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Abstract. Our approach aims to alleviate the challenges of LCG detection, as tumors are 

often difficult to distinguish from surrounding brain tissue. Unlike conventional 

approaches that apply CNNs directly to raw MRI images, we employ t-SNE to enhance 

differentiation between tumor and non-tumor regions prior to segmentation. Experiments 

using a modified U-Net architecture on the Kaggle LCG MRI dataset demonstrate 

improved tumor detection, particularly in low-contrast regions, compared to baseline CNN 

methods. This hybrid strategy, which integrates clustering with supervised deep learning, 

provides more robust MRI analysis and offers clinicians more reliable tools for tumor 

delineation and treatment planning. 
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1 Introduction 

Neuroimaging characterisation of LGG is particularly difficult due to their infiltrative nature 

and definition of margins with the adjacent brain parenchyma cannot be otherwise discerned on 

conventional MRI examinations. In contrast, we have empirically observed in our research 

group that classical segmentation approaches usually fail precisely on those critical boundary 

regions where diagnostic accuracy influences a treatment decision the most. This inspired us to 

generate novel feature representations for better visualizing tumor boundary prior classification. 

Motivation In experimenting with the Kaggle LCG MRI segmentation dataset, we realised that 

there is a severe limitation in today's approaches: most structure learning algorithms work on 

raw pixel/intensity features or primitive transformations thereof, and do not have access to non-

trivially derived feature space coordinates which could potentially enable pathological 

distinctions. This observation inspired us to define our primary research question: is it possible 

for non-linear dimensionality reduction methods like t-SNE, to expose the tumor boundaries 

that we observe are hidden deep in the conventional features representations. 

Our approach challenges the standard segmentation pipeline by inserting a critical preprocessing 

phase: feature space transformation, between initial feature extraction and final classification. 

By projecting high dimensional MRI characteristics onto optimized lower-dimensional 
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manifolds through t-SNE, we create representations where tumor boundaries become more 

mathematically distinguishable, even when visual differences remain subtle. This 

transformation particularly benefits the challenging cases in our dataset where conventional 

intensity-based segmentation fails.  

Our multistep pipeline (Fig.4) works on the T1, T2 and FLAIR of the KAggle LCG dataset 

through four core steps: 1) Preprocess in which skull striping and performing preprocessing task 

with intensity normalization; 2) Feature extraction by integrating PCA for reducing 

computational complexity but preserving inherited significant information in feature space; 3) 

Define new features space based on t-SNE that we optimized parameters to promote boundary 

enhancement; and vice versa, Initial clustering before closing refinement once from our 

enhanced neural network architectures by combining those special k-means learners. 

On the other hand, our experimental setup has to present reference points for both traditional 

and modern segmentation algo- rithms. Our baseline was ordinary CNNs with and without 

waited normalisation in MRI. We assessed the performance of all U-net models with and 

without side task functions by Segmentation globally. The testing singled out challenging cases, 

including tumors that have generally fared badly with existing methods. 

The global performance assessment demonstrates that our t-SNE modified pipeline yields 

significant improvement of boundary accuracy, specifically in generosity (increasing false 

positives) and detection precision. Our results showed only modest improvements in mean 

metrics, but significant gains at tumor boundaries, just because when focusing on particular 

subvolumes of the treatment volume we realized enormous gains exactly where they are most 

clinically relevant: at the fuzzy edge boundaries of tumors where treatment is hardest. 

Our approach extends beyond purely technical performance metrics to address clinical 

applicability. Neurosurgeons and radiation oncologists at our collaborating institutions noted 

that better visualization and contours on a single affect the planning of surgical approaches as 

well as defining contours for the targets of radiation therapy. Our strategy, by all means, should 

result in decreasing the rate of recurrence as we will be able to detect tumor extensions that were 

missed in traditional strategies and allow either more complete resection or more focused, less 

toxic therapy. 

Our work offers two contributions to the medical image analysis in terms of methodology it 

illustrates the usefulness of feature space transform rather than visualisation, whereas clinically 

we are dealing with LCG segmentation, whose fine boundary delineation is crucial for its 

treatment success and outcome. 

2 Literature Review  

Machine learning (ML) techniques allow systems to learn from experience without explicit 

programming and are widely applied in tasks such as image processing, predictive analytics, 

and data mining. ML is widely used in medical imaging research. This paper surveys ML 

applications in medical image processing, focusing on supervised and unsupervised learning. 

