
 

 

AI-Driven Pupillometric Biomarker Analysis for Early 

Detection of Genetic Disorders in Children 

Boya Nehasree1, Doule Venkata Srilakshmi Prudhvija Bai 2, G.H. Anusha 3, B. Lakshmi 

Parvathi 4 and U. Premsagar 5 

{nehasreeb2004@gmail.com1, dvslprudhvija@gmail.com2, gghanusha@gmail.com3, 

paaru9897@gmail.com4, premsagarsrp@gmail.com5} 

Department of Computer Science and Engineering, G. Pullaiah College of Engineering and Technology 

(Autonomous), Kurnool, Andhra Pradesh, India1, 2, 3, 4 

 Assistant Professor, Department of Computer Science and Engineering, G. Pullaiah College of 

Engineering and Technology (Autonomous), Kurnool, Andhra Pradesh, India5 

Abstract: Genetic disorders in children, such as Autism Spectrum Disorder (ASD), Fragile 

X Syndrome, and Rett Syndrome, often go undetected during early developmental stages 

due to overlapping clinical features and limited access to specialized diagnostics. Early 

identification is crucial for timely intervention, yet current diagnostic workflows remain 

resource-intensive and inaccessible in many settings. This study proposes an artificial 

intelligence (AI)-driven approach for multi-disorder screening using pupillometry—a non-

invasive method for measuring pupil responses to light stimuli. The primary objective is to 

develop a deep learning model capable of distinguishing between multiple pediatric genetic 

conditions based on pupillometric features. A synthetic dataset was constructed to simulate 

pupil light reflex (PLR) data for four classes: ASD, Fragile X Syndrome, Rett Syndrome, 

and neurotypical controls. Features such as latency, constriction velocity, and recovery 

time were extracted and standardized before model training. A fully connected deep neural 

network (DNN) was implemented and benchmarked against conventional classifiers, 

including Random Forest, Support Vector Machine (SVM), and Logistic Regression. The 

proposed DNN achieved an overall accuracy of 89%, with a macro-averaged F1-score of 

0.87, outperforming the best baseline (Random Forest, 82% accuracy, 0.79 F1-score). 

Statistical analysis confirmed the performance improvements were significant (p < 0.05) 

across multiple folds. These results demonstrate the feasibility of using AI-enhanced 

pupillometry as an early screening tool for pediatric genetic disorders. The framework 

offers potential for deployment in portable diagnostic systems, particularly in low-resource 

clinical environments, and paves the way for future real-world validation with clinical 

datasets 

Keywords: Pupillometry, Deep Learning, Genetic Disorders, Pediatric Screening, 

Biomarkers, Multi-class Classification. 

1 Introduction  

Genetic disorders of childhood are a major public health issue that results in a heterogeneity of 

developmental, neurological and cognitive dysfunctions [1], [2]. These disorders, such as ASD, 

Fragile X Syndrome and Rett Syndrome, typically present in early childhood and may impose 

significant burdens on the quality of life if untreated or undiagnosed [3], [4]. (GeneDay, 2014) 

The World Health Organization reported that between 5% to 8% of children worldwide suffer 

from a genetic or rare disease and some conditions are not diagnosed until symptoms become 

severe and implementing proactive intervention becomes marginal [5]. 
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Early surveillance is a key to care of children with genetic disorders to identify the nature of 

their problem as early as possible so that intervention in their management can be initiated early 

as well, improving developmental outcome and reducing long-term disabilities [6], [7]. 

Intervention at an early age has been associated with/improved cognitive, behavioral, and social 

integration outcomes [8], [9]. These conventional diagnostic processes have however various 

limits: they are time consuming, require specialized clinicians, and rely heavily on molecular or 

imaging testing that may not be available in underprivileged or rural settings [10]. Furthermore, 

many pathologies present with similar clinical symptoms, which makes differential diagnosis 

particularly difficult at an early stage of development [11]. 

Pupillometry-pupil size and reactivity-has recently been introduced as potential research tool 

of-non-invasively-evaluating neural function [12]. It is responsive to the autonomic nervous 

system and represents the underlying central level processing related to attention, arousal, and 

cognitive processing [13]. Changes in the pupillary light reflex (PLR) have been found in a 

variety of neurodevelopmental conditions, indicating that pupillometric signals may be used as 

a potential early marker of neurological abnormalities [14]. Yet, despite its considerable clinical 

potential, pupillometry is currently underutilised, with automated systems for translating 

complex patterns of pupil dynamics into clinically useful diagnoses still lacking (c.f. [15]). 

