
HGA-RRHC: Hybrid Genetic Algorithm

Random- Restart Hill-Climbing Dynamic Task

Scheduling in Edge-Cloud Computing

Panchagnula Kamakshi Thai1* and Shanker Chandre2

{ 2203c50009@sru.edu.in1, Shanker.chandre@gmail.com2 }

Research Scholar, Department of Computer Science & Artificial Intelligence, School of

Computer Science & Artificial Intelligence, SR University, Warangal, Telangana, India1

Assistant Professor, Department of Computer Science & Artificial Intelligence, School of

Computer Science & Artificial Intelligence, SR University, Warangal, Telangana, India2

Abstract. Internet of Things (IoT) grows increasingly diverse, new, challenging,

computationally complex, and time-sensitive as more and more devices connect to the

internet. Applications like object detection, smart homes, and smart grids have emerged.

Nevertheless, more conventional architecture in cloud computing raises the problem of

high latency, which would not fit IoT devices due to their restricted processing and storage

power. This is solved by edge computing because the edge devices are deployed close to

IoT devices, offering low-latency computation capability. This paper introduces a new

hybrid method called HGA-RRHC for dynamic task scheduling in IoT Edge-Cloud

environments. The method aims to address the previously mentioned issues. To

incorporate this, the system permits the user to choose from different artificial intelligence

(AI) approaches and define the number of tasks and nodes to schedule. Each task means a

randomly chosen deadline and necessary computational power; each node is randomized

given speeds and costs. The applied AI methods are the Hill-climbing algorithm, the

Random Restart Hill-climbing (RRHC), and the Genetic Algorithm (GA). This proposed

HGA-RRHC method capitalizes on the global searching capability of GA and the cellular

automata-based neighborhood programming for task-node assignment. Each solution is

further optimized using RRHC to enhance the selection of suitable machines for

performing significant tasks while being adaptable to variations in such settings.

Keywords: Cloud computing, Edge computing, task scheduling, Hill-climbing, Genetic

Algorithm

1 Introduction

Numerous businesses are investigating smart factories in the age of Industry 4.0, which is based

on Cyber-Physical Systems (CPS) [1], a multi-dimensional complex system that integrates

computing, networks, and physical environments [2]. This system enables large-scale

engineering systems to achieve real-time sensing, dynamic control, and information services.

The cloud's robust mathematical infrastructure enables CPS to facilitate the integrated design of

physical, communication, and computer systems. Cloud computing is at the forefront of

information technological advancements [3]. It can store and handle vast amounts of data and

provides efficient processing resources. On the other hand, low-latency request access and

processing may not be the best fit for cloud servers due to their high bandwidth-delay and

communication waste. Processing on the cloud may not be the best choice for applications that

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358078

mailto:2203c50009@sru.edu.in1
mailto:Shanker.chandre@gmail.com2

need quick responses or have a heavy computational burden [4, 5].The need to fulfil stringent

latency requirements, the heterogeneity of cloud and edge resources, and the ever-changing

nature of task arrivals make dynamic task scheduling in the cloud an arduous challenge to solve

[6]. When it comes to edge-cloud dynamic task scheduling, there are a lot of options. Using a

central scheduler that is aware of the system's status on a global scale and can allocate tasks

optimally is one method [7]. On the other hand, this method could not work for systems with a

lot of processing power or data. Distributed schedulers, which make decisions locally at each

edge node, are another option [8]. Despite the potential challenge of meeting deadlines for all

tasks, this strategy offers greater scalability. The third strategy is to use a hybrid scheduler,

which combines the best features of both distributed and centralized scheduling. Compared to

using only distributed or centralized scheduling, this method has the potential to be more

effective. Application needs, system size, and available resources are some of the many

considerations when deciding on a dynamic task scheduling method. Edge computing's potential

for collaborative offloading with cloud computing and end devices has been the subject of

several studies. To minimize latency for all network devices, the authors of [9, 10] looked into

a communication and computation resource allocation issue in the context of interactive edge

and cloud computing. In an edge-cloud setup, mobile devices may divide tasks between the edge

server and the cloud server. But they also thought about processing tasks at the terminals.

Due to the increase in the number of IoT devices, computationally intensive applications such

as object detection and smart homes were realized. Traditional cloud computing systems have

to deal with rather high latency levels and computational power constraints [11]. Embedding

cognition at the edge between IoT devices reduces latency, enabling real-time processing.