The preliminary analysis outlined by Mutasher Rashed et al. [1].  

Omar Alirr et al. [2] discusses the importance of segmenting brain tumors for better diagnosis, 

prognosis, and treatment planning. Since identifying brain tumors manually is a difficult and 



 
 

tiring task, data categorizing algorithms can help improve accuracy and efficiency. The paper 

highlights the use of CNN, a neural network method, for segmenting brain tumors from MRI 

data. Soomro et al. [3] analyzed various supervised methods that demonstrated good 

performance, but found that End-to-end learning model Techniques are more effective for brain 

tumor segmentation. Ensembling methods have been shown to enhance model performance by 

using the strengths of many models.  

Solaiyappan et al. [4] gives a brief explanation of the numerous uses of Machine learning models 

for classifying medical images as either tampered or untampered by first extracting features 

through deep learning models, then fine-tuning them for accuracy, emphasizing the different 

tools, frameworks, and challenges involved in their use.  

This research is enhanced by Pingat et al. [5] and Shafiq et al. [6], who look into the deep 

learning model U-Net for brain image sectioning. The results displayed that the model 

performed better than autoencoder in accurately segmenting brain images, especially when the 

boundaries of the brain regions were complex or unclear. U-Net was able to capture detailed 

spatial information and produce more precise segmentation, while the autoencoder’s results 

were less accurate and blurrier due to its compression and reconstruction process.  

Addressing the issue of CNNs struggle to capture broad, global information effectively 

Nizamani et al. [7] presents a new approach to improving Brain tumor classification, combining 

the Deep U-net with Transformer technology, referred to as UT. Tejashwini et al. [8] explores 

the significant impact of brain tumors on life expectancy, highlighting the importance of early 

detection to reduce mortality. While MRI is the conventional imaging method, manual 

segmentation is time-consuming and delays diagnosis. The author proposes applying deep 

learning, particularly the UNet framework, to automate this process. However, traditional UNet 

models struggle with accuracy and context processing, which is addressed by introducing a new 

model, the Scleral Residue attention U-Net.  

This advanced version incorporates advanced techniques like residual dense layers and 

hierarchical attention significantly enhancing feature capture and segmentation precision. 

Kesari et al. [9] presents a deep learning approach using Swing UNETR regarding bigger blood 

vessels classification in brain tumors, comparing it with U-shaped Network and U-Net with 

Focused Attention. The results show that Swin Transformer-based U-shaped convolutional 

network with Transformers outperforms other models in accuracy, demonstrating its potential 

for improving tumor grading and treatment planning.  

Yadav et al. [10] presents a novel Brain tumor segmentation using Magnetic Resonance Imaging 

model, Enhanced Residual Attention U-Net (ERAU-Net), which combines recurrent and 

residual elements to capture time-based dependencies and fine depiction details. Selective gates 

are used to Boost feature enhancement, substituting traditional skip connections, leading to 

better region division accuracy. The model outperforms existing methods, and the study 

demonstrates its potential for refining Brain lesion segmentation in medical image interpretation 

pipelines. Torik et al. [11] develops a Neural network for brain tumor detection segmentation 

adopting U-Net improving its performance through fine-tuning with manual annotations. The 

model shows significant improvements in Dice score, True classification rate, Exactness, 

Sensitivity and Balanced accuracy score for neural tissue, nerve fibers, and Spinal fluid. The 

study highlights the model's generalizability and its ability to mask non-anatomical structures, 

making it suitable for clinical applications.  



 
 

Verma et al. [12] proposes that the hybrid KIFECM-IPSO algorithm, blend of Kernel-based 

Intuitionistic Fuzzy Entropy C-means (KIFECM) with Intuitionistic PSO (Particle Swarm 

Optimization) to overcome local minima issues in MRI brain image segmentation. IPSO 

optimizes cluster centroids globally, improving the accuracy of segmentation. The algorithm 

outperforms existing methods, as demonstrated by various performance metrics, including 

similarity measures and false positive/negative ratios. Malik et al. [13] introduces a Stochastic 

Fractional Moment (SFM) optimizer integrated with the U-shaped network structure for brain 

tumor classification in MRI. It demonstrated a method that achieved faster convergence and 

better accuracy, cutting training time by 20% compared to conventional models. Yadav et al. 

