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Abstract. Integer division is a fundamental operation in computer arithmetic, widely used 

in applications such as digital signal processing, cryptography, and artificial intelligence. 

However, due to its inherently sequential nature, integer division often becomes a 

performance bottleneck in modern computing systems. This paper presents a novel 

variable latency integer division algorithm, implemented and synthesized in 15nm 

technology using Cadence software. The proposed design dynamically skips unnecessary 

iterations by exploiting the relationship between the number of leading zeros in the divisor 

and the partial remainder, significantly reducing average latency and power consumption. 

Our implementation achieves an average latency of 1.45 clock cycles per 32-bit division, 

outperforming existing state-of-the-art designs. The design is validated through extensive 

simulations and benchmark testing, demonstrating its suitability for low-power embedded 

systems and high-performance computing applications. 

Keywords: Integer division, variable latency, low-power design, 15nm technology, 

Cadence, FPGA, ASIC.  

1 Introduction 

Division can well be considered central in several domains of computer science such as digital 

signal processing, cryptography, artificial intelligence, and image processing. Division, 

however, is slower than addition and multiplication naturally as it is both non-associative and 

non-commutative, the latter leading to poor parallelism for which non-linear dependency comes 

into play, hence increased hardware cost. The traditional fixed-latency dividers, such as the 

restoring and non-restoring algorithms, have been extensively used due to their simple structure 

and predictable operating time. However, these designs suffer from high latency, especially for 

large operand sizes, making them unsuitable for applications where speed is crucial Variable 

latency dividers have become a competitive solution which reduces average execution time by 

dynamically controlling the number of divisions over the data. These designs utilize the fact that 

not all divisions need the same number of iterations, and allow faster completion in favourable 

operands. Variable latency mechanisms described in the literature also tend to exchange 

hardware complexity for benefits in performance, rendering them less appropriate for resource-

constrained contexts. 

In this paper, we present a new variable latency integer division method to solve the trade-off 

between latency and power consumption by detecting and then skipping unnecessary iterations 
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which are shifting operations in an integer division. The proposed design is designed by 15nm 

design technology using Cadence package which illustrated excellent performance than the 

already reported state-of-the-art designs. The primary contributions of this work are: 

New Algorithm: Variable latency integer division algorithm obtained from non-restoring 

approach that does not perform any useful work and it may skip iterations dynamically based 

on the number of leading zeros in the divisor and partial remainder. 

Efficient Hardware Design: Elaborate hardware design for 15nm technology with fast Count 

Leading Zeros (CLZ) units, single cycle barrel shifter and efficient control logic. 

Complete Evaluation: Our design is extensively simulated and benchmarked to verify its 

performance such as average latency, power consumption and area used. 

Comparison with State-of-the Art Designs: Comparison with existing fixed and variable latency 

dividers demonstrates that the proposed for SDL recovers many stages faster and it is more 

energy efficient. 

The rest of the paper is structured as follows: Section II contains a thorough research of the 

literature available on integer division algorithms. Background and mathematical intuition 

behind Integer Division is explained in Section III. Experimental methodology and algorithm is 

presented in Section IV. Section V presents the implementation flow and hardware architecture. 

Results and comparison with existing designs are also presented and discussed in Section VI. 

Section VII concludes the paper and discusses the future work. 

2 Literature Survey  

The problem of integer division has been well researched in the past and many efficient ways 

have been reported in literature to achieve it for performance, area and power. These algorithms 

generally fall into two groups: fixed-latency and variable-latency dividers.  

2.1 Fixed-Latency Dividers 

The restoring algorithm, introduced by Ercegovac and Lang [1], works by repeatedly subtracting 

the divisor from the dividend and restoring the remainder when it becomes negative. While this 

method is straightforward, it results in high latency due to the restoration process. In contrast, 

the non-restoring algorithm eliminates the restoration step by allowing negative remainders, 

which reduces the number of operations but increases the complexity of control logic. 

Park and Miller [2] described the non-restoring algorithm as avoiding the restoration step by 

permitting negative remainders that are fixed in further iterations. Hongal and Anita [11] noted 

that this saves the number of operations but makes the control logic bigger. Hwang et al. [13] 

highlighted that fixed-latency dividers are still quite slow, particularly for larger sizes of 

operands.  

 



2.2 Variable-Latency Dividers 

Fang and Leeser [14] proposed variable-latency dividers to lower the average cost of iteration 

by adaptively configuring the iteration count for input data. Obaid [3] introduced a data-

dependent divider, which omits computations by detecting leading zeros in the dividend and 

divisor. This method has much lower latency; however, it requires additional hardware for 

leading zero detection and dynamic shifting. 

Sinaga and Yang [4] proposed a dividend reuse priority encoder-based divider, which applies a 

dynamic shifter to align the divisor with the dividend before dividing the operands and hence 

decreases the iteration steps. Trummer et al. [5] presented another architecture that provides 

good performance, but it uses sophisticated control logic and consumes more hardware 

resources, making it less suitable for resource-limited applications.  

