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Abstract. Software testing is a crucial stage in the software development life cycle that 

ensures the reliability and accuracy of applications. But maintaining large test suites is 

very expensive. Test suite reduction addresses this concern by eliminating duplicate test 

cases while preserving the ability to detect mistakes. Motivated by the hunting and 

leadership of grey wolves, we propose a novel approach to test suite reduction called Grey 

Wolf Optimization (GWO) based test suite reduction in the present work. We formalize 

the test suite reduction problem into an optimization problem, which tries to preserve the 

useful test cases and prune the redundancy. GWO efficiently searches over the space, 

exploring/exploiting tradeoff to find the best subset of test cases. Our experimental 

evaluation on popular benchmark datasets indicates that, compared with typical reduction 

techniques, the proposed approach largely reduces test-suite size and keeps or improves 

fault detection capabilities. By reducing execution time and resource utilization, while 

maintaining the test coverage, this approach improves the effectiveness of the software 

testing process. The results are indicative of the promise of bio-inspired algorithms in 

software engineering and hold promise for future development of TSOS techniques. 

Keywords: Software Testing, Test Case Reduction, Grey Wolf Optimization (GWO), 

Metaheuristic Algorithms, Test Suite Optimization, Execution Time Optimization, 
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1 Introduction 

A crucial stage of software development is software testing, which guarantees the accuracy, 

dependability, and resilience of programs. As software systems become more complex, test 

suites tend to expand, leading to increased execution costs, higher resource consumption, and 

extended testing cycles. The key challenge lies in optimizing these test suites by eliminating 

redundant and less effective test cases while preserving robust fault detection capabilities. 

Effective test case reduction not only improves test efficiency but also enhances software quality 

by focusing on high-priority and high-impact test cases. Test suite optimization techniques aim 

to deduct the number of test cases while maintaining maximum code coverage. Traditional 

methods such as manual selection, heuristic approaches, and greedy algorithms often face 
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challenges in balancing execution efficiency with fault detection effectiveness. Because of its 

capacity to identify the best answers in intricate search spaces, metaheuristic algorithms have 

drawn interest as a solution to these problems. Among these, nature-inspired optimization 

techniques have proven effective in solving test case selection and prioritization problems. 

This paper investigates the application of Grey Wolf Optimization (GWO), a swarm-based 

metaheuristic algorithm, for test case reduction. GWO emulates the hunting behaviour of grey 

wolves to identify an optimal subset of test cases, aiming to reduce execution time while 

preserving fault detection efficiency and high code coverage. The method is a good option for 

test suite optimization because of its capacity to strike a balance between exploration and 

exploitation in the search space. 

1.1 Existing Overview  

Existing test suite reduction techniques primarily include greedy algorithms, genetic algorithms, 

and particle swarm optimization. Greedy algorithms select test cases based on predefined 

heuristics, often leading to suboptimal solutions. GA and PSO provide better optimization by 

exploring multiple solutions but can suffer from premature convergence and high computational 

costs. Additionally, many existing approaches focus on a single criterion, such as execution time 

or fault detection capability, neglecting a multi-objective optimization perspective. Moreover, 

test case reduction methods often assume static test suites, failing to adapt to evolving software 

environments, which limits their applicability in dynamic software testing scenarios. 

1.2 Proposed Overview/Objective 

To overcome these limitations, we propose an efficient test suite reduction approach using Grey 

Wolf Optimization (GWO). GWO is nothing but an influence of the hierarchical hunting 

mechanism of grey wolves, which enables effective exploration & exploitation of the search 

place. The algorithm dynamically adjusts the selection of test cases depends on factors like 

execution time, code coverage, and ensuring a balanced trade-off between optimization and 

testing effectiveness. The proposed method enhances scalability by adapting to evolving test 

suites and integrating seamlessly into Continuous Integration/Continuous Deployment (CI/CD) 

pipelines, making it a practical solution for modern software testing challenges. 

2 Literature Survey 

This research, titled Efficient Test Case Reduction Using Grey Wolf Optimization Techniques, 

aims to address the challenge of optimizing software testing through effective test case reduction 

and prioritization strategies. Previous studies in this area have extensively explored evolutionary 

algorithms, metaheuristic approaches, and machine learning techniques to enhance fault 

detection efficiency while minimizing testing effort. 

Shingadiya et al. (2021) examined test suite optimization using Genetic Algorithms (GA) by 

comparing selection strategies such as tournament selection, rank selection, and roulette wheel 

selection. Their findings revealed that tournament selection outperformed the others in terms of 



 

 

both execution time and fitness evaluation accuracy. Similarly, Zhang et al. (2011) conducted 

an empirical study on JUnit test suite reduction, providing insights into optimizing regression 

testing by reducing redundant test cases. 