[14] introduced the Improved Recurrent Residual Attention based U-shaped Network for MRI 

guided brain tumor segmentation. Their model combines recurring and surplus components 

within both transformation and interpretation pathways, enabling the network to capture 

temporal relationships and fine visual details. 

Oskouei et al. [15] brings a new approach for brain MRI segmentation, when working with 

medical data we run into several challenges that standard analysis approaches couldn't handle 

effectively. Heavy computational requirements slow down the processing and capturing subtle 

patterns around the lesion boundaries becomes difficult. Their solution combines multi scale 

morphological gradient reconstruction with quantum clustering. The technique helped group 

similar pixels together into meaningful regions before analysis, which preserved important local 

features while reducing the complexity of the problem. This preprocessing step made a 

significant difference in boundary detection. The quantum clustering worked well with these 

grouped pixels.  

It handled the reduced dataset much more efficiently than the traditional clustering algorithms, 

cutting our processing approach was especially good at finding natural groupings in feature 

space, even when the boundaries were poorly defined in the original images.  

We also examined the work of Kusuma et al. [16] on automated tumor detection using multi-

modal MRI scans. Their research incorporated enhanced data fusion techniques alongside 

modified SegNet for segmentation improvements. Bhima et al. [17] proposed interesting OTP 

frameworks specifically designed for analyzing and segmenting brain lesions in MRI images. 

Their work addresses the particular challenges posed by unpredictable tumor regions and the 

difficulties in accurately measuring size, texture, and location parameters.  

When reviewing segmentation techniques, we found Gonzalez et al. [18] automatic marker 

definition approach for Watershed Transformation particularly relevant. Their method uses a 

Mandami fuzzy inference system that offers simplicity, robustness, and adaptability across 

various image types. The comprehensive review by Zaitoon et al. [19] examines methods for 

lesions recurrence identification, segmentation techniques, and classification approaches, with 

particular attention to available datasets and deep learning applications for categorization. 

Finally, Mostafa et al. [20] provides valuable insights into the performance characteristics of 

popular deep learning models including Residual Network with 50 layers, U-Shaped network 

and segmentation Network when applied to brain tumor segmentation and classification tasks, 

with specific focus on glioma, meningioma and pituitary. RestNet50 achieved the highest 

accuracy showcasing its potential to improve diagnostic precision.  

Meanwhile, Ruogu Fang et al. [21] address the challenge of segmenting brain MRI images by 

utilizing the tree-metric graph cuts (TM) algorithm, a novel segmentation technique, and 



 
 

propose a "tree-cutting" method to convert the labeling produced by the TM algorithm into a 

Brain tissue identification. Beyond immediate applications, the literature also engages with 

broader implications of image segmentation in brain tumor detection for medical imaging, as 

shown by Davar et al. [22]. 

Their research introduces an automated approach leveraging DNNs for accurate Brain lesion 

localization and segmentation using T1-weighted MRI sequences. The method integrates a 

region-based CNN for tumor localization followed by a modified U-Net architecture for precise 

tumor boundary delineation. Dattangire et al. [23] provides an encouraging prospect of U-

shaped network-based deep learning models in medical image segmentation, particularly for 

brain tumor detection. The proposed U- shaped Network model is trained for the task of 

segmenting LGG regions in MRI scans. The Adam optimizer was used for efficient learning 

and parameter tuning, which helped achieve better performance even with complex, imbalanced 

data. Furthermore, Angona et al. [24] delve into the machine learning domain, proposing a novel 

hybrid model, 3D ResAttU-Net-Swin, Identification of brain tumors in MRI scans, combining 

three powerful components: Residual U-Net, Attention Mechanism, and Swin Transformer. The 

hybrid architecture provides a more robust, accurate, and efficient solution for segmenting 

complex brain tumor regions. Its high performance on established benchmarks, as well as its 

potential application in clinical practice, makes it a promising tool for Advancing the reliability 

and efficiency of brain tumor diagnosis and treatment scheduling. 

3 Existing System  

Brain tumor segmentation methodologies have evolved significantly over the past decade, yet 

several fundamental challenges persist when addressing low-grade gliomas in MRI scans. Our 

systematic analysis of current approaches reveals limitations that directly motivated our 

research into feature space transformation techniques. 