2.3 Implementation by FPGA and ASIC 

Relatively recent works have covered optimization of variable-latency dividers targeting FPGA 

and ASIC realizations. Matthews et al. [12] presented a Quick-Div algorithm to be applied on 

FPGA-based soft processors, and Wang [8] introduced the Fetch Type algorithm tailored for 

FPGA-based implementations. This design provides an average latency of 1.69 clock cycles per 

32-bit division, though each division also requires extra setup and completion cycles. 

Bailey [9] demonstrated a space-efficient divider design for FPGA implementation. Patankar 

and Koel [10] provided a comprehensive review of divider algorithms and their trade-offs. 

In addition to divider-specific methods, numerical linear algebra techniques such as LU-

decomposition have also been explored for improving efficiency in solving large-scale 

computational problems [6]. While these approaches are not directly applied to hardware 

dividers, they highlight the broader context of algorithmic optimizations that aim to balance 

performance and computational complexity.  

2.4 Summary 

Although prior art variable-latency dividers achieve good performance, they often tend to be 

complex in hardware. Gander [7] and AMD [15] provide insights into hardware 

implementations and optimization strategies that support efficient integer divider designs.  

3 Background 

The division of two integers A (dividend) and B (divisor) may be expressed in the form of a 

quotient Q and remainder Was: 

A=B⋅Q+W 

where 0≤W 

 



3.1 Restoring Division Algorithm 

Restoring division One of the easiest and most common methods used in integer division is the 

restoring division. It operates as follows: 

Set the partial remainder W to the value of A (i.e. to the dividend). 

Do in each round: Left shift W by 1 bit and subtract the divisor B. 

If it is greater than or equal to 0, then place a 1 in the matching bit of the quotient and update 

W. 

If the outcome is negative, zero the quotient bit, and restore W by adding back B. 

As simple it is this algorithm is of high latency which is caused by the restoration step. 

3.2 Non-Restoring Division The non-restoring division algorithm is as follows. 

The non-restoring algorithm removes the restoring operation by permitting negative modular. 

When the result of the subtraction is negative, rather than restoring W, the negative remainder 

is saved and corrected in the following computations. This, however, reduces the operational 

count but results in more complex control logic. 

3.3 Variable Latency Division 

Variable latency dividers have for most significant portion a pass through that is adjusted as 

many integers iterates as the input permits for faster completion. These schemes usually use the 

relationship between the number of leading zeros in the divisor and the partial remainder to 

avoid extra divisions. 

For instance, when divisor possessed large number of leading zeros, it was evident that most of 

the iterations will involve simple shifts of the partial remainder. By programmatically 

identifying and bypassing such iterations, the total latency can be substantially lowered. 

4 Existing Methodology 

1. Fixed-Latency Dividers Traditional designs of fixed-latency dividers, such as the radix-2 and 

radix-4 algorithms, are adopted in the area-constrained applications because of their simplicity 

and predictable latency. These approaches calculate a constant number of quotient bits in each 

iteration, therefore have a fixed latency which is independent of input. But the operation is slow 

for the divisions with operands that allow quicker execution. 

Variable-latency Dividers Variable-latency dividers repeatedly adjust the amount of iterations 

required for implementation, getting done faster if the operands so allows. These architectures 

are generally based on the dependency of the leading zeros of the partial reminder on the degree 

of partial remainder to avoid unnecessary iterations. 



For instance, if the leading coefficient of the divisor has many leading zeros, then after some 

iterations, it follows that the partial remainder is only simply left-shifted. The aggregate latency 

can be substantially decreased by dynamically identifying and bypassing these iterations. 

Approximation-Based Dividers  

Approximation-based dividers, such as Newton-Raphson and Goldschmidt algorithms, are used 

in floating-point division. These methods iteratively approximate the reciprocal of the divisor and 

multiply it by the dividend to obtain the quotient. While these algorithms are fast, they are not 

suitable for integer division as they do not guarantee exact results. Fig 1 shows the Hardware 

implementation of the algorithm presented. 

Division Algorithm Pseudocode 

 1: Input →  

2: Divider: A ∈ [0, 2ⁿ - 1]  

3: Divisor: D ∈ [0, 2ⁿ - 1]  

4: Partial Remainder: W = A 

5: Quotient: Q = 0  

6: count = 0 7:  

8: Procedure →  

9: while count < n  

10: W = (W << 1) - D  

11: if W > 0 then  

12: Q ₋₁₋ₒᵤ 13: else  

14: Q ₋₁₋ₒᵤ  

15: = 1 = 0 W = W + D # Restoration step  

16: end if  

17: count++  

18: end while 



 

Fig.1.Hardware implementation of the algorithm presented. 

5 Proposed Methodology 

The proposed variable latency integer division algorithm is implemented in the combining non-

performing restoring method, which omits the restoration phase by merely remembering the 

provisional remainder around the subtraction if it is non-negative. The primary insight behind 

our technique is the adaptive identification and elision of the iteration that would have led to 

straight-forward left shift, predicated on the comparison of the quantity of initial zeros in the 

divisor and the partial remainder. 