However, the dynamic determination of tasks based on available resources complicates task

scheduling. This paper introduces a new approach called HGA-RRHC, which is a combination

of two optimization techniques: the Hybrid Genetic algorithm and the Random Restart Hill

Climbing for developing dynamic task scheduling in IoT Edge-Cloud systems. A genetic

algorithm (GA) has been employed for the global search while the local search is done using

the RRHC. The method is designed to maximize the utilization of the edge nodes to complete

the tasks to maximize time and cost efficiency and meet the deadline while keeping in mind the

unpredictable nature of IoT environments.

2 Related works

As an advanced distributed computing paradigm, edge-cloud collaborative computing is in its

early stages and will take some time to develop [12] completely. Task scheduling and resource

allocation have been the subject of considerable research in recent years [13, 14].

According to the authors of [15], calculations in huge IoT networks need a wide variety of

resources. Resource scheduling methods in edge computing accomplish this. There has been

progress in resource scheduling algorithms based on statistics and machine learning; however,

there is room for improvement in performance with further analysis of resource needs. They

provided a solution based on deep learning, which uses convolutional neural networks and deep

bidirectional recurrent neural networks (BRNN) to schedule resources in edge computing IoT

networks. They used a spectral clustering approach to group the IoT users into clusters before

scheduling. Time to execution, resource utilization, reaction time, and delay were all validated

by the suggested model's simulation study. The suggested model is compared to GA, IPSO, and

LSTM-based models, which are already used for scheduling resources, to see if it works better.

For use in edge cloud computing, the authors of [16] suggested an energy-aware runtime

manager with little overhead. The delay in RNN tasks is characterized by a need for quality of

service (QoS). The runtime manager optimizes energy consumption on edge systems using

dynamic voltage and frequency scaling (DVFS) methods and dynamically distributes RNN

inference jobs across cloud and edge computing systems according to service quality

requirements. The proposed system minimized energy consumption in edge systems by up to

45% compared to the state-of-the-art method, according to experimental data conducted on a

original edge cloud system.

The authors of [17] state that the current method for task scheduling employs a round-robin

strategy to randomly select a server from a pool of available servers; however, this method may

not always select the server most appropriate for the task at hand. A hierarchical design was first

suggested for IoT's edge-cloud collaborative environments to meet the needs of real-time task

flow in industrial production, where tasks need to be scheduled quickly and according to

deadlines. Then, they used mathematics to simplify and formulate how long these environments

take to lower latency. They introduced a dynamic time-sensitive scheduling algorithm (DSOTS)

that was based on the hierarchical architecture mentioned before. They suggested TSGS, a

hybrid and hierarchical dynamic time-sensitive scheduling system that rates server capabilities

and task size after optimizing DSOTS. Finally, they tested how well the algorithm worked in a

simulated edge-cloud collaborative computing environment by looking at processing time, SLA

violation rate, and cost. The experimental findings showed encouraging results, thanks to the

extension of the CloudSimPlus toolbox.

For these types of edge-cloud networks, the authors of [18] suggested KaiS, a learning-based

scheduling system. This could help increase the long-term rate at which requests are

processed.g. To address the needs of the edge cluster's decentralized request dispatch and

dynamic dispatch spaces, they first developed a coordinated, multi-agent actor-critic method.

Second, they made the orchestration easier by using stepwise scheduling and combining the

outputs of many policy networks with those of graph neural networks that showed what the

system was doing at the moment. They achieved this across a range of system sizes and

topologies. Lastly, they designed an implementation to deploy the aforementioned algorithms

that are compatible with native K8S components, and they used a two-time-scale scheduling

method to synchronize request dispatch and service orchestration. Experiments using actual

workload traces demonstrate that KaiS can learn effective scheduling strategies, regardless of

the size of the system or the number of requests.

In their work, the authors of [19] enhanced the four main aspects of the DRL algorithm and

network structure. A two-dimensional state perception process with a sliding window; an

adaptive reward function that changes based on the situation and takes into account multiple

goals; a continuous action space with composite dispatching rules (CDR) and release strategies;

and actor-critic networks that use CNNs were all helpful. They test the suggested dynamic

scheduling mechanism on a simple SMS to ensure its practicality and efficiency. Simulations

and experiments show that the suggested method works better than both the old dispatching

rules and the A3C-based method that hasn't been improved in the new uncertain situation.