3.1 Conventional Intensity-Based Approaches 

Traditional segmentation methods rely heavily on intensity thresholding and region-growing 

algorithms. When applied to the Kaggle LCG MRI dataset that forms the basis of our research, 

these approaches demonstrate adequate performance for high-contrast tumors with well-defined 

boundaries. However, our experiments with region-growing techniques yielded disappointing 

results for cases exhibiting growth patterns, with Dice similarity coefficients rarely exceeding 

0.67 for boundary regions. The fundamental limitation stems from these methods’ reliance on 

clear intensity differences between tumor and surrounding tissue - a distinction often absent in 

low-grade gliomas where tumor cells infiltrate normal brain parenchyma.  

Edge detection versions, including Sobel and Canny operators performed on evaluation-

enhanced T1 sequences were additionally underperformed when evaluated against our cases. 

Our application of such strategies also validated their sensitivity selection: it entails case-by-

case adjustment, which is not feasible in a clinical setting. Poor reproducibility such effects 

further hinders their software in the context of longitudinal tumor tracking. 

 

 



 
 

3.2 Machine learning Approached without Deep Learning 

For a conventional system these utilized methods were handcrafted features derived from MRI 

sequences. In our primary studies, we conducted SVMs using texture features from grey-stage 

co-occurrence matrices and Gabor filters. Although such techniques outperformed the standard 

deep learning–based approaches, achieving an average Dice score of 0.72 on our test set, they 

performed consistently poorly in regions with tumor boundaries that experienced gradual 

changes instead of sharp ones. 

Random Forest classifiers learned on multi-parametric features showed more potential, in 

particular when integrating results from T1, T2 and FLAIR studies. However, our experiments 

showed that results still were incredibly dependent on characteristic engineering choices, with 

considerable differences in outcomes based upon feature selection decisions. This reliance 

contributed undesired subjectivity into the segmentation model and limits generalization across 

various MRI acquisition protocols. 

3.3 Deep Learning frameworks and their limitations 

Our implementation of popular CNNs for direct classification of MRI voxels confirmed 

exceptional improvements over traditional techniques, particularly in coping with the 

heterogeneity of tumor look. However, whilst evaluated specially on slight achievement 

(average score 0.76), suffering with the slow transition’s characteristics of low-grade gliomas.  

U-Net architectures and their editions have come to be the usual for scientific photo 

segmentation duties. Our experiments with fashionable U-Net implementation on the LCG 

dataset carried out promising ordinary dice scores of zero. Eighty-one, representing modern - 

day performance. However, designated mistake analysis found a constant pattern: overall 

performance degraded significantly for tumors with poorly denied boundaries, precisely the 

instances wherein correct segmentation holds the finest medical value.  

This observation led us to question whether the structure itself had become the restricting factor, 

or if the illustration of certain features could be improved. Attention-based totally changes to 

U-Net architecture's advanced awareness on applicable photograph areas, and our 

implementation multiplied overall performance modestly to a Dice rating of 0.83. Nevertheless, 

our analysis confirmed continual difficulties in instances wherein visual difference between 

tumor and everyday tissue turned into minimal. This sample raised a fundamental issue: these 

networks work on feature representations wherein the separation between tumor and non-tumor 

areas stays hard, irrespective of architectural sophistication.  

3.4 Multi-Modal fusion Challenges 

Brain tumor segmentation generally benefits from multi-modal MRI sequences (T1, T1c, T2, 

FLAIR), highlighting exclusive tissue traits. Current methods normally use channel-clever 

concatenation to mix this suboptimal integration of complementary information. Specifically, 

when reading instances in which tumor boundaries were without a doubt seen in a single 

sequence but obscured in others, the networks did not continuously prioritize the maximum 

informative modality for boundary determination. Feature-level fusion strategies, which include 

the ones we carried out the usage of separate encoding paths for every modality, showed 

enhancements however nevertheless suffered from comparable boundary delineation problems. 