Wang et al. (2023) proposed a Contribution-Based Test Case Reduction (CBTCR) approach to 

improve Mutation-Based Fault Localization (MBFL). Their technique reduced costs by 85.43% 

while maintaining high accuracy. Kumar and Bansal (2013) introduced a fuzzy clustering 

approach for test suite reduction, using cyclomatic complexity as a metric to eliminate redundant 

test cases. This method demonstrated the efficiency of clustering-based optimization. 

Khatibsyarbini et al. (2019) developed a test case prioritization technique using the Firefly 

Algorithm (FA), which enhanced fault detection and optimized execution time. Garg and Suri 

(2024) implemented a prioritization model using a ranked Non-Dominated Sorting Genetic 

Algorithm II (NSGA-II), incorporating a sensitivity index to balance fault detection with 

execution cost. Marijan et al. (2013) presented a machine learning-driven model for regression 

testing that optimizes test suite size without sacrificing coverage. 

Kumar and Ramaswamy (2017) explored Ant Colony Optimization (ACO) for test case 

prioritization, demonstrating improved efficiency in fault detection during software 

maintenance. Lakshminarayana and Srinivas (2020) extended this research by combining 

Cuckoo Search (CS) and Bee Colony Algorithm (BCA) into a hybrid CSBCA model, achieving 

faster test generation and higher path coverage compared to individual algorithms. 

Mansour and El-Fakih (1999) pioneered a hybrid optimization technique by combining 

Simulated Annealing (SA) with Genetic Algorithms (GA) for regression testing. Their study 

showed that this hybrid method effectively minimized test suites while preserving fault 

detection capabilities.  

Alian et al. (2016) provided a comprehensive survey of test case reduction techniques, 

classifying them into categories such as GA-based, coverage-based, greedy algorithms, 

clustering, and fuzzy logic methods. Yao et al. (2014) analyzed mutation operators through 

human evaluation, distinguishing between equivalent and stubborn mutations to improve 

mutation-based testing strategies. Samad et al. (2021) developed a multi-objective test case 

prioritization framework using a multicriteria scoring method, which improved optimization by 

balancing detection effectiveness and resource consumption. 

MacIver and Donaldson (2020) contributed to this field by introducing Hypothesis Reducer, a 

tool that focuses on modeling random choices in test generation rather than individual test cases, 

making test reduction more systematic and reliable. Mehmood et al. (2024) advanced 

optimization further by integrating machine learning techniques such as classification, 

clustering, and reinforcement learning into test suite optimization frameworks, demonstrating 

measurable gains in efficiency and prioritization. 

Khan et al. (2018) conducted a systematic review of test suite reduction approaches, 

emphasizing quality evaluation criteria and providing detailed guidelines for experimental 

design. Their study identified research gaps, particularly in integrating metaheuristic techniques 

with machine learning-based methods for optimization. 



 

 

Overall, the reviewed literature highlights significant progress in applying evolutionary 

algorithms, hybrid metaheuristics, clustering-based approaches, and machine learning for test 

suite reduction and prioritization. However, achieving a balance between minimizing redundant 

test cases and maximizing fault detection remains a key challenge. This motivates the proposed 

Efficient Test Case Reduction using Grey Wolf Optimization (ETCR-GWO), which aims to 

leverage swarm intelligence and metaheuristic strategies to improve the effectiveness of 

software testing processes. 

2 Methodology  
 

2.1 Problem Definition 

The problem of choosing the best "culled" subset of test cases from an original test suite, 

preserving thorough fault detection and code coverage is also referred to as test suite reduction. 

Given a suite of tests, P = {p₁, p₂, …, pₙ}, the objective is to obtain a smaller suite P′ ⊆ P such 

that: 

• Minimization Objective: Determine how few new test cases are needed to preserve 

effectiveness of the original suite. 

• Coverage Requirement: The chosen subset must have the level of coverage (coverage 

criterion: statement, branch, path) that equals to or exceeds required coverage. 

• Fault Detection Capability: The inferred test suite should be able to detect at least as 

many faults as the original suite. 

Mathematically, the problem can be formulated as: 

                       𝒎𝒊𝒏 ∣ 𝑷′ ∣  𝒔𝒖𝒃𝒋𝒆𝒄𝒕 𝒕𝒐 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆(𝑷′)  ≈  𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆(𝑷),                        (1) 

                                         𝑭𝒂𝒖𝒍𝒕𝒔(𝑷′)  ≈  𝑭𝒂𝒖𝒍𝒕𝒔(𝑷)                                                       (2) 

2.2 Grey Wolf Optimization (GWO) for Test Suite Reduction 

As a nature-inspired optimization algorithm, Grey Wolf Optimization (GWO) is based on the 

social hierarchy and hunting behavior of the grey wolves. It categorizes wolves into alpha (α), 

beta (β), delta (δ), and omega (ω) roles, describes and helps search for them, and thus gives rise 

to an optimal solution. Fig 1 shows System Architecture. 

Steps of GWO for Test Suite Reduction: 

1. Initialization: Represent test cases as binary vectors (1 = selected, 0 = not selected) 

and initialize a population of grey wolves. 