3 Proposed Model

Collaboration between the edge and the cloud allows for the local or remote execution of tasks

created by mobile devices (MDs) through the use of mobile edge computing (MEC) servers.

However, sending tasks to the cloud results in an increase in connection time and bandwidth

demand. Equation (1),

 𝑇𝐶𝑜𝑚𝑝 𝐸𝑥𝑒𝑐 = 𝑇𝑐𝑜𝑚𝑢_𝑒𝑑𝑔𝑒 + 𝑇𝑒𝑥𝑒𝑐_𝑒𝑑𝑔𝑒 + 𝑇𝑐𝑜𝑚𝑢 𝑐𝑙𝑜𝑢𝑑 + 𝑇𝑒𝑥𝑒𝑐_𝑐𝑙𝑜𝑢𝑑 (1)

where TComp_Exec is the total time from the time the user receives the result of the calculation, can

be used to represent the total task execution time (from the initiation of the request to receiving

a response). Fig 1 shows the temporal structure of edge-cloud collaborative computing.

Fig. 1. Task execution of edge-cloud collaborative computing.

Establishing a connection with the server requires the tasks to expend Tcomu_edge. When a task

connects to a server that is processing multiple tasks, it will wait for them to finish before

commencing. The size, complexity, and server processing power of the task determine the actual

execution time of Texec_edge after the task begins execution. If no local server is available to finish

the task within the user-specified time, the server will have to wait longer to connect to the cloud

to get the resources it needs. Texec_cloud, along with Tcomu_cloud, will execute the other tasks while

still on the cloud.

Given the limited resources, calculations must be completed at the edge of the network to

minimize the load on the core network. We should complete the job and provide the result before

the task deadline, especially for time-sensitive applications. Equation (2) computes the task

execution time on an edge server.

 𝑇𝑒𝑥𝑒𝑐_𝑒𝑑𝑔𝑒 = 𝑇𝑤𝑎𝑖𝑡 + 𝑇𝑡𝑟𝑎𝑛𝑠𝑓𝑒𝑟 + 𝑇𝑒𝑥𝑒𝑐 (2)

Tcomu includes the time to send the request and the time to receive the result

 𝑇𝑐𝑜𝑚𝑚 = 𝑇𝑑𝑒𝑣𝑖𝑐𝑒_𝑡𝑜_𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑇𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑜_𝑠𝑒𝑟𝑣𝑒𝑟 + 𝑇𝑠𝑒𝑟𝑣𝑒𝑟_𝑡𝑜_𝑑𝑒𝑣𝑖𝑐𝑒 (3)

Tdevice_to_server sends the user data as execution parameters to the assigned edge server upon

receiving a task request. Our approach minimizes the transfer to almost nothing by using a

separate thread for data delivery. After offloading, we must perform the task on the correct

server. By prioritizing the machine that is geographically nearby, our scheduling method cuts

down on connection time. When one server is unable to complete a task on time, the agent

scheduling centre must communicate with other servers to move the application to a

neighbouring server so it can be executed fastly. Before carrying out activities, think about how

long it will take to transfer data to the server.

A short and quick task-waiting queue may help with this. Upon submission, the system swiftly

distributes data among numerous threads as tasks await CPU processing. The final Tserver_to_device

time occurs when the server sends the user the results of the calculations after a task has finished.

An edge server will query the cloud for application processing details when it gets a request

from a user.

We will carry out the information retrieval process independently to address time-sensitive

matters. The agent centre is responsible for allocating resources and scheduling tasks, allowing

the edge server to focus on processing tasks rather than security or other issues. In this study,

we optimize the model to increase availability and efficiency by combining the task processing

flow of edge computing. To improve the processing efficiency of tasks, the optimized model is

used to construct a suitable scheduling strategy.

3.1 Proposed ssystem for task scheduling in Edge-cloud computing

Each sub-module in the system serves a specific purpose in the edge computing-based task

scheduling for IoT devices. The following is a detailed description of each of the listed modules

and a block diagram in Fig 2, which will illustrate the overall structure of the system.

Task and node generation modules randomly generate tasks and edge nodes. Each task is given

a random time that needs to be completed and the amount of computation it requires, while each

edge node is given a random speed and cost. We use this information as the basis for scheduling.

