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Abstract. 3D printing has emerged as a transformative additive manufacturing technology, 

yet persistent challenges with print failures continue to impact production efficiency. 

Common errors such as filament failure, bed level misalignment, and layer shifting result 

in significant material wastage and increased production time. This paper presents an 

automated system for real-time error detection using Faster R-CNN, trained on a 

comprehensive dataset of 4,165 images. The system identifies four critical printing errors: 

bed level misalignment, layer shifting, no filament, and spaghetti extrusion. Through 

integration with a Raspberry Pi, the system provides automated print halting and user 

notification capabilities. Our experimental results demonstrate robust performance with a 

mean Average Precision (mAP@0.5) of 60-70% and an F1-score between 72-82%, 

establishing a reliable foundation for automated print monitoring and error prevention. 
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1 Introduction 

3D printing has transformed modern manufacturing, allowing for both rapid prototyping and 

customized production [1]. Yet, hardware and process-related errors remain a major challenge, 

frequently leading to wasted filament and extended printing times. Traditional methods of 

monitoring require constant human supervision, making them inefficient. As highlighted by 

recent studies deep learning techniques have shown promising results in automated defect 

detection. This paper introduces a deep learning-based approach to automate error detection 

using Faster R-CNN, allowing the system to intervene in real-time by stopping faulty prints and 

notifying users. 

1.1 Importance of Real-time Monitoring in 3D Printing 

Real-time monitoring of 3D printing is essential to ensure efficiency, minimize failures, and 

reduce costs. A malfunctioning 3D printer can waste significant filament and time, especially 

for large-scale prints. This study focuses on creating a system that enhances the reliability of 3D 

printing, making it more practical for industrial and personal use. 

1.2 Problem Statement 

Traditional monitoring approaches rely heavily on human supervision, which presents several 

limitations: 

• Continuous monitoring is labor-intensive and impractical 

• Human error in detecting early-stage print failures 

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358076

mailto:jeshu.hyd@gmail.com
mailto:cshymalakumari@gmail.com
mailto:ramcharansingam07@gmail.com


• Delayed response to critical issues 

• Inefficient resource utilization 

• Scalability challenges in production environments 

1.3 Organization of the Paper 

This paper is structured as follows: Section 2 covers the literature review, exploring previous 

works on 3D printer error detection. Section 3 details the methodology, including dataset 

collection and training process. Section 4 presents experimental results and system performance. 

Section 5 concludes with a summary and potential future enhancement. 

2 Literature Review 

Several studies have explored error detection in 3D printing. Traditional methods rely on image 

processing techniques such as edge detection and background subtraction Fang et al. (2024). 

However, these methods are often limited in identifying complex errors Dongsen & Yingjie et 

al. (2021). 

In latest research, deep learning has been used to automatically detect defects. The architecture 

of CNN is successfully applied to manufacturing defect detection Sheikhjafari et al. (2023). For 

example, Faster R-CNN [30] has been used in industrial quality control and it exhibits good 

performance in object detection Marmanis et al. (2016). Meanwhile, research in additive 

manufacturing has considered using YOLO and SSD networks for print failure detection, Asif 

et al. (2023) yet Faster R-CNN has outperformed these methods regarding the detection of 

smaller defects and fine-grained mistakes with more accuracy Li et al. (2021). This work extends 

those findings by utilizing Faster R-CNN to detect 3D printer errors, and coupling it with a real-

time remediation system Gupta & Sharma et al. (2022).  

3 Methodology 

3.1 Dataset and Preprocessing 

The dataset comprises 4,165 images collected from real-world 3D printing scenarios, annotated 

with bounding boxes for four error classes: 

• Bed Level Misalignment – Incorrect leveling causing adhesion issues. 

• Layer Shifting – Misalignment in layer deposition. 

• No Filament – Printer running without filament. 

• Spaghetti Extrusion – Uncontrolled filament deposition.



 

Fig.1. Dataset Distribution. 

Fig 1 shows the dataset distribution. 

3.2 Annotation Process 

 

Fig.2. Annotated data. 

