures that only secure, optimized builds are pushed to production.

Furthermore, Jenkins is used as continuous integration/continuous deployment (CI/CD) tool.

Every code update is tested extensively, statically analyzed, and scanned for security before

reaching production, so if I update it, I do not add any vulnerabilities.

It uses Docker Compose for orchestration and easy linking even across multiple services,

such as proxies, security testing tools, and out-of-browser providers. This setup allows

handling of browser sessions in a secure and efficient manner, as well as load balancing and

scaling-on-demand. The architecture is also network isolated via this underlying

infrastructure to prevent direct communication from external connections to the host. A proxy

server serves as a middleman by filtering web traffic, blocking known bad sites and adding

more security to your browsing session.

Control access Access control is in place by Role Based Access Control (RBAC) to make sure

that only legitimate users are able to access administrative operations. Strong authentication

methods, such as with multi-factor authentication (MFA), help increase security to ensure

unauthorized individuals aren't able to gain access. Logging and monitoring capabilities are

built into the system to record browser activities and to investigate anomalies through

forensic analysis. The system integrates with Security Information and Event Management

(SIEM) to deliver instant threat detection and reporting.

Another important attribute of the architecture is that it is self-healing. The containers are

automatically restarted in case of a failure, providing high availability. Automated patching

keeps browser sessions up-to-date with no help desk intervention, significantly lowering

attack vectors from exploits against outdated software. The system is capable of updates that

won't take you off-line to whip out end-users, which helps increase efficiency.

Utilizing containerization, security automation, access control and real-time monitoring, the

Virtual Browser solution offers the most secure and performant browser environment. The

architecture provides not only the isolation of all possible cyberspace threats, but also central

control of trust relationships in a way that creates a trustworthy solution for any of the world's

enterprises, research institutes or other organizations that need secure web access. This multi-

layered security strategy with DevSecOps guarantees that the Virtual Browser is performing

and still effective against new cyber threats.

Fig. 1. System Architecture.

3.1 Work Flow

The Virtual Browser approach is platform-based, which involves structured and automated

process for ensuring smooth operation, security adherence, and on-going monitoring. The

user initiation phase is the starting point of the workflow, when a registered user asks to

browse. This request is handled by an access control mechanism, which authenticates a user

with user credentials and roles using a Role-based access control (RBAC) system having

multi-factor authentication (MFA). Once the credentials are verified, the system spawns a new

browser instance inside a docker container which means the browsing session will be totally

isolated from the host. System Architecture is shown in fig. 1.

Security policies (catagorisation/ content blocking/ script blocking/ or network isolation) are

then applied at the system level after it is brought up. A dedicated proxy server oversees just

the outbound and inbound web traffic, preventing access to unsafe websites, content and

internet protocols, thereby implementing the enterprise web access and browsing policies. A

browser instance runs in an isolated short-lived container, gets automatically destroyed after a

session ends and with it goes any data or sessions traces. This makes for a secure and private

session for each user.

Security monitoring forms an integral part of the circle. The solution combines tools for

continuous vulnerability assessment Tools such as Trivy and Dependency-Check to detect

vulnerabilities in containerized environments. At the same time, SonarQube also checks the

codebase and settings for potential vulnerabilities also so that the indexing infrastructure

remains uncompromised. When any threats are identified, automatic notifications are

provided, and processes by which vulnerabilities may be resolved are automated.

While the user is communicating via the Virtual Browser, the system logs important security

logs (user activity) for forensic investigation and compliance. These logs are kept safe and

analyzed by Security Information and Event Management (SIEM) systems for immediate

threat finding and incident response. This logging capability is meant to detect if there are

anomalous behaviors (such as multiple requests to suspicious domains), which it can then act

on.

For better performance and reliability, an auto-scaling mechanism has been integrated in the

workflow. With Docker Compose, the system scales in and out depending on traffic

dynamically so that the requested container instances are only used temporarily, resulting in

maximum resource utilization while providing high availability. If there are sudden traffic

surges, more containers are spawned to meet the demand, retaining connection and a smooth

browsing. On the other hand, dead instances are removed to avoid the waste-up the resources.

An important property of the workflow is its self-healing nature. If a container receives an

error or is compromised, it is killed and replaced with a new one to service your needs to

continue to stay online and secure. The system is also responsible for applying periodic

updates and patches which ensure that the browser instances and security tools are maintained

up to date. Automatic patching systems patch security issues on the host without human

intervention addressing zero day exploits and other advanced forms of 6 attacks.

When browsing session ends, the system destroys all active containers, thus no browsing

history, cookies and any cached data will be left over. This ensures that every user session

can start in a completely clean state, greatly reducing the possibility of permanent tracking and

unauthorized use of a previous session information. This is the entire flow to provide an

integrated, secure, automated browsing experience that meets modern cybersecurity and

DevSecOps policies and best practices.

With containers, security is automatically checked and monitored in real-time and self-

healing measures are put in place – making the Virtual Browser workflow highly secure and

efficient. This process not only protects your system from direct exposition to cyber-threats,

but it will also increase efficiency and keep you safe from new types of cyber-threats. Fig. 2

shows the final output.

Fig. 2. Output.

3.2 Security Measures

Security is one of the pivotal features of the VBrowser system, providing users with a secure

web-browsing environment, while safeguarding the privacy and security of their data.