 
 

This recommended that in reality presenting a couple of input channels without transforming 

the characteristic space is insufficient for difficult boundary instances 

3.5 Representation Learning Deficiencies 

One core issue we noticed with previous works [LEE] is that they are based on spatial and 

intensity features in their converted initial illustration spaces. Although deep studying networks 

implicitly look for realistic representations, they constantly operate on capabilities which 

however have giant overlap with the original distribution. Our early experiments involving 

Autoencoders for representation mastering confinement were promising but resulted 

nonetheless in latent spaces where boundary areas were still hard to demarcate. This observation 

provided direct motivation for our investigation of further competitive feature space 

transformations, using techniques such as t-SNE that optimise explicitly towards separating 

different points in the process of constructing which preserve local properties (a property 

particularly useful when enhancing boundaries). 

4 Proposed System 

4.1 Brain Lesion Detection and Classification Framework 

Using deep learning models, we developed a deep learning-based computational pipeline that 

improved the low-grade glioma detection accuracy on MRI images. First we search for tumours, 

then we map those we find in great detail. That enabled us to do very complicated mapping on 

the scans that were actually problematic, saving cost and increasing accuracy. 

4.2 Neural-Enhanced Brain Anomaly Recognition  

We were first confronted with the basic challenge to develop a successful categorization 

algorithm for detecting tumors from MRI scans. However, only very limited validation tests on 

a few standard CNN architectures were reported and proved non-trivial in the context of the 

heterogeneous brain tissues, where subtle lesion patterns can indeed be washed out. We cross-

validated and experimented with several iterations before it became clear that we would have to 

replace the model with transfer learning onto Xception. We observe that the sensitivity is 

significantly improved by keeping the pre-learned base layers and fine-tuning only the fully 

connected ones for our medical imaging dataset. They also accommodate the surround tissue 

noise in high doses and facilitating lesion delineation. These deviations in the model architecture 

led to an enhanced recall scores as well as a higher classification accuracy. 

4.3 Fine Localisation by Enhanced Segmentation  

Specialized segmentation was conducted after scanning and neoplasms were identified to 

delineate the lesion boundaries. Our first attempt using the Context Aggregation Network was 

not successful enough especially for low grade glioma which is more diffusive and smaller. The 

model faced difficulty in predicting the ground truth annotations, specially at low-contrast 

regions and partial volume effect. We resolved it through a U-shaped Network with a Residual 

Network(50-layers) generator. Output resolution is preserved in this model via symmetric 

feature extraction and reconstruction paths between which short-cuts are established. This 

approach significantly outperformed our previous CANet implementation, it performed very 

well on irregularly shaped lesions and better adapted to anatomical variance across patients. 



 
 

4.4 Data Augmentation for Improved Generalization 

It was challenging to collect a sufficient amount of LGG imaging data for training and validation 

prevalence detection, therefore we performed a significant amount of data augmentation to 

generate additional examples. For each MRI scan we performed several random 

transformations, including multi-orientation rotations, mirror flips, shape directions and 

intensity modifications as gamma correction or controlled noise addition. These synthetic 

variants augmented our effective training set while maintaining biological plausibility, and thus 

mitigating over-fitting and improving the model’s generalisation to scans collected under 

different protocols or hardware. 

4.5 Performance Evaluation  

Classical accuracy at the pixel level was insufficient given this highly imbalanced nature of 

tumor segmentation (we note that the LGG lesions only account for less than 5% of the voxels). 

Instead we evaluated performance using the Dice Similarity Index which quantifies the overlap 

between and actual areas, and Hausdorff Distance (HDI) as a measure of boundary alignment. 

In a similar manner to focusing on accurate lesion localisation, for the category model we trained 

using compound loss (Dice plus focal loss) so that it would simultaneously emphasise 

volumetric overlap and penalize misclassified boundary voxels. This adjustment guaranteed that 

our model focused first on diagnostically relevant areas while maintaining computational 

equilibrium during training. The structure diagram of the system is illustrated by Fig 1. 

 

Fig.1. Architecture Diagram of proposed system. 

4.6 Operational Integration with Capacity Advancement 

Before going through the classification network, the MRI scan goes through Preprocessing 

stages dealing with intensity normalisation and orientation standardization. After identifying the 

tumor-positive cases, additional divisions are done, and the outcome is displayed as overlays in 



 
 

the initial DICOM images. In order to enhance the clinical utility of the system, it was 

implemented as a web application using Streamlit and deployed on an AWS EC2 instance with 

GPU. 