Images were shown in Fig 2 meticulously annotated using Roboflow, following a structured 

process: 

• Initial annotation 

• Peer review and verification 

• Consistency checking 

• Final validation 



3.3 Data Pre-processing Steps 

3.3.1 Data Organization & Annotation  

• Systematic labelling protocols 

• Standardized annotation guidelines 

• Quality control measures 

 

3.3.2 Data Cleaning  

• Duplicate removal 

• Mislabel correction 

• Quality assessment 

3.3.3 Data Augmentation  

• Rotation (varying angles) 

• Flipping (horizontal) 

• Brightness adjustments 

• Gaussian noise addition 

3.3.4 Normalization  

• Pixel value scaling 

• Standardization 

• Dimension uniformity 

3.4 Dataset Visualization 

Fig. 3. showcasing the dataset classes and sample annotated images will be included to illustrate 

the variations and annotation quality. These visual representations provide insight into the 

diversity and complexity of the dataset. 

 

Fig.3. Classification of tags. 

 



3.5 Model Architecture and Training 

The Faster R-CNN architecture used in this study consists of multiple interconnected 

components that enable efficient detection and classification of 3D printing errors. The process 

begins with an input image, which undergoes pre-processing to standardize its dimensions and 

enhance feature extraction. The backbone network, a ResNet feature extractor, produces 

detailed feature maps that represent relevant parts of the image. These feature maps are then 

feed to the Region Proposal Network (RPN), which proposes candidate object locations by the 

generated anchor boxes and refines them using the RPN convolution layers. Additionally, the 

RPN also predicts objectless scores indicating whether the object is present and regresses the 

bounding box for correction. Then the head of the ROI (Region of Interest) extracts the detected 

regions based on ROI pooling, and the regions are input into the classification layer, where the 

kind of printing error is classified and the box regression layer operates to optimize the 

bounding boxes. The last output layer shows classification and localization errors, enabling 

accurate detection of defects such as spaghetti extrusion, layer shifting and bed-level 

inconsistency. This organized pipeline can accurately monitor 3D printing errors on-the-fly and 

result in less print failures and less material waste.      

 

Fig.4. Model Architecture. 

Fig 4 shows the model architecture. 

3.5.1 Model Configuration 

The Faster R-CNN implementation includes: 

• Region Proposal Network (RPN) 

• Feature extraction backbone 

• Classification head 

• Bounding box regression 

 



3.5.2 Training Parameters 

The model was trained using the following configuration: 

• Batch Size: 4 or 8 (GPU memory dependent) 

• Learning Rate: 0.001 initial, reduced by 10x every 5 epochs 

• Optimizer: Adam or SGD with momentum (0.9) 

• Epochs: 20-50 with early stopping 

• Loss Functions: Combined RPN and detection losses 

 

3.6 Performance Evaluation 

               

Fig.5.  Performance Metrics. 

Fig 5 shows the performance metrics. 

The system achieved robust performance across multiple metrics: 

3.6.1 Detection Accuracy  

• mAP@0.5: 60-70% 

• mAP@0.5:0.95: 40-55% 

3.6.2 Classification Performance  

• Precision: 75-85% 

• Recall: 70-80% 

• F1-Score: 72-82% 

3.7 System Implementation 

The trained model is deployed on a Raspberry Pi, integrated with a 3D printer for real-time 

monitoring Jyeniskhan et al. (2023).  

The deployment architecture consists of: 

3.7.1 Hardware Integration  

• Raspberry Pi controller 

• Camera module 

• Printer interface connection 



3.7.2 Operational Flow  

• Continuous monitoring 

• Real-time inference 

• Automated intervention 

• User notification system 

When an error is detected, the system: 

• Halts the printing process 

• Notifies the user of the specific error 

• Prevents further material waste 

• Logs the incident for analysis 

4 Results and Discussion 

4.1 Model Performance Analysis 

The Faster R-CNN model was trained and evaluated on a dataset comprising 4,165 annotated 

images of 3D printer errors. The model's performance was assessed using standard object 

detection metrics, including mean Average Precision (mAP), precision, recall, and F1-score. 