Artificial intelligence (AI), in particular, deep learning, provides a revolutionary way of using 

pupillary measurements in clinical diagnostics [13], [15]. Using AI to automate feature 

extraction and pattern recognition and classification will enable quick and accurate high 

throughput screening of numerous genetic disorders with subtle ocular biomarkers [12]. By 

training deep learning models to identify complex spatiotemporal patterns in pupil behavior, 

early detection can be achieved with minimal reliance on infrastructure for complete clinical 

assessment [13], [14]. 

In this study, we present a novel AI-assisted system to multi-disorder classification through 

pupillometry features which were developed based on emulated pediatric data. Here we 

introduce a DNN trained to detect whether a child is a neurotypical control or diagnosed with 

ASD, Fragile X Syndrome or Rett Syndrome. The aim is to show the feasibility of applying 

pupillometry with AI as a first screening, for the early detection of genetic disorders. This can 

be regarded as a first-of-its-kind study dedicated to data simulation, model building, 

performance assessment, and clinical implications analysis, paving the way to future real-world 

applications. 

1.1 Key Contributions 

• Development of a novel deep neural network (DNN) tailored to classify ASD, 

Fragile X, Rett Syndrome, and neurotypical controls using pupillometric features. 

• Simulation and deployment of a synthetic dataset grounded in real-world pupillary 

response parameters, enabling proof-of-concept validation in the absence of publicly 

available datasets. 

• Empirical comparison with conventional classifiers (Random Forest, SVM, Logistic 

Regression), demonstrating improved accuracy and generalization performance. 

• High-resolution visualizations including ROC curves and confusion matrices to 

support interpretability and model evaluation. 



 

 

• Identification of clinically relevant patterns in pupillary behavior that may serve as 

early-stage biomarkers for genetic disorders. 

The remainder of this paper is organized as follows: Section II reviews related work in AI-based 

pediatric diagnostics and pupillometry. Section III describes the methodology, including dataset 

generation, feature extraction, and model design. Section IV outlines the experimental setup, 

while Section V presents the results and analytical discussion. Section VI concludes with 

limitations, clinical implications, and directions for future research. 

2 Related Work 

2.1 Pupillometry in Medical Diagnosis 

Pupillometry, the evaluation of pupil dimensions and responses, has become a useful non-

invasive technology for medical management. Its clinical potential has been extensively studied 

in a large number of peer-reviewed and indexed studies. One example of this is the ability of 

pupillary light reflex (PLR) to distinguish between neurodevelopmental disorders like ASD and 

neurotypical development [16]. Pupillometric indices have been also employed to detect early 

signs of cognitive decline, such as in Alzheimer’s disease, where significant changes in latency 

and constriction amplitude are reported [17]. 

In the pediatric population, pupillometry has been used to detect dysautonomia, developmental 

delays, and sensory processing problems. Statistically significant difference of PLR parameters 

in children with Fragile X Syndrome has been reported in the literature, thus emphasizing its 

practicability as a genetic abnormality trait [18]. Taken together, these results strengthen the 

evidence that pupillometric biomarkers could provide early, affordable screening of various 

neurogenetic disorders in children [19]. 

2.2 AI Applications in Pediatric Health and Neurology 

Artificial Intelligence (AI) has demonstrated increasing value in pediatric healthcare, 

particularly in the domains of neurology and developmental disorder screening. Deep learning 

models—such as convolutional neural networks (CNNs) and recurrent neural networks 

(RNNs)—have been widely used to analyze medical imaging, genetic sequences, and biosignals 

for predictive classification tasks [20], [21]. 

Machine learning approaches have achieved high classification accuracy in applications such as 

pediatric epilepsy diagnosis from EEG data, with reported accuracies exceeding 90% [22]. Other 

hybrid frameworks that combine behavioral imaging and neural markers have been proposed to 

detect early indicators of ASD [23]. Additionally, AI-based systems have been utilized to 

analyze eye-tracking and facial features for diagnosing rare conditions like Rett Syndrome and 

Angelman Syndrome [24], [25]. 

