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Abstract. Prostate cancer is the most common type of cancer in men and a leading cause 
of cancer death in men. Precise localization of the tumor and detection during early stage 
are critical for effective and favorable treatment of the patient. To enhance the accuracy 
of the prostate cancer detection, in this work, we concentrate only on tumor segmentation 
on MRI using a combined deep learning model (SEViT). The dataset contains preprocessed 
MRI scans in DICOM format and these images have been augmented, pixel intensity 
normalized to provide model robustness. The suggested SE-ViT architecture enhances the 
model’s ability to collect significant tumor-related information, by adopting ResNet-34-
based multi-scale SE (Squeeze-and-Excitation, SE) blocks for hierarchical feature 
extraction. Better understanding of tumor regions can be obtained by the Vision 
Transformer (ViT), which captures both global spatial dependencies. By incorporating 
transformer-based and convolutional representations, the model segments prostate tumors 
successfully as it is capable of differentiating affected regions from healthy tissue. 
Preprocessing of images, automatic formation of tumor mask, model training, validation 
and evaluation metrics such as Dice Score, IoU, Precision-Recall are all integrated in end-
to-end system. The performance of SE-ViT as a state-of-the-art medical imaging tool is 
verified based on experimental studies in terms of the quality of tumour region 
segmentation. This approach not only improves the accuracy of the diagnosis of prostate 
cancer, but also assists doctors by providing assistive technology that results in more 
accurate treatment planning and better patient outcome. 

Keywords: Prostate cancer, Magnetic Resonance Imaging (MRI), Vision Transformer 
(ViT), Squeeze-and-Excitation Network (SE-NET) ResNet, Global analysis, Long-range 
dependencies, Spatial patterns, Hybrid deep learning approach. 

1 Introduction 

Prostate cancer is one of the most prevalent male cancers and among the leading causes of 

global death due to cancer. According to the World Health Organization (WHO, 2021) prostate 

cancer is a critical public health problem, with more than 1.4 million new cases diagnosed 

annually [20]. Early and accurate detection plays a significant role in increasing survival rates 

and optimizing therapeutic regimens. However, low specificity, false positive issues, and 

significant over-diagnosis rates are the drawbacks of the classical diagnostic tools such as the 

Prostate-Specific Antigen (PSA) test, Digital Rectal Examination (DRE), and biopsy techniques. 

This gave rise to the use of complex imaging techniques like mpMRI as valuable tools to detect 

and localize PCa. However, accurate prostate cancer lesion segmentation in MRI remains 
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challenging due to the complex heterogeneity, low contrast and high anatomical variation of 

prostate cancer lesions. 

Deep learning methodology for Computer-Aided Diagnosis (CAD) has revolutionized the area 

of medical imaging, which automatically segments and classifies tumors. Convolutional Neural 

Networks (CNNs) have been used widely in medical image segmentation [2], [3] and have 

successfully achieved state-of-the-art performance in detecting diverse types of abnormalities, 

e.g., breast cancer lesions, brain tumors or lung nodules. However, CNNs often suffer from the 

problem of poor understanding of spatial context, long-range dependency and global 

information modelling, which leads to unsatisfactory segmentation performance, particularly 

when scanning complex organs such as the prostate. 

This study suggests a hybrid deep learning model for improved prostate tumor segmentation 

that combines Squeezeand-Excitation (SE) Networks with a Vision Transformer (ViT) backbone 

in order to get around these drawbacks. By giving various channels adaptive weights, SE 

Networks which were first presented by Hu et a dynamically recalibrate feature maps, enhancing 

the model’s capacity to concentrate on tumor-specific areas. Originally created for natural image 

processing, the Vision Transformer (ViT) has proven to be exceptionally effective at capturing 

spatial relationships and global dependencies in images. Our suggested model successfully 

combines global context understanding (through ViT) and local feature extraction (through CNN 

based SE-ResNet) by integrating SE-ResNet with ViT, improving segmentation accuracy. 

The main contributions of this paper are as follows: 

• A new SE-ViT hybrid architecture that accurately segments prostate tumors by utilizing 

the advantages of both CNNs and transformers. 

• Advanced data preprocessing methods to increase model robustness and generalizability 

include data augmentation, histogram matching, CLAHE-based contrast enhancement, 

and DICOM-to-PNG conversion. 