4.6.1 Transfer Learning Models  

 To improve tumor detection accuracy and efficiency, the proposed system leverages transfer 

learning techniques. Instead of creating DL systems from scratch, we use pre-requisite 

architectures such as ResNet, VGG, and EfficientNet. Basically, trained with huge datasets as 

open images, these networks offer a better starting point to extract relevant features from MRI 

scans with minimal additional training. 

4.6.2 Depth-Enhanced Residual Architecture and Visual Feature Extraction Methodology 

Deep Residual Network and Visual Geometry Group Architecture are two such architectures 

which contribute significantly in tumor classification by eliminating spatial and hierarchical 

properties aspects from MRI images. ResNet is designed to solve vanishing gradient problem 

through residual connections, which can significantly simplify the multi-stage network. 

In this work ResNet50 is applied on brain MRI data to perform binary classification between 

tumor-positive scans and tumor-negative scans. The hierarchical feature extraction design 

enhanced its ability to recognize complicated tumor models, which can help make clinical 

identification more accurate. VGG, in particular VGG16 and VGG19, utilizes a 3×3 deep 

convolutional filter, which influences the design of the filters to capture spatial information. 

4.6.2 Resource-Optimised Scaling Framework  

Efficient Network optimizes calculation efficiency balancing network Complexity, limit, and 

resolution. It acquires high accuracy with low parameters, making it ideal for medical imaging 

functions. Here, EfficientNetB0 is employed for MRI scanning, which ensures faster and 

reliable tumor detection while minimizing computational overhead. 

4.7 Influence on Medical Evaluation procedures 

This system aids in the automated detection and segmentation of tumors which decreases the 

reliance on manual interpretation that is slow and prone to inconsistencies. The created outlines 

allow radiologists to rapidly evaluate critical parameters such as tumor volume, shape 

irregularities, and their distance relative to other essential brain structures. Preliminary 

validation indicates that this method reduces analysis time per scan by approximately 35-40% 

compared to traditional methods, with achieved segmentation accuracy comparable to that of 

expert radiologists using the Dice Similarity Metric (DSM) of 0.89 ± 0.07.  

5 Implementation 

5.1 Data Gathering and Data Preparation 

We started with gathering appropriate data related to our research. Kaggle's database was used 

for the images of the Brain MRI scans, which were processed before utilizing. Then by using 

TensorFlow, we extended our dataset by applying transformations to the scanned images like 



 
 

skull stripping. We standardized and normalized image intensities to correct for variations in 

scanner. 

5.2 Feature Engineering and Selection 

Now with a clean dataset we move on to our next step, reducing the dimensionality of our data. 

Using, PCA we gained relevant features while discarding unnecessary elements. We also used 

t-SNE visualization to further understand relationships between the image features of our 

dataset, building on these compressed representations. By creating this improved t-SNE feature 

separation, we achieved better performance in our clustered phase, where the K-Means 

clustering algorithm used was optimized for brain tissue samples. 

 5.2.1 t-SNE guided K-Means clustering   

We used K-Means clustering, augmented with t-SNE, as an unsupervised learning method to 

group data based on similarity. For the initial segmentation phase, this enhanced approach 

improved the identification of LGG regions. Conventional K-Means often faces challenges in 

segmenting MRI images due to variations in intensity and texture, but integrating t-SNE 

improves feature separation, making clustering more accurate. Fig 2 shows the visualization of 

the feature distributions. 

 

Fig.2. Visualization of the feature distributions (tumor vs. non-tumor regions). 

5.3 Tumor Segmentation and Detection 

For tumor segmentation and detection, we designed a sophisticated approach leveraging state-

of-the-art deep learning architectures. Our method centred on implementing specialized U-

shaped convolutional networks alongside enhanced Attention-augmented U- shaped Network 

variants, chosen specifically for their exceptional capability in delineating precise tumor 

boundaries. To further refine our results, we integrated several post-processing techniques, 

including targeted morphological operations and Conditional Random Fields, which 

substantially improved boundary definition. 



 
 

5.3.1 U-shaped convolutional networks and Attention-augmented U-Net networks: 

In designing neural network architecture, we selected U-shaped network as our foundation, a 

specialised convolutional framework particularly effective for biomedical image classification. 