Despite these advancements, pupillometric data remains a largely underutilized modality in AI-

assisted pediatric diagnostics, especially in the context of early detection of genetic disorders. 

This gap highlights the need for further research into integrating AI with pupillary biomarker 

analysis for broader, multi-disorder screening [26]. 



 

 

2.3 Identified Gaps in Current Research 

While significant strides have been made, several research gaps persist: 

● Limited Integration of AI with Pupillometry: Most AI applications in pediatric 

diagnostics have focused on EEG, imaging, or behavioral data. Pupillometry, despite 

its non-invasive nature, has not been widely coupled with AI for large-scale screening. 

● Disorder-Specific Models: Existing studies often target single disorders, lacking 

generalizability across genetic or neurodevelopmental conditions. 

● Small and Biased Datasets: Many studies rely on limited, demographically skewed 

datasets, reducing external validity and generalizability. 

● Lack of Real-time and Embedded Systems: Most approaches remain lab-bound; 

portable or wearable implementations that leverage edge AI are still in early 

development. 

● Explainability of AI Models: In clinical settings, black-box models pose challenges in 

trust and adoption. There’s a need for interpretable AI models that clinicians and 

caregivers can understand. 

3 Proposed Framework 

This section outlines the step-by-step methodology for the development and evaluation of a deep 

learning model aimed at classifying pediatric genetic disorders using synthetic pupillometric 

data. The process includes dataset construction, feature extraction, model design, optimization 

strategies, and evaluation techniques. 

3.1 Architecture Overview 

The proposed Neuro-Swarm Intelligence-Driven AI Framework is a modular pipeline designed 

for precise detection of pancreatic tumor from an abdominal CT scans which integrates deep 

learning, classical machine learning and swarm intelligence. The system started with the data 

acquisition and preprocessing. The Pancreas-CT dataset is first normalized, resampled, sliced 

extracted and augmented for standardized inputs. These processed 2D slices are then fed inta a 

modified ResNet-34 network which extracts deep spatial features that describes the shape of the 

tumor. The selected feature vectors are further optimized by PSO and a subset of the most 

discriminative feature vectors is obtained according to achieved classification accuracy and 

compactness of the feature dimensions. They are then used to train an SVM classifier, which 

helps in strong tumor and non-tumor slice separation. Furthermore, swarm intelligence is used 

to optimize important hyperparameters like learning rate and dropout, making the training 

process more efficient and the model more generalizable. The presentation of final model is 

analyzed on all these metrics such as Accuracy, Precision, Recall, F1-Score, Dice Coefficient, 

and AUC-ROC in order to make sure clinical reliability and robustness of performance. 



 

 

 

Fig.1. Architecture of the Proposed AI-Driven Pupillometric Screening Framework. 

Fig 1 illustrates the end-to-end workflow of the proposed system, beginning with simulated 

pupillometry data. The pipeline includes preprocessing, dual-path feature extraction (PLR-

specific and statistical), and classification via a deep neural network. The final output is the 

predicted genetic disorder class, demonstrating a clear and interpretable flow from raw input to 

diagnostic decision. 

3.2 Dataset Description and Preprocessing 

3.2.1 Dataset Source and Size 

To simulate real-world pupillometric responses, a synthetic dataset was generated representing 

four diagnostic groups: Autism Spectrum Disorder (ASD), Fragile X Syndrome, Rett Syndrome, 

and a neurotypical control group. The total dataset comprises 290 subjects, distributed across 

the classes as follows: 

● Control: 100 

● ASD: 80 

● Fragile X: 60 

● Rett Syndrome: 50 

3.2.2 Class Imbalance 

To address class imbalance, weighted loss functions were employed during model training. Data 

augmentation was not applied due to the tabular nature of the dataset. 

3.2.3 Preprocessing 

Each record includes pupillary response features extracted under controlled light stimulus 

conditions (e.g., LightFlash, Flicker, RedLight). The preprocessing pipeline involved: 



 

 

● Standardization: Each feature 𝑥𝑖 was normalized using z-score transformation and is 

defined in Eq(1): 

𝑥𝑖
𝑛𝑜𝑟𝑚 =

𝑥𝑖−𝜇

𝜎
     (1) 

Where 𝜇 and 𝜎 are the mean and standard deviation of the feature across the training set. 

● Encoding: Categorical values such as Stimulus_Type were one-hot encoded. 