• To optimize the segmentation output from various angles, we create a multi-objective 

loss function that combines Hausdorff Distance Loss, Binary Cross-Entropy (BCE), and 

Dice Loss. 

• To improve segmentation masks and lower false positives, we employ post-processing 

methods like Conditional Random Fields (CRFs) and morphological operations. 

• To compare our approach with other segmentation frameworks, we perform a thorough 

evaluation using metrics such as Dice Similarity Coefficient (DSC), Intersection over 

Union (IoU), Precision-Recall (PR), and F1-score. 

The rest of the paper is organized as: An overview of the prostate cancer segmentation work is 

provided in section II which also describes the different methods and their limitations. The 

proposed methodology, which comprises dataset feeding, preprocessing process and model 

architecture, is described in Section III. The experimental setup, training procedures and 

evaluation methods are specified in Section IV. Discussion and implications of the results are 

given in Section V, which provides direction as to the clinical relevance of and future work on 

the results. Ii is finally concluded in Section VI highlighting how our SE-ViT model can be 

beneficial towards a more accurate and interpretable diagnosis of prostate cancer. 

The suggested SE-ViT model seeks to provide dependable and clinically useful segmentation 

results that facilitate better decision-making and better patient outcomes by combining the 

global spatial understanding of transformers with the detailed feature extraction power of CNNs. 



 

2 Related Work 

Prostate cancer detection from medical images is being improved through the use of deep 

learning and machine learning. In order to develop more precise and comprehensible diagnostic 

systems, more recent research uses deep learning (CNNs and Vision Transformers), data 

augmentation (including GANs), multi-label segmentation, transfer learning, and radiomics. 

Alabri et al. [1] investigate early prostate cancer detection using machine learning algorithms. 

In their investigation of different algorithms, Na¨ıve Bayes achieves the highest accuracy of 

88%. According to the study, the perimeter, area, and compactness of cells are important 

indicators of whether a cancer is malignant. Their goal is to use artificial intelligence to create a 

model that can quickly identify prostate cancer in its early stages. 

Silva et al. [2] suggest a web-based system called˜ ProstaTest that eliminates the need for digital 

rectal examination by combining IPSS, PSA, and prostate ultrasound. In order to provide a more 

precise diagnosis, their system processes ultrasound images using deep learning and combines 

the results with IPSS and PSA. With a 95.65% accuracy rate in diagnosing prostate cancer and 

a 96% detection rate for prostate inflammation, the system demonstrates high accuracy. 

Li et al. [11] covers the rising prevalence of prostate cancer and the drawbacks of relying only 

on serum PSA as a diagnostic marker. They draw attention to the problem of unbalanced datasets 

in medical diagnosis and investigate the relationship between clinical markers like age, PSA, 

and apolipoproteins in order to create a prediction model that is more accurate by combining 

AdaBoost and random forest. In addition to brain natriuretic peptide precursors, free calcium, 

and specific apolipoproteins, their results indicate that the ratio of PSA (total), age, and PSA 

(free) are powerful markers for differentiating prostate cancer. 

Maheswari et al. [16] present a review of computer-aided diagnostic techniques for prostate 

cancer, emphasizing the importance of efficient care and management planning to reduce 

mortality rates. Their survey covers a range of topics, including texture-based segmentation, 

computer-aided prostate cancer (PCa) classification, and various cancer staging methods. The 

review also highlights the lack of fully automated procedures in current methodologies and 

advocates for a fully integrated diagnostic approach in future research. 

Garg and Juneja [6] examine segmentation methods applied to different imaging modalities, 

emphasizing feature-based, machine learning, and hybrid strategies. They stress the value of 

modality-specific techniques as well as deep learning’s increasing applicability in clinical 

diagnostics. 

Li et al. [12] provide a 3D Mask R-CNN framework for MRI image segmentation and prostate 

cancer detection that works automatically. Their model achieves high accuracy and strong 

performance in detecting irregular prostate shapes by utilizing 3D convolutions to exploit spatial 

hierarchies and context. 

Chahal et al. [3] create a U-Net-based model for prostate cancer segmentation from MRI images 

that has been improved with Xception modules. Compared to conventional U-Net variants, their 

architecture exhibits better segmentation accuracy and efficiently captures multi-level features. 