The distinctive U-Shaped configuration incorporates an extractor pathway that captures 

contextual information and a symmetric reconstruction pathway that facilitates precise 

localisation. We also added attention mechanisms within the network models. Our modified 

Attention U-shaped Network design integrates specialized attention gates that selectively 

emphasize regions with higher probability of tumor presence while reducing focus on normal 

brain tissue. These attention components operate by weighting feature maps according to spatial 

difference. 

5.4 Model Evaluation and Output Display 

We evaluated our segmentation using multiple complementary methods. First, we overlaid 

segmented tumor regions onto original brain scans to visually assess boundary alignment, 

helping us quickly identify areas where our model excelled or needed refinement. Our analysis 

plots demonstrated whether the model was genuinely learning meaningful differences between 

tumor and healthy tissues rather than just making superficial distinctions. Fig 3 shows the 

performance metrics of the final mode. 

 

Fig.3. Performance Metrics of the Final Mode. 

6 Result 

Accurate segmentation of the brain tumors in MRI scans marks a crucial milestone in 

neurological diagnosis. Our study showed how computational techniques can revolutionize 

conventional tumor identification, shifting from time-consuming manual tracing to precise 

algorithm analysis.  



 
 

6.1 Dataset Characteristics and Preparation 

The foundation of our experiment was built on neuroimaging data retrieved from The Cancer 

Imaging Archive, consisting of 7,858 images (3,929 MRI scans paired with corresponding 

expert-annotated segmentation masks) sourced from 110 individual patient cases. Preliminary 

analysis exposed a notable imbalance in the dataset, as tumors were identified in just 35% of 

the images presenting a challenging environment from classification.  

To address this inherent imbalance and improve model generalization, we employed 

comprehensive data augmentation techniques. These involved systematic geometric 

transformations (rotations of +- 30 degrees, horizontal and vertical flipping), as well as specific 

adjustments to image characteristics (controlled changes in sharpness, selective blurring, and 

contrast variations). This approach maintained anatomical accuracy while artificially increasing 

the diversity of the dataset. 

6.2 Two-Stage Detection Architecture 

Our pipeline adopted a layered strategy, beginning with binary classification (to determine 

whether a tumor was present or absent) before advancing to precise spatial mapping. During the 

initial detection stage, we assessed two distinct frameworks: A specially designed CNN tailored 

to the domain, and an enhanced version of the Xception network, refined using transfer learning 

techniques. The assessment of performance focused mainly on recall metrics (which are crucial 

for detecting tumor presence) and F1-scores, rather than simply measuring accuracy, due to the 

critical importance of minimizing false negatives in clinical scenarios. The Xception model, 

improved through transfer learning, demonstrated clear superiority, achieving an F1-score of 

0.95 and excelling in recall performance, thereby effectively reducing the risk of undetected 

tumors. 

6.3 Segmentation Performance Analysis 

The CANet model achieved a Dice coefficient of 0.77, reflecting moderate performance, but 

encountered difficulties with boundary precision, especially in for tumors exhibiting irregular 

shapes or diffuse edges. Visual inspection revealed that it sometimes failed to fully capture 

subtle tumor extensions and occasionally fragmented continuous regions. The integration of 

ResNet50 into the U-Net variant resulted in superior performance by capitalizing on the 

structural strengths of both architectures.  

Symmetric encoder-decoder pathways ensure spatial coherence, skip connections maintain fine 

anatomical details throughout the processing stages, and residual connections enable deeper 

network training without degradation. Using a compound loss function that combined the Dice 

coefficient with boundary emphasis led to convergence within 20 training epochs. 

6.4 System Integration and Deployment 

The final version of our system merges the classification and segmentation components into one 

cohesive diagnostic pipeline. This setup boosts computation efficiency by applying intensive 

segmentation processing only to scans that are flagged as tumor-positive during the preliminary 

screening. By activating segmentation selectively, the system effectively reduces the influence 

of potential false positives while maintaining high processing speed. 



 
 

6.5 Future Directions 

Current development efforts focus on expanding the training dataset to include a wider variety 

of tumors, including rare morphological types. Further architectural improvements being 

explored involve integrating attention mechanisms and experimenting with different backbone 

networks to boost feature extraction capabilities. The current system lays the foundation for 

computer-assisted diagnosis in neuro-oncology, with potential applications ranging from 

treatment planning to post-intervention evaluations. Fig 4 shows the final segmentation result. 

 

Fig.4.  Final Segmentation Result. 
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