5.1 Algorithm Description  

The algorithm begins by computing the number of leading zeros in both the divisor and the partial 

remainder. The difference between these values determines the number of iterations that can be 

skipped, as these iterations would only result in a left shift of the partial remainder. The partial 

remainder is then dynamically shifted by the calculated amount, and a single division step is 

performed. This process is repeated until the division is complete.  



5.2 Hardware Architecture  

The hardware implementation of the proposed algorithm consists of the following key 

components:  

Count Leading Zeros (CLZ) Units: Two CLZ units are used to compute the number of leading 

zeros in the divisor and the partial remainder.  

Dynamic Barrel Shifter: A single-cycle barrel shifter is used to dynamically shift the partial 

remainder based on the output of the CLZ units.  

Subtraction Unit: A subtraction unit is used to perform the division step, subtracting the divisor 

from the shifted partial remainder.  

Control Logic: The control logic manages the iteration count, dynamic shift amount, and 

completion signal.  

The architecture is designed to minimize the critical path, ensuring high operating frequency and 

low power consumption.  

6 Implementation Flow 

The implementation flow of the proposed divider is illustrated in Fig. 1. The design is 

implemented in 15nm technology using Cadence software, following a standard ASIC design 

flow. The flow includes the following steps:  

RTL Design: The algorithm is implemented in Verilog and verified through functional 

simulation.  

Synthesis: The design is synthesized using Cadence Genus, targeting 15nm technology.  

Place and Route: The synthesized design is placed and routed using Cadence Innovus.  

Timing and Power Analysis: The final design is analyzed for timing and power consumption 

using Cadence Tempus and Voltus, respectively.  

DIVISION ALGORITHM PSEUDOCODE 

1: Input →  

2: Divider: A ∈ [0, 2^32 - 1]  

3: Divisor: D ∈ [0, 2^32 - 1]  

4: R (63: 32) = 0 × 0000  

5: R (31: 0) = A  



6: count = 0  

7: division_complete = 0  

8:  

9: Procedure →  

10: while division_complete == 0  

11: leading_D = CLZ(D) ∈ [0, 31] # D Leading Zeros  

12: leading_R = CLZ(R) ∈ [0, 63] # R Leading Zeros  

13:  

14: # Dynamic Shift  

15: shift_amount = leading_R - leading_D - 1  

16: if shift_amount > 0  

17: if shift_amount > 31 - count  

18: shift_amount = 31 - count 

19: end if 

20: R = R << shift_amount 

21:  count = count + shift_amount  

22: end if  

23:  

24: # Classic division steps:  

25: difference = R (62: 31) - D  

26: if (difference < 0)  

27: R = R << 1  

28: else  

29: R (63: 32) = difference  



30: R0 = '1'  

31: end if  

32:  

33: if (++count == 32)  

34: division_complete = 1  

35: end if  

36: end while 

 

Fig.2.Implementation Flow. 

Basic Hardware Implementation: The Variation in Leading Zeroes Is Subtracted to Introduce the Dynamic 

Shift. D Is Subtracted from The Output of Dynamic Shifter, And the Result Is Used to Modify R. Fig 2 

Depicts Implementation Flow. 7 Results: The Average Latency, Power Consumption and Area Consumed 

by The Proposed Designs Are Presented. The Proposed Algorithms Are Benchmarked or Compared with 

The Quick-Div and VLNPD. 

7.1 Average Latency the Average Latency of the proposed divider is 1.45 clocks/div which is 

better than Quick-Div algorithm (1.69cycles) and VLNPD (1.55cycles). This enhancement is 



the result of the partial remainder’s leading zeros–oriented dynamic iteration skipping 

mechanism which is presented in Section 100(1). 

7.2 Power Consumption 

The power dissipation of the proposed design is much smaller than that of the conventional 

designs, 0.3 μW/division that the physical energy is 2.5 pJ per division. This translates to a 30% 

energy reduction vs. the Quick-Div algorithm and 20% vs. the VLNPD. 

7.3 Area Utilization 

The area overhead of the proposed structure is competitive to the published works, and the 

footprint of the proposed circuit is 0.012 mm² in 15nm CMOS technology. This is 

accomplished by making efficient use of the hardware, such as reassignment of registers for 

storing the partial remainder and quotient. 

7.4 Benchmark Performance 

We evaluate our divider on six state-of-the-art benchmarks that include a random number 

generator, squareroot calculation, and matrix factorization. The results demonstrate that the 

proposed design can improve the performance up to 15% compared with existing designs and 

has a better performance in applications with high division intensity. 

8 Conclusion 

This paper introduced a new algorithm of variable latency integer division, and developed it by 

software of Cadence based 15-nm process. The proposed design utilizes the correlation of zero 

of the leading bit (ZLB) in modulus by the partial remainder to automatically bypass iterations 

without necessity thus resulting in a reduction in average latencies and power dissipations. 
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