Liechti et al. [14] compare the results with transperineal template core needle biopsy and 

examine inter-reader agreement in manual prostate MRI segmentation. Their results support the 

need for consistent automated tools and show variation in expert delineations. 

Mazonakis et al. [17] employ a region growing technique to aid in image segmentation for 

prostate cancer treatment planning. Their method supports semi-automated tumor delineation, 

which helps streamline the planning process and ensures greater consistency and accuracy in 

radiotherapy protocols. 

3 Methodology 

The entire methodology used in this study for automated prostate tumor segmentation in MRI 

scans is presented in this section. Preparing the dataset, preprocessing, designing the hybrid SE-

ViT model, training plans, and post-processing methods to improve performance are all steps in 

the suggested pipeline. The workflow’s goal is to increase segmentation accuracy while 

maintaining clinical reliability and robustness. 

3.1 Dataset Preparation 

Dataset: Prostate cancer MRI scans in DICOM format make up the dataset used in this 

investigation. These scans are appropriate for deep learning model training because they include 

rich clinical metadata. However, for effective processing and model compatibility, DICOM 

images must be converted into a standardized format. As a result, all photos were converted to 

PNG format while maintaining contrast and spatial resolution. Fig 1 show the Converted PNG 

image. 

 

Fig. 1. Converted PNG image. 

Labels for Ground Truth: The prostate gland tumor regions were delineated using manual 

annotations to produce the ground truth segmentation masks. [7] To guarantee high-quality 

labels, these annotations were completed by qualified radiologists. [19] To aid in generalization 

across various prostate cancer cases, the dataset was then split into training, validation, and 

testing subsets in an 80:10:10 ratio. [8] 

 

 



3.2 Pre-Processing Techniques 

Normalization and Histogram Matching: Due to variations in imaging protocols, scanner types, 

and patient conditions, MRI scans frequently experience intensity variations. [18] Histogram 

matching was used to standardize intensity distributions in order to address this. [10] To 

guarantee consistency across samples, a reference MRI image was chosen, and every image in 

the dataset was compared to this reference. [15] Fig 2 show the Generated masks.                

Fig. 2. Generated masks. 

Contrast-Limited Adaptive Histogram Equalization (CLAHE): CLAHE was used to increase 

local contrast and make tumor areas more visible. [4] By adjusting contrast enhancement 

according to local pixel distributions, this method preserves finer details without amplifying 

noise excessively. [5] Gaussian Smoothing for Noise Reduction: To minimize high-frequency 

noise in MRI scans while maintaining structural details, Gaussian filtering was used. [9] By 

taking this step, the influence of noise-related artifacts that might impair model performance is 

lessened. [13] 

Data Augmentation: A number of data augmentation strategies were used to improve the 

generalizability of the model, including. Fig 3 show the Augmented images. 

• Images can be flipped horizontally or vertically to introduce variations along various 

axes. 

• Random cropping and rotation provide resilience to changes in orientation. 

• Realistic distortions seen in MRI scans are simulated by elastic deformations. 

3.3 Proposed SE-ViT Model Architecture 

SE-ResNet-34 Backbone: The suggested model’s feature extraction backbone is the SE-ResNet-

34. ResNet-34 is selected because of its effective residual connections, which mitigate gradient 

vanishing problems and enable deep feature extraction. In order to improve the focus on tumor-

relevant regions, SE blocks are incorporated into the ResNet layers to dynamically recalibrate 

feature maps. SE Block Mechanism: 

• Squeeze Step: Channel-wise descriptors are extracted using global average pooling. 

• Excitation Step: Feature channels are given adaptive importance weights by fully 

connected layers. 



• Recalibration: To improve the representation of important tumor features, feature maps 

are scaled using the learned weights. 

 
       Fig. 3. Augmented images. 

Using Vision Transformer (ViT) to Model Global Context: ViTs use self-attention mechanisms 

to model long-range dependencies in MRI scans, in contrast to CNNs, which rely on local 

receptive fields. The ViT module functions as follows: 

• Patch Embedding: Each non-overlapping patch in the input MRI scan is handled as a 

token. 

• Self-Attention Mechanism: Multi-head attention layers allow each token to 

communicate with every other token. 

• Feature Fusion: By capturing tumor structures throughout the image, the transformer 

encoder creates a global representation. 

The model’s capacity to precisely segment prostate tumors is improved by the combination of 

transformer-based global spatial encoding (via ViT) and CNN-based local feature extraction (via 

SE-ResNet-34). 