● Outlier Removal: Samples outside 3 standard deviations for any feature were 

excluded. 

3.3 Feature Extraction  

The following pupillometric features were used as predictors: 

• Latency (𝐿) - Time to initiate pupil constriction after light stimulus, measured in 

milliseconds. 

• Peak Constriction (𝑃𝑐) - Maximum percentage change from baseline diameter and is 

defined in Eq(2): 

𝑃𝑐 = (
𝐷0−𝐷𝑚𝑖𝑛

𝐷0
) × 100    (2) 

Where 𝐷0 is baseline diameter and 𝐷𝑚𝑖𝑛  is minimum diameter post-stimulus.  

• Constriction Velocity (𝑉𝑐): Rate of pupil diameter reduction over time which is 

defined in Eq(3): 

𝑉𝑐 =
𝐷0−𝐷𝑚𝑖𝑛

𝑡𝑐
      (3) 

• Where 𝑡𝑐 is constriction duration.  

• Dilation Velocity (𝑉𝑑) - Rate of pupil recovery post-constriction.  

• Recovery Time ( 𝑇𝑟 ) - Time taken for pupil to return to 90% of baseline diameter. 

These biologically grounded features were selected based on their diagnostic relevance as 

reported in clinical literature. 

Algorithm: Pupillometric Feature Extraction 

Input: 

● 𝑃(𝑡) : Pupil diameter time-series 

● 𝑡0 : Stimulus onset time 

Output: 

● F: Feature vector = [Latency, PeakConstriction, ConstrictionVelocity,DilationVelocity, 

RecoveryTime] 

Steps: 

1. Compute the baseline diameter by averaging 𝑃(𝑡) values before stimulus onset ( 𝑡0 ). 



 

 

2. Identify 𝑡_  min - the time when the pupil diameter reaches its minimum after 𝑡0. 

3. Calculate Latency as the time difference between 𝑡0 and 𝑡−min. 

4. Calculate Peak Constriction as the percentage change from baseline to minimum 

diameter. 

5. Detect the time 𝑡𝑍 constrict_start when the pupil begins to constrict after 𝑡0. 

6. Compute Constriction Velocity from t_constrict_start to t_min. 

7. Detect the time t_recovery when the pupil returns to 90% of the baseline diameter. 

8. Compute Dilation Velocity between 𝑡−𝑚𝑖𝑛 and t_recovery . 

9. Calculate Recovery Time as the duration from t_min to t_recovery. 

10. Return the feature vector F containing all five extracted values. 

End Algorithm 

3.4 Deep Learning Model Architecture 

A fully connected deep neural network (DNN) was designed to classify input samples into one 

of four diagnostic categories. 

3.4.1 Architecture Overview 

Table 1. Neural Network Architecture Configuration. 

Layer Type Output Size Activation 

Input Layer 13 — 

Dense Layer 1 64 ReLU 

Dropout (0.3) 64 — 

Dense Layer 2 32 ReLU 

Batch Normalization 32 — 

Dense Layer 3 16 ReLU 

Output Layer 4 Softmax 

Table 1 represents the neural network architecture configuration. 

3.4.2 Activation Functions 

● ReLU (Rectified Linear Unit): Applied to hidden layers using the Eq(4): 

𝑓(𝑥) = 𝑚𝑎𝑥(0, 𝑥)    (4) 

● Softmax: Used at the output layer to generate class probabilities: 

𝜎(𝑧𝑖) =
𝑒𝑧𝑖

∑𝐾𝑗=1   𝑒
𝑧𝑗

     (5) 

Where 𝐾 = 4 (number of classes). 



 

 

3.5 Optimization and Hyperparameter Tuning 

3.5.1 Loss Function 

To handle class imbalance and multi-class classification, the categorical cross-entropy loss with 

class weights was used and is mentioned in Eq(6) 

𝐿 = −∑𝐾
𝑖=1  𝑤𝑖 ⋅ 𝑦𝑖𝑙𝑜𝑔⁡(𝑦ˆ𝑖)  (6) 

Where 𝑤𝑖  is the class weight, 𝑦𝑖  the true label, and 𝑦ˆ𝑖 the predicted probability. 

3.5.2 Optimization Strategy 

● Optimizer: Adam (Adaptive Moment Estimation) was used for gradient-based 

learning. 

● Initial Learning Rate: 0.001 with exponential decay (decay rate = 0.96 every 10 

epochs). 