GA module utilizes a global search method to search for the solution set of task-node

assignments by generating a population. With it, a candidate solution can create other potential

solutions by selection, crossover, and mutation to maintain the variety in a search. The cellular

automata module improves the order of the relative tasks in distinct nodes by using several rules

based on the neighbourhood it defines because it takes locality and dependencies into

consideration when arranging tasks. After the GA has produced an initial solution, the RRHC

module refines it through a local search process. The restart mechanism guarantees the exclusion

of the local optima and searches for other regions of the solution space. In addition to this, the

performance evaluation module determines the overall efficiency of the final task scheduling

solution in terms of the time, cost, and deadline it took to complete the task.

Fig. 2. Proposed sequence to optimize task scheduling in Edge-cloud computing.

3.2 Hill-climbing (HC)

This is a local search optimization algorithm in which a solution is gradually moved to the

neighboring solution from one optimum to the other in every step. This algorithm proves useful

in dynamic task scheduling for edge computing. In IoT environments, this algorithm provides

the optimal solution, reduces time and cost, and guarantees the timely completion of tasks. The

algorithm will have an initial task-node assignment and assess neighboring configurations with

better arrangements of the task placement or execution order based on the optimal goal.

However, hill-climbing can get stuck in what refers to the local optima, where no other

neighboring solution is available with better results in better global solutions. In complex

situations, hill-climbing may not optimally find solutions for changes in the task characteristics

or status of the node. Still, it works when the first solution is close to the best one; then, the extra

work needed to fine-tune the schedule for a satisfactory task-node mapping isn't that much.

3.3 Random Restart Hill-climbing (RRHC)

The simple hill-climbing algorithm is improved by the Random Hill-Climbing (RRHC) to avoid

staying too long in a local optimum. It adopts the concept of restarting the search when it reaches

a local optimum, which enables the search process to go to other promising areas of the solution

space. This method works well for dynamic task scheduling in edge computing for IoT

networks, where tasks can be hard to do because of things like the task deadline, the performance

of network nodes, and the available resources, among others. Because the system is dynamic,

RRHC avoids early commitment to suboptimal task-node assignments. Every restart starting

from a fresh solution assessment and then optimizing it through local search. Though RRHC is

more computationally expensive than basic hill-climbing, it is more flexible and stable for

scalable scheduling issues in edge computing systems.

3.4 Random Restart Hill-Climbing (RRHC) + Genetic Algorithm (GA)

In the IoT Edge cloud environment, dynamic task scheduling is a primary concern for balancing

appropriate task assignment, resource utilization, latency, and cost in a dramatically changing

environment. Hill Climbing and Random Restart an effective local search algorithm for

optimization, Hill Climbing, is subject to local optima. Combining the Genetic algorithm (GA)

with RRHC allows for a hybrid approach for a more plausible solution while preserving the

performance reserves enhanced, one among several facets.

GA carries the solution space by focusing on the movement of a population of solutions and

paying close attention to the solutions that navigate through challenging situations, such as

traversing a small local neighborhood. Genetic processes such as crossover, mutation, and

selection shape the population of solutions each generation of GA uses over time. Distinctly

from hill-climbing, hill-climbing begins with any initial solution and proceeds towards the

optimum solution in the neighborhood. Local self-improvement is the name of his game.

Furthermore, it cannot explore the solution space beyond its shorter neighbors of the so-called

local optima. Mathematically, this can be described as follows:

 𝐺𝐴 𝑈𝑝𝑑𝑎𝑡𝑒 𝑆𝑘+1 = 𝐶𝑟𝑜𝑠𝑠𝑜𝑣𝑒𝑟(𝑆1, 𝑆2) 𝑤𝑖𝑡ℎ 𝑆𝑖 𝜖 ℘ (4)

where P represents population of solutions, and Si represents individual solutions that grow over

generations.

The use of GA makes it easy for the algorithm to search all around the solution space because

of its diverse nature, thereby increasing the probability of arriving at a globally optimal solution.