3.4 Training Strategy 

Loss Function: 

Dice Loss: Measures region overlap, ensuring that segmented tumor regions closely match the 

ground truth masks.      
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where pi is the predicted probability, gi is the ground truth label, N is the number of pixels, and 

ϵ is a small constant for numerical stability. 

 



BCE Loss: Ensures pixel-wise classification accuracy for foreground and background 

segmentation. 

−
1

𝑁
∑ [𝑔𝑖 log(𝑝𝑖+ ∈) + (1 −  𝑔𝑖) log(1 − 𝑝𝑖+ ∈)]𝑁

𝑖=1                                                   (2) 

where pi is the predicted probability for pixel i, gi is the ground truth label (0 or 1), N is the total 

number of pixels, and ϵ ensures numerical stability. 

Hausdorff Distance Loss: Penalizes errors in boundary delineation, improving the accuracy of 

tumor contours. 

𝐻(𝐴, 𝐵) =  𝑚𝑎𝑥 { 𝑠𝑢𝑝{𝑎 ∈𝐴}𝑖𝑛𝑓{𝑏 ∈𝐵} ||𝑎 −  𝑏||, 𝑠𝑢𝑝{𝑏 ∈𝐵}𝑖𝑛𝑓{𝑎 ∈𝐴} ||𝑏 −  𝑎|| }         (3) 

where ∂G and ∂P represent the boundaries of the ground truth and predicted masks, respectively, 

and ∥x-y∥ is the Euclidean distance between points on these boundaries. 

Hardware Acceleration and Multi-GPU Training: Automatic Mixed Precision (AMP) is used in 

mixed precision training to speed up training. Kaggle T4x2 GPUs also use multi-GPU 

parallelization, which guarantees effective resource use. 

4 Architecture of the Proposed Model 

The SE-ViT Hybrid Model uses the advantages of transformers and convolutional neural 

networks (CNNs) to segment prostate cancer in MRI scans. The two main branches of the 

architecture are a Vision Transformer (ViT) for capturing long-range dependencies and ResNet-

34 for extracting spatial features. To improve segmentation accuracy, these features are 

combined in a feature fusion layer. 

DICOM MRI scans are the starting point of the pipeline; they are first pre-processed by being 

converted into PNG format. The model is trained using segmentation masks. The hybrid model 

receives the dataset after it has been loaded using PyTorch’s Data Loader. Whereas ViT gathers 

contextual information throughout the image, the ResNet-34 component extracts local spatial 

patterns. To create a more accurate mask prediction, these outputs are combined via a 

segmentation head. Fig 4 show the Architecture of the proposed model. 

Fig. 4. Architecture of the proposed model. 

 

To ensure precise segmentation of cancerous regions, a combination of Dice Loss and Binary 

Cross-Entropy (BCE) Loss is used for loss computation during training. Fig 5 show the Flow of 



the proposed pipeline. Thee Adam optimizer is used to optimize the model parameters, 

improving generalization and convergence speed. A number of performance metrics, such as 

Dice Score, Intersection over Union (IoU), Precision, and Recall, are then used to assess the 

trained model. These metrics guarantee robustness in clinical applications by offering a thorough 

understanding of segmentation performance. 

 
Fig. 5. Flow of the proposed pipeline. 

5 Algorithm 

For better feature extraction and classification of prostate cancer images, the SE-ViT model is 

constructed using the following algorithm, which combines Squeeze-and-Excitation (SE) blocks 

and Vision Transformer (ViT) components. 

Algorithm 1: SE- ViT Model for Tumor Segmentation 

Require: Prostate MRI Images I, Ground truth masks Mgt Ensure: Segmented tumor masks 

Mpred 

•  Preprocess images: DICOM to PNG conversion, CLAHE, Gaussian smoothing 

•  Initialize SE-ResNet-34 backbone with pretrained weights 

• Initialize Vision Transformer (ViT) module 

• Define fusion layer to combine SE-ResNet and ViT features 0: Define segmentation 

head with upsampling layers 

• Initialize optimizer with learning rate α and weight decay λ 



• for each epoch e = 1 to E do 

• for each batch b in training data do 

• Extract features FSE from SE-ResNet-34 branch 

• Extract features FViT from ViT branch 

• Fuse features: Ffused ← Fusion (FSE,FViT) 

• Generate predicted masks: Mpred ←  SegHead (Ffused) 

• Compute loss: L =λ1LDice + λ2LBCE+ λ3LHausdorff 

• Update model parameters via backpropagation 

• end for 

• Evaluate model on validation set 

• end for 

• return Trained SE-ViT model =0 

6 Experimental Results and Discussions 

Metrics such as Dice score, Intersection over Union, Precision, Recall, and F1-score are used to 

assess the SE-ViT hybrid model’s performance. 