● Batch Size: 32 

● Epochs: 100 (with early stopping on validation loss) 

 

3.5.3 Hyperparameter Tuning 

A grid search was performed over: 

● Number of neurons per layer: [32, 64, 128] 

● Dropout rates: [0.2, 0.3, 0.5] 

● Learning rates: [1e-3, 5e-4, 1e-4] 

Best configuration was selected based on validation F1-score. 

3.6 Evaluation Metrics 

To ensure robust assessment of classification and segmentation performance, the following 

metrics are used: 

 

Accuracy: Accuracy measures the proportion of correctly predicted samples among the total 

number of predictions. It is defined as shown in Eq(7): 

 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
    (7) 

Where, TP, TN, FP and FN represent true positives, true negatives, false positives, and false 

negatives, respectively. While informative, accuracy should be interpreted carefully in 

imbalanced. 

Precision, Recall, and F1-Score (Macro-Averaged): 

Precision is the fraction of relevant instances among the retrieved ones, and recall is the fraction 

of relevant instances that were retrieved. The macro-averaged forms are given by Eqs(8) to 

Eq(10): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
1

𝐾
∑𝑖=1
𝐾  

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑃𝑖
   (8) 



 

 

𝑅𝑒𝑐𝑎𝑙𝑙 =
1

𝐾
∑𝑖=1
𝐾  

𝑇𝑃𝑖

𝑇𝑃𝑖+𝐹𝑁𝑖
                 (9) 

𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ⋅
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ⋅ 𝑅𝑒𝑐𝑎𝑙𝑙 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙 
   (10) 

Confusion Matrix: A confusion matrix tabulates the number of true positives, false positives, 

true negatives, and false negatives per class. It enables detailed analysis of misclassifications 

across different diagnostic categories. 

AUC-ROC (per class): The ROC-AUC score quantifies the model’s ability to separate each 

class from others using the one-vs-rest method. The Area under the Curve (AUC) ranges from 

0 to 1, with higher values indicating better discrimination. 

4 Experimental Setup  

This section details the computational and procedural setup used to implement and evaluate the 

proposed deep learning model for pupillometric biomarker analysis. Emphasis is placed on 

reproducibility, with full transparency on hardware, software environments, dataset handling, 

and training protocols. 

4.1 Hardware Specifications 

All experiments were conducted on a high-performance workstation configured as follows: 

● Processor: Intel® Core™ i9-12900K CPU @ 3.20 GHz 

● GPU: NVIDIA® GeForce RTX 3080 Ti with 12 GB GDDR6X VRAM 

● RAM: 64 GB DDR5 

● Storage: 2 TB NVMe SSD 

● Operating System: Ubuntu 22.04 LTS (64-bit) 

The GPU was utilized for all model training and inference tasks, significantly accelerating 

matrix operations and gradient computations. 

4.2 Software Frameworks 

The implementation was carried out using the following open-source software libraries and 

development tools: 

● Python 3.10 (core programming environment) 

● TensorFlow (v2.13) – for building and training deep learning models 

● Scikit-learn (v1.3) – for preprocessing, evaluation metrics, and model validation 

● NumPy / Pandas – for data manipulation 

● Matplotlib / Seaborn – for visualization and diagnostics 

● Jupyter Notebooks – for interactive development and experimentation 

All libraries were installed via pip within a virtual environment to ensure compatibility and 

reproducibility. 



 

 

4.3 Dataset Partitioning 

The synthetic dataset was partitioned into training and evaluation subsets to ensure 

generalizability of the model: 

● Train-Test Split: 80% training, 20% testing 

● Validation Strategy: From the training set, 10% was further held out for 

validation during model training 

● Cross-Validation: To assess robustness, a 5-fold cross-validation was performed, 

where the training data was split into 5 equal folds, rotating one as validation in 

each round. 

Each fold preserved the class distribution using stratified sampling, ensuring balanced 

representation of all diagnostic groups. 

4.4 Implementation Details 

4.4.1 Model Training 

The model was trained over 100 epochs with early stopping enabled, monitoring validation loss 

with a patience of 10 epochs to prevent overfitting. 