The results indicate that the model achieved: 

• mAP@0.5: 60-70% 

• mAP@0.5:0.95: 40-55% 

• Precision: 75-85% 

• Recall: 70-80% 

• F1-Score: 72-82% 

These results demonstrate that the model effectively detects common 3D printing errors with 

high precision and recall. The performance suggests that the model generalizes well across 

different printing conditions and error types. 

4.2 Training and Validation Loss Analysis 

The model's learning curve, shows in Fig 6 as presents the variation of training and validation 

loss over epochs. Initially, both losses decrease, indicating effective learning. However, after a 

certain point, validation loss begins to stabilize while training loss continues to decrease, which 

may suggest overfitting. This behavior highlights the importance of early stopping and 

regularization techniques to optimize model generalization. 



                               

Fig.6. Training & Validation Loss. 

4.3 Error Detection Output Analysis 

 

Fig .7. Faster R-CNN Output on Spaghetti Extrusion Error. 

The Faster R-CNN model successfully detected and localized 3D printing errors, as illustrated 

in Fig 7. The image depicts a case of spaghetti extrusion, a common failure in 3D printing where 

the filament is extruded uncontrollably due to print detachment or layer misalignment. The 

model has successfully detected the defective areas with several bounding boxes surrounding 

the flawed parts of the printing. 

The DenseBoxes are generated as shown in Fig.6, and densely connected boxes are represented 

by their bounding boxes with each other which have overlapping, and high-confidence boxes 

are obtained in detection of the defect, but there exists part of redundancy which can be 

optimized, for example via the Non-maximum Suppression (NMS) to obtain defect detection 

results. The detection result demonstrates the reliability of the model in identifying intricate 

failure patterns and helps real-time monitoring and intervention for waste reduction. 

5 Conclusion 

The possibilities of deep learning for applying to the 3D printing relates to the PrintProbe 

system. The operation of the system is such that by combining real-time monitoring and error 

identification, this approach not only enhances the efficiency and reliability of 3D printing 

process but can also greatly decrease material waste and the frequency directly requiring human 



intervention. As the system matures, especially with regards to increasing the size of datasets, 

broadening the set of error types that can be ranked, and expanding the ability to recover from 

errors, PrintProbe could eventually become a standard tool for the 3D printing community from 

individual hobbyists to mass production. By combining deep learning, real-time monitoring, 

and cost-effective hardware integration, PrintProbe will help to create a more sustainable and 

productive future for 3D printing. 

5.1 Future Work and Improvements 

Future improvements to the PrintProbe can focus on several key areas: 

• Expanding the Dataset: Adding more diversity to the dataset by including images 

from more 3D printers, more materials, and more error conditions will help the model 

generalize better and detect a wider variety of problems. This could also include 

applying synthetic data augmentation methods to generate diverse training samples. 

• Refining Detection Accuracy: While this model does a good job, we felt that we could 

do better in detection accuracy. Fine-tuning with further labeled data, new 

architectures (e.g., YOLO, RetinaNet) or more advanced pre-processing schemes 

could bring an increment in performance Pereira et al. (2025). 

• Integrating Additional Error Classifications: As mentioned earlier, the model 

currently detects a limited set of errors. Future work should aim to include more error 

categories, such as under-extrusion, over-extrusion, or environmental factors like 

temperature fluctuations, to ensure that the system can handle a wider range of issues. 

• Automated Print Recovery: An exciting avenue for future research is the integration 

of automated print recovery mechanisms. Once an error is detected, the system could 

not only pause the print but also suggest or initiate corrective actions, such as adjusting 

the print settings, reloading filament, or even restarting the print from a specific layer. 

• Scalability and Printer Model Integration: As 3D printing continues to evolve, 

scalability will be a critical factor. PrintProbe could be adapted to work with a variety 

of 3D printer models, incorporating machine learning algorithms that can learn and 

adapt to different hardware configurations. This would increase its usability across a 

broader spectrum of 3D printing applications. 
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