Dice Similarity Coefficient (DSC): The overlap between the ground truth and predicted masks 

is measured by the Dice Similarity Coefficient (DSC). 

𝐷𝑆𝐶 = 2|𝑃 ∩ 𝐺|/(|𝑃| + |𝐺| )                                                                                                             (4) 

Intersection over Union (IoU): Tumor segmentation accuracy is measured by Intersection over 

Union (IoU). 

𝐼𝑜𝑈 = |𝑃 ∩ 𝐺|/|𝑃 ∪ 𝐺|                                                                                                                  (5) 

Precision: Indicates the percentage of true positives among all cases that were predicted to be 

positive, thereby gauging the accuracy of positive predictions. 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  𝑇𝑃/(𝑇𝑃 + 𝐹𝑃)                                                                                                         (6) 

Recall: Evaluates the model’s capacity to locate all pertinent examples. 

𝑅𝑒𝑐𝑎𝑙𝑙 =    𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)                                                                                                              (7) 

F1-score: By combining precision and recall into a single value, the F1-score provides a 

balanced assessment of a model’s performance by minimizing false positives and negatives 

while accurately identifying positive instances. 

F1 = 2 ·(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙)/(𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙)                                                          (8) 

Table. 1. Comparison of Tumor Segmentation Models. 

Model DSC IOU R P F1 

SE-ViT 0.90 0.82 0.94 0.85 0.90 

TransUNet 0.88 0.79 0.91 0.82 0.86 

Swin-UNet 0.89 0.80 0.92 0.84 0.88 

UNETR 0.87 0.77 0.89 0.81 0.85 

Att-UNet 0.86 0.75 0.88 0.79 0.83 

MedSAM 0.91 0.83 0.95 0.86 0.91 



The suggested SE-ViT hybrid model outperforms conventional convolution-based architectures 

like UNETR and Attention-UNet, achieving a competitive Dice Similarity Coefficient (DSC) of 

0.90 and an F1-score of 0.90. Table 1 compares six different models for this evaluation. Despite 

using transformer modules, TransUNet and Swin-UNet perform marginally worse than SE-ViT, 

demonstrating how well SEResNet and ViT work together to capture both local and global 

features. Interestingly, with a DSC of 0.91, the MedSAM model performs best across all metrics, 

indicating that it is a viable substitute. MedSAM models, on the other hand, require a lot more 

computation and are much more complicated. The SE-ViT is therefore appropriate for real-time 

clinical deployment since it provides the best possible balance between accuracy and efficiency. 

Below is a comparison bar graph of different models, Fig 6 show the Dice score comparison 

between different models. 

 
Fig. 6. Dice score comparison between different models. 

Fig 7 show the SE-ViT model’s confusion matrix shows how well it performs in precisely 

identifying prostate tumors. It has a high recall rate and consistent sensitivity, successfully 

identifying 85 true positive cases and missing only three. The model correctly detects 4 true 

negatives, but incorrectly classifies 8 non-tumor instances as tumors (false positives). This 

balance shows that although the model has a slight tendency to generate false alarms, it is 

remarkably effective at identifying real tumor cases. All things considered, the SE-ViT model 

provides a reliable tumor detection method with strong sensitivity and respectable accuracy. 

 
Fig. 7. Confusion Matrix of SE-ViT Model Predictions. 



7 Conclusion 

The study shows how sophisticated deep learning methods can be used to precisely identify and 

separate prostate cancer from MRI images. The suggested approach greatly improves diagnostic 

performance by combining a hybrid ViT and SENet model, strong preprocessing techniques, 

and an extensive evaluation using metrics like Hausdorff Distance, Jaccard Index, and Dice 

Score. Real-time deployment and clinical validation can be further investigated in future 

research to help radiologists with early diagnosis and treatment planning. 
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