The hill-climbing approach converges prematurely, though the RRHC does mitigate this by

including restarts; however, there is not much diversification as the search only occurs in the

local area. When applied as a post-processing method for GA, RRHC also takes advantage of

both global and local search. This improves the quality of the task scheduling, as there is

improved convergence and global exploration. It also complements GA in that a population-

based search means that even when the environmental conditions do change, new candidates

can evolve in the population quickly. RRHC then refines these solutions locally to guarantee

that the final schedule is immune to the dynamic changes in the tasks and nodes. We can

mathematically represent adaptability as follows:

 𝑆𝑛𝑒𝑤 = Restart(𝑆𝑏𝑒𝑠𝑡) (5)

The restart process in RRHC guarantees the exploration of new potential candidate solutions

and helps stop stagnation. Also, it minimizes the problem of local optima through the relaunch

of the hill-climbing algorithm by randomly generated solutions. This is more elaborate than the

hill climbing idea, thus providing a wider coverage of the solution space. GA contains crossover

and mutation operators, which means that the search process occurs over diverse solutions. The

integration of GA and RRHC makes the exploration of the provided search space complete, thus

offering globally optimal solutions as well as locally refined ones. Mathematically, this can be

seen as:

 𝑅𝑅𝐻𝐶 Restart 𝑆𝑙 ⟶ 𝑆𝑟𝑒𝑠𝑡𝑎𝑟𝑡 (6)

where Sk is the current solution and Srestart is a new random solution.

When it comes to scheduling tasks, the total cost and the total time required for their execution

on the nodes are chosen as the objective functions.

 Obj . function = ∑ 𝐶𝑖 . 𝑇𝑖 + ∑ 𝑆𝑗
𝑚
𝑗=1

𝑛
𝑖=1 (7)

Where Ci represents the cost of task, Ti represents the completion time , and Sj represents the

speed or utilization of node j.

The approach begins with an initial solution S0 and improves iteratively:

 𝑆𝑘+1 = 𝑆𝑘 + ∆𝑆 (8)

where ΔS is the best neighbouring solution at step k.

In GA, the population-based approach entails a fitness function that assesses many solutions at

the same time and mutation to create new candidates.

 𝑆𝑛𝑒𝑤 = Crosover(𝑆1, 𝑆2) (9)

 𝑆𝑟𝑒𝑠𝑡𝑎𝑟𝑡 = Random solution (10)

and relates local search subsequently.

This integration gives rise to a combined model where GA handles the exploration of the

solution space and introduces new solutions, while RRHC offers a more refined local search

and optimization capability.

4 Results and Discussions

Based on the proposed dynamic task scheduling framework, this system enables the use of

Python to implement this system. For array computations libraries such as NumPy can be

employed, for graphing a library like Matplot lib, and for genetic algorithms, the library as

DEAP, which stands for Distributed Evolutionary Algorithms in Python. The HGA-RRHC was

coded in Matlab R2015a (TM) on an Intel 7 personal computer with 8 GB of RAM and running

at 2.3 GHz.

From Table 1, it can be concluded that the hybrid RRHC + GA method is better than Hill-

climbing and RRHC in terms of the required time to complete the task. It completes 50 tasks at

10 nodes in 350 seconds, while hill-climbing takes 450 seconds.

Table 1. Analysis of performance metrics of all algorithms.

Algorithm
Number

of Tasks

Number of

Nodes

Average

Completion

Time (s)

Total Cost

($)

Deadline

Adherence

(%)

Hill-climbing 20 5 250 120 75

RRHC 20 5 220 110 85

Hybrid RRHC +

GA
20 5 190 95 95

Hill-climbing 50 10 450 200 60

RRHC 50 10 400 180 75

Hybrid RRHC +

GA
50 10 350 160 90

This improvement is attributed to the global search plot of GA in generating improved initial

solutions and the local optimization of the obtained solutions by RRHC. The method has a lower

overall cost because GA's global search finds the best node-task assignments, and RRHC finds

the best local assignments to keep resources from going to waste. The total cost for Hybrid

RRHC + GA is 160, while for Hill-climbing, it is 200. It has the best response in meeting the

deadline with a ratio of 95% compared to Hill-climbing of only 60% and RRHC of only 75%.

However, it provides the highest nodal utilization percentage of 90% on average, as compared

to Hill-climbing (75%) and RRHC (80%).