● Batch Size: 32 

● Optimizer: Adam with learning rate initialized at 0.001 

● Learning Rate Decay: Applied exponential decay every 10 epochs by a factor of 

0.96 

● Dropout: 0.3 applied after the first dense layer 

● Regularization: L2 weight regularization (λ = 0.001) was applied to all dense 

layers 

4.4.2 Training Duration 

Each training cycle (per fold) took approximately 14 seconds on the specified GPU. Full 5-fold 

cross-validation training and evaluation completed in approximately 2 minutes. 

4.4.3 Reproducibility 

All experiments were seeded with a fixed random seed (42) to ensure consistency in data splits, 

weight initialization, and optimization behavior. 

5 Results and Analysis 

This section presents the outcomes of the proposed AI-driven classification model, benchmarked 

against traditional machine learning approaches. We evaluate model performance using a suite 

of metrics and assess statistical significance to support the reliability of the findings. 

5.1 Performance Comparison  

 Table I summarizes the performance of the proposed Deep Neural Network (DNN) model 

against three widely used baseline classifiers: Random Forest, Support Vector Machine (SVM), 

and Logistic Regression. Metrics include Accuracy, Macro-Averaged F1 Score, Precision, and 

Recall. 



 

 

Table 2. Performance Comparison of Classifiers. 

Model Accura

cy (%) 

Precisi

on (%) 

Reca

ll 

(%) 

Macro F1 

(%) 

Proposed 

DNN 

89 88 86 87 

Random Forest 

[27] 

82 80 78 79 

SVM [28] 78 76 74 75 

Logistic 

Regression [29] 

74 72 69 70 

 

As shown in Table 2, the proposed Deep Neural Network (DNN) outperforms traditional 

machine learning classifiers—Random Forest, Support Vector Machine (SVM), and Logistic 

Regression—across all evaluation metrics. The DNN achieves the highest accuracy (0.89) and 

macro-averaged F1-score (0.87), indicating strong overall and class-balanced performance. 

Additionally, it demonstrates superior precision (0.88) and recall (0.86), confirming its 

robustness in both correct positive predictions and class coverage. These results validate the 

effectiveness of deep learning in capturing complex patterns in pupillometric data compared to 

conventional approaches. 

5.2 Visualization of Results 

ROC Curves 

 

Fig.2. ROC curves for the four diagnostic classes: Control, ASD, Fragile X, and Rett Syndrome. 

The curves in fig 2 illustrate the model’s ability to distinguish each class from the others in a 

one-vs-rest framework. The Area under the Curve (AUC) for all classes exceeds 0.85, indicating 

high discriminative power. 



 

 

Confusion Matrix 

 

Fig.3. Confusion matrix of the DNN model across diagnostic classes. 

The confusion matrix shown in Fig. 3 highlights classification accuracy and the nature of 

misclassifications. While most predictions were accurate, the model exhibited mild confusion 

between ASD and Fragile X samples—likely due to overlapping pupillometric signatures. 

Accuracy Comparison 

 

Fig.4. Performance Comparison of Classifiers across Metrics. 

Fig 4 illustrates a comparative analysis of classification performance across four models using 

Accuracy, Precision, Recall, and Macro F1-score as evaluation metrics. The proposed Deep 

Neural Network (DNN) consistently outperforms Random Forest, Support Vector Machine 

(SVM), and Logistic Regression, achieving the highest scores in all categories. Notably, the 

DNN achieves approximately 89% accuracy and precision, demonstrating its superior ability to 

generalize across classes and correctly identify true positives. These visual results reinforce the 
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quantitative findings presented in Table I, highlighting the DNN's effectiveness in processing 

pupillometric features for multi-disorder classification. 

5.3 Statistical Significance Analysis 

To validate the superiority of the DNN model, we conducted pairwise comparisons of F1 scores 

using a two-tailed paired t-test across the 5-fold cross-validation results. 

● DNN vs. Random Forest: p = 0.013  

● DNN vs. SVM: p = 0.007  

● DNN vs. Logistic Regression: p=0.002  

All p-values were below the conventional significance threshold of 0.05, confirming that the 

improvements offered by the proposed DNN are statistically significant and not due to random 

variance. 

5.4 Diagnostic Insights and Visualizations 

Confusion matrix analysis revealed that most misclassifications occurred between ASD and 

Fragile X Syndrome, potentially due to overlapping pupillary characteristics such as latency and 

constriction amplitude. This suggests a need for more distinct biomarkers or time-domain 

features. 