 

 

2. Fitness Function: Consider test suite size, code coverage, and fault detection capacity 

while evaluating solutions: 

              𝑭𝒊𝒕𝒏𝒆𝒔𝒔(𝑷′) =  𝒘𝟏 × 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆(𝑷′)  + 𝒘𝟐 × 𝑭𝒂𝒖𝒍𝒕𝒔(𝑷′)  − 𝒘𝟑 ×∣ 𝑻′ ∣          (3) 

              where w1, w2, w3 are weight factors balancing the objectives. 

3. Leader Identification: Determine the α (best solution), β (second-best), and δ (third-

best) wolves. 

4. Position Update: Update each wolf’s position based on the three best solutions using:  

                                                           𝑫⃗ =∣ 𝑪 ⋅ 𝑿⃗ 𝒃𝒆𝒔𝒕 −  𝑿⃗ ∣                                           (4) 

                                          𝑿⃗ (𝒑 + 𝟏) = 𝑿⃗ 𝒃𝒆𝒔𝒕 −  𝑨⃗ ⋅ 𝑫⃗                                     (5) 

               where A  and C  are adaptive control parameters. 

5. Convergence Check: Repeat the process until the termination condition (e.g., 

maximum iterations or convergence threshold) is met. 

6. Best Subset Selection: The best-positioned wolf represents the optimal reduced test 

suite. 

 

Fig. 1. System Architecture. 



 

 

2.3 Performance Metrics 

The following indicators are taken into consideration in order to determine the efficacy of the 

suggested approach: 

• Reduction Ratio (RR): Measures the percentage of test cases removed:  

                                         𝑹𝑹 =∣ 𝑷 ∣∣ 𝑷 ∣ −∣ 𝑷′ ∣ × 𝟏𝟎𝟎                                          (6) 

• Fault Detection Ratio (FDR): Compares the number of errors found before and after 

the reduction procedure to determine how effective test suite reduction was: 

                                   𝑭𝑫⃗𝑹 = 𝑭𝒂𝒖𝒍𝒕𝒔(𝑷)𝑭𝒂𝒖𝒍𝒕𝒔(𝑻′) × 𝟏𝟎𝟎                                  (7) 

• Code Coverage Retention (CCR): Ensures the reduced test suite maintains high 

coverage: \ 

                        𝑪𝑪𝑹 = 𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆(𝑻)𝑪𝒐𝒗𝒆𝒓𝒂𝒈𝒆(𝑻′) × 𝟏𝟎𝟎                         (8) 

This methodology provides an efficient way to reduce test cases while preserving testing 

effectiveness. 

4 Implementation 

The implementation of test suite reduction using Grey Wolf Optimization (GWO) consists of 

multiple modules, each designed to handle a specific aspect of the problem. The core 

implementation follows a modular approach, ensuring efficiency, maintainability, and 

scalability. The key components of the implementation include: 

• Test Case Representation Module: Converts test cases into a format suitable for 

optimization. 

• Coverage and Fault Data Module: Gathers code coverage and fault detection data. 

• Grey Wolf Optimization (GWO) Module: Implements the metaheuristic algorithm 

to search for a mere suitable subset of test cases. 

• Evaluation Module: Evaluates the reduced test suite's overall efficacy and efficiency 

in preserving code coverage and fault detection. 

• Visualization Module: Displays optimization results and test case selection trends. 

The implementation is designed using Python, leveraging NumPy, Pandas, and SciPy for 

numerical computations, Matplotlib for visualization, and scikit-learn for additional machine 

learning-based analysis. 



 

 

4.1 Modules 

4.1.1  Test Case Representation Module  

This module transforms test cases into a numerical format suitable for optimization algorithms. 

Each test case is presented as a binary vector, where: 

• 1: indicates that the test case is part of the condensed suite. 

• 0: Denotes the exclusion of the test case. 

Individual test cases are represented by rows in a matrix that contains the whole test suite. 

Statements, branches, and pathways are examples of coverage criteria that are represented by 

columns. Table 1 shows Test Case Representation Module. 

Table 1. Test Case Representation Module. 

 

  

 

4.1.2 Coverage and Fault Data Module 

Gather test case execution data, including coverage and fault detection details. Code coverage 

is extracted using tools like gcov, JaCoCo, or pytest-cov. Fault detection data is collected using 

mutation testing frameworks such as PIT (for Java) or MutPy (for Python). A mapping is created 

between test cases and the faults they detect. Table 2 shows Coverage and Fault Data Module. 

Table 2. Coverage and Fault Data Module. 

Test Case Coverage (%) Faults Detected 

T1 85% 2 

T2 90% 1 

T3 70% 3 

 

4.1.3  Grey Wolf Optimization (GWO) Module 

By simulating grey wolf hunting, the GWO technique is used to optimize test suite selection. 

The procedure consists of: 

Test 

Case 
Statement 1 Statement 2 Statement 3 