It is evident from Fig 3,4&5 that the hybrid RRHC + GA approach yields impressive gains to

Hill-climbing and RRHC concerning the time required to accomplish numerous tasks, costs,

adherence to deadlines, and node resource usage. That the time taken to complete the tasks is

lesser in the case of the hybrid approach shows that it can find solutions faster; this is because

GA can make a global search keeping in mind the constraints while RRHC can fine-tune the

results once it has been given a range to work within. failure; therefore, the inherent time-

efficient workflow of the hybrid approach is critical to meeting strict deadlines. This is an

illustration of how the hybrid algorithm improves the cost function by offering lower costs and

higher node utilization. Timeliness is especially critical in such environments as IoT Edge-

Cloud, where even a single missed deadline may lead to a critical

Fig. 3. Task Completion time versus number of tasks.

Fig. 4. Total cost versus number of tasks.

Fig. 5. Deadline adherence versus number of tasks.

Analyzing the data from Fig 6, it can be concluded that as the number of nodes increases, the

average completion time decreases for all three algorithms because there are more nodes

available to perform tasks. Hybrid RRHC + GA has a smaller overall completion time compared

to Hill-climbing and RRHC throughout all node settings. This is because GA’s global search

leads to the production of better initial solutions, which RRHC then refines, hence making

scheduling more efficient.

Fig. 6. Average ccompletion time versus number of nodes.

As can be seen in Fig 7, the total cost continues to decline as more nodes are introduced due to

the spreading of computational loads into the nodes’ resources. However, it is vital to indicate

the fact that the hybrid RRHC + GA approach remains the least costly, proving thus that it is

the most efficient in the utilization of resources available. The high efficiency in task allocation

by GA and the subsequent optimization by RRHC also minimizes excess costs.

Fig. 7. Total cost versus number of nodes.

In Fig 8, it is observed that the degree of compliance with the deadline increases as the number

of nodes also increases because more nodes mean more resources and hence a higher probability

of completing the assigned tasks within the set timeframe. The results indicate that the hybrid

RRHC + GA approach adheres to the deadline more than any other work when all nodes are

considered. This makes it possible to perform better under changing conditions, especially when

there is a need to meet deadlines.

Fig. 8. Deadline dadherence versus number of nodes.

5 Conclusion

In conclusion, the use of HGA-RRHC accomplishes the problem of dynamic task scheduling in

IoT Edge-Cloud environments. It offers a power solution through the combination of Genetic

Algorithm (GA) and Random Restart Hill-climbing (RRHC), which has the capability of global

search and accurate local search. From the experimental analysis, it can be concluded that the

performance of HGA-RRHC is superior to Hill-climbing and RRHC in the facilitation of the

tasks in terms of completion time by 350 seconds, cost of $160, and on-time compliance by

95%. It incorporates efficiency in the scheduling of tasks in addition to enhancing channel

availability without having to wait for long periods for a particular node, especially given the

unpredictable nature of IoT deployments. Additionally, the neighbourhood defined by the

cellular automata improves the order in which the tasks are performed, thus increasing the

efficiency of the system. In the future, this algorithm will be useful for time-critical IoT

applications as it offers high throughput and relatively low latency, making it a scalable and

cost-effective solution for edge computing task orchestration..

References

[1] Weyer, S.; Meyer, T.; Ohmer, M.; Gorecky, D.; Zühlke, D. Future modeling and simulation of

CPS-based factories: An example from the automotive industry. IFAC-PapersOnline 2016, 49,

97–102.

[2] Sodhro, A.H.; Pirbhulal, S.; de Albuquerque, V.H.C. Artificial Intelligence-Driven Mechanism

for Edge Computing-Based Industrial Applications. IEEE Trans. Ind. Inform. 2019, 15, 4235–

4243.

[3] Kobusinska, A.; Leung, C.K.; Hsu, C.; Raghavendra, S.; Chang, V. Emerging trends, issues and

challenges in Internet of Things, Big Data and cloud computing. Future Gener. Comput. Syst.

2018, 87, 416–419.

[4] Akkus, I.E.; Chen, R.; Rimac, I.; Stein, M.; Satzke, K.; Beck, A.; Aditya, P.; Hilt, V. SAND:

Towards High-Performance Serverless Computing. In Proceedings of the 2018 Usenix Annual

Technical Conference (USENIX ATC 18), Boston, MA, USA, 11–13 July 2018; pp. 923–935.

[5] Tang, B.; Fedak, G. WukaStore: Scalable, Configurable and Reliable Data Storage on Hybrid

Volunteered Cloud and Desktop Systems. IEEE Trans. Big Data 2022, 8, 85–98.