Unexpected Observation: The model exhibited slightly lower recall for Rett Syndrome 

compared to other classes, likely due to the smaller sample size (n = 50). This finding highlights 

the importance of dataset balance and may motivate future oversampling or synthetic data 

expansion for underrepresented classes. 

5.5 Clinical Relevance 

The results demonstrate that AI-enhanced pupillometry can be a clinically viable tool for early 

screening of genetic disorders. With high classification performance and statistically validated 

improvements, the system shows promise for integration into pediatric diagnostic workflows. 

6 Evaluation and Discussion 

Evaluation of experimental findings occurs through review of scholarly works which leads to 

practical application discussions and recommended research directions for improvement. 

6.1 Alignment with Existing Literature 

The current results are consistent with previous evidence highlighting pupillometric markers as 

promising diagnostic tools for neurodevelopmental and genetic disorders. Previous work – Fried 

et al. (2020) and Granholm et al. (2017) have highlighted latency and constriction velocity as 

important variables for atypical neurophysiology, in particular in conditions such as Fragile X 

and ASD. We confirm these findings by achieving high classification accuracy rates with these 

features, but go beyond existing studies here by proposing a multi-class AI model that screens 

for several disorders all at once. Compared with previous models which mainly concentrated on 

binary classification or to a single disorder, the proposed DNN aims at a broader clinical 

practice and is an effective tool for a more diverse and richer feature space. 



 

 

6.2 Real-World Implications 

The proposed AI based pupillometric screening system has promising real-world implications, 

especially for pediatric clinical settings where non-invasive, early and quick diagnostic tests are 

important. The high accuracy and low computational complexity of the model are conducive to 

its implementation on portable devices, e.g. a tablet-based eye tracker or a wearable neuro- 

assistive robotic tool. In resource-limited settings where availability of specialized genetics 

testing is limited, this could potentially function as a front-line triage tool to aid clinicians in 

selecting high-risk children for further genetics evaluation. Moreover, it is real-time, making it 

possible to follow progression of neurodevelopment longitudinally and to intervene in a data-

driven way at an early stage of cognitive/brain development. 

6.3 Limitations and Areas for Improvement 

The method does have limitations, however, despite being encouraging. Moreover, the use of a 

single synthetic dataset is methodologically sound for concept testing modelling, but may not 

generalise to the multi-dimensionality and heterogeneity of pupillary responses in the real world 

across different individuals. Additionally, the current model does not include any longitudinal 

or temporal structure that could provide deeper insight into developmental trajectories. Potential 

confounders such as how the ambient light looked, and the mood on which the light had an 

effect, were not simulated in the experiment leading to limitations in (ecological) validity. 

Reducing these limitations involves moving to clinical datasets, the inclusion of sensor-level 

noise, multiple biomodal readouts, and more detailed age stratification. 

6.4 Future Research Directions 

In further research, the model can be extended to process continuous, longitudinal pupillometric 

data obtained from wearable or mobile tools in naturalistic settings. Such integration with other 

biometric modalities such as EEG or facial affect recognition could further result in more robust 

multimodal diagnostic systems. The generalization of the model to other age groups, cultures, 

and disorder spectra could be approached with domain adaptation and transfer learning methods. 

Furthermore, the use of explainable AI (XAI) techniques to improve clinical transparency so 

that clinicians can understand how a model arrives at a decision based on some specific pupillary 

characteristic, are recommended. Lastly, collaboration with pediatric hospitals can enable the 

real-life deployment and validation by means of clinical testing. 

7 Conclusion  

To this end, this paper introduces a machine learning-based approach to detect pediatric genetic 

diseases early using non-invasive pupillometric biomarkers with the ability to discriminate 

between four different classes: autistic spectrum disorder (ASD), fragile X syndrome (FXS), rett 

syndrome (RTT) and neurotypical control. A simulation-trained deep neural network using 

simulated PLR-based features outperforms traditional machine learning baselines in accuracy, 

as well as F1-score, and ROC and confusion matrix-based analyses confirm its diagnostic 

reliability. It was built for integration into low-cost, portable instruments and has potential for 

translation to clinical settings where access to sophisticated diagnostics is limited. Even though 



 

 

this is a limitation that draws on synthetic data, the methodology serves as a scalable basis for 

further validation on clinical data with a possibility to be improved by temporal modelling and 

eAI. 
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