Multiple security controls are implemented in the system, such as network isolation, access

control, vulnerability scanning and real-time monitoring of the pipeline, to provide a strong

barrier of protection against cyber threats.

The first line of defense is container isolation. Every session of the browser is isolated in its

own container, so malware, exploits and malicious scripts are unable to infect or do any harm

on the host system. This way, if a user stumbles into a website that gets compromised, it will

only affect the container, which is killed once the session is over. This method for stripping

down web-browsing to the bare-bones helps to negate threats before they escape the browsing

session.

The access control is implemented with multi-factor authentication (MFA) and role-based

access control (RBAC) to guarantee that only the authorized users could generate browsing

sessions. These components are used to secure the Virtual Browser infrastructure against

unauthorised access, while securing confidential user data. Furthermore, the most stringent

network policies are enforced to prevent container- to- container communication and

minimize lateral movement in case of security breach.

The system is constantly searching for weaknesses with the help of automatic safety tools like

Trivy and Dependency-Check. These utilities scan container images and dependencies for

known vulnerabilities, keeping the Virtual Browser environment current and secure. Any

discovered exposures initiate automated corrective flows, minimising your exposure to

attackers. Furthermore, static code analysis is used by SonarQube for identifying weaknesses

in the automations setup, which makes the security of the system even more robust.

There is specific security monitoring structure in place to monitor and respond to threats live.

SIEMs SIEM systems aggregate logs of browser instances and therewith serving as an

analysis basis for possible attacks or anomalies. Suspicious activity is saved and, in case of a

detection, automatic responses, like alerts and session termination, and a security patch

deployment are performed to minimize the risk.

For additional security the Virtual Browser includes secure web filtering. A proxy also

examines and filters HTTP requests and responses, as to restrict entities from visiting bad

domains and phishing sites. This protects users against potential fraudulent and malign

website content which might harvest credentials or cause an unwanted download (drive-by

download) from Web sites.

Data protection is also a very important factor. Virtual Browser does not belong to any

system where user information is stored which means that there is no risk of data leaks and all

the information of the user is kept private. When the Youjizz Proxy session ends, history,

cookies and records will be erased automatically so no one can track your online activities

and have access to your personal records and download history.

Standard security updates, as well as automated patching capabilities, ensure the system is

protected against new threats. The Virtual Browser framework is part of the continuous

integration and continuous deployment (CI/CD) pipelines that implements security patches

and updates with zero downtime. By being proactive, the Virtual Browser keeps a strong line

of defense, no matter what kind of threat arises.

Containerization, automated security scanning, real-time monitoring, and proactive threat

mitigation, come together in Virtual Browser to create a highly secure browsing workspace.

These security features protect users against threats from the web, and enforce his optimal

security practices thus an enterprise or research solution.

4 Conclusion

The Virtual Web Browser application provides a durable, secure and efficient approach to web

browsing using containerization and development security operations (DevSecOps) practices.

By isolating browser sessions inside containers, and bundling with automated security

services and monitoring capabilities, the system is capable of effectively defending against

online threats, like malware, phishing, and data breaches. Its infrastructure is designed to

provide the privacy, reliability, and security need in a SaaS offering: Real-time vulnerability

scanning, Rights management, and automated patching. With an increasing demand from

organisations for better cybersecurity, the Virtual Browser provides a scalable and realistic

solution to secure browsing within enterprise and research settings.

References

[1] Smith, J., et al. (2020). "Containerized Browsing for Secure Web Access." Cybersecurity Journal,

45(3), 112-130.

[2] Johnson, L., et al. (2019). "DevSecOps: The Future of Secure Software Development." Journal of

Software Security, 12(2), 56-78.

[3] Lee, H., et al. (2021). "Comparative Study of Container Security Scanners: Trivy vs. Clair."

International Conference on Cybersecurity, 303-315.

[4] Patel, R., & Kumar, S. (2022). "Cloud-based Browser Isolation for Malware Prevention."

Computing Research Journal, 30(1), 89-104.

[5] Anderson, M., et al. (2023). "Performance Optimization in Virtualized Environments." Journal of

Cloud Computing, 18(4), 210-225.

[6] Docker. (2023). Docker Documentation. Retrieved from https://docs.docker.com/

[7] Trivy. (2023). Aqua Security Trivy Documentation. Retrieved from

https://aquasecurity.github.io/trivy/

[8] SonarQube. (2023). SonarQube Documentation. Retrieved from https://docs.sonarqube.org/

[9] Jenkins. (2023). Jenkins Documentation. Retrieved from https://www.jenkins.io/doc/

[10] OWASP. (2023). OWASP Dependency-Check. Retrieved from https://owasp.org/www-project-

dependency-check/

[11] National Institute of Standards and Technology (NIST). (2022). NIST Cybersecurity Framework.

Retrieved from https://www.nist.gov/cyberframework

[12] Cisco. (2023). Secure Web Gateways for Enterprise Security. Retrieved from

https://www.cisco.com/c/en/us/products/security/web-security/index.html

[13] IBM. (2023). Security Information and Event Management (SIEM). Retrieved from

https://www.ibm.com/security/security-intelligence/siem

[14] Google Project Zero. (2023). Web Browser Vulnerabilities and Exploits. Retrieved from

https://googleprojectzero.blogspot.com/

[15] Microsoft Security Blog. (2023). Zero Trust Security and Secure Web Browsing. Retrieved from

https://www.microsoft.com/security/blog/