[6] Zhang, Yu & Tang, Bing & Luo, Jincheng & Zhang, Jiaming. (2022). Deadline-Aware Dynamic

Task Scheduling in Edge–Cloud Collaborative Computing. Electronics. 11. 2464.

10.3390/electronics11152464.

[7] Devaraj, Rajesh & Sarkar, Arnab & Biswas, Santosh. (2021). Optimal work-conserving

scheduler synthesis for real-time sporadic tasks using supervisory control of timed discrete-event

systems. Journal of Scheduling. 24. 10.1007/s10951-020-00669-0.

[8] Wen, Shilin & Han, Rui & Liu, Chi Harold & Chen, Lydia. (2023). Fast DRL-based scheduler

configuration tuning for reducing tail latency in edge-cloud jobs. Journal of Cloud Computing.

12. 10.1186/s13677-023-00465-z.

[9] Kai, C., Zhou, H., Yi, Y., & Huang, W. (2020). Collaborative cloud-edge-end task offloading in

mobile-edge computing networks with limited communication capability. IEEE Transactions on

Cognitive Communications and Networking, 7(2), 624-634. doi: 10.1109/TCCN.2020.3018159

[10] Ren, J., Yu, G., He, Y., & Li, G. Y. (2019). Collaborative cloud and edge computing for latency

minimization. IEEE Transactions on Vehicular Technology, 68(5), 5031-5044. doi:

10.1109/TVT.2019.2904244

[11] Hao, Y., Jiang, Y., Chen, T., Cao, D., & Chen, M. (2019). iTaskOffloading: intelligent task

offloading for a cloud-edge collaborative system. IEEE Network, 33(5), 82-88. doi:

10.1109/MNET.001.1800486

[12] Pham, Q.; Fang, F.; Ha, V.N.; Piran, M.J.; Le, M.; Le, L.B.; Hwang, W.; Ding, Z. A Survey of

Multi-Access Edge Computing in 5G and Beyond: Fundamentals, Technology Integration, and

State-of-the-Art. IEEE Access 2020, 8, 116974–117017.

[13] Meng, J.; Tan, H.; Xu, C.; Cao, W.; Liu, L.; Li, B. Dedas: Online Task Dispatching and

Scheduling with Bandwidth Constraint in Edge Computing. In Proceedings of the 2019 IEEE

Conference on Computer Communications (INFOCOM 2019), Paris, France, 29 April–2 May

2019; IEEE: New York, NY, USA, 2019; pp. 2287–2295.

[14] Wang, J.; Zhao, L.; Liu, J.; Kato, N. Smart Resource Allocation for Mobile Edge Computing: A

Deep Reinforcement Learning Approach. IEEE Trans. Emerg. Top. Comput. 2021, 9, 1529–

1541.

[15] Gunasekaran, Vijayasekaran & Duraipandian, M. (2022). Resource scheduling in edge

computing IoT networks using hybrid deep learning algorithm. System research and information

technologies. 86-101. 10.20535/SRIT.2308-8893.2022.3.06.

[16] Chen, Chao & Weiyu, Guo & Wang, Zheng & Yang, Yongkui & Wu, Zhuoyu & Li, Guannan.

(2022). An Energy-Efficient Method for Recurrent Neural Network Inference in Edge Cloud

Computing. Symmetry. 14. 2524. 10.3390/sym14122524.

[17] Zhang, Yu & Tang, Bing & Luo, Jincheng & Zhang, Jiaming. (2022). Deadline-Aware Dynamic

Task Scheduling in Edge–Cloud Collaborative Computing. Electronics. 11. 2464.

10.3390/electronics11152464.

[18] Shen, Shihao & Han, Yiwen & Wang, Xiaofei & Wang, Shiqiang & Leung, Victor. (2023).

Collaborative Learning-Based Scheduling for Kubernetes -Oriented Edge-Cloud Network.

IEEE/ACM Transactions on Networking. PP. 1-15. 10.1109/TNET.2023.3267168.

[19] Liu, Juan & Qiao, Fei & Zou, Minjie & Zinn, Jonas & Ma, Yumin & Vogel-Heuser, Birgit.

(2022). Dynamic scheduling for semiconductor manufacturing systems with uncertainties using

convolutional neural networks and reinforcement learning. Complex & Intelligent Systems. 8.

10.1007/s40747-022-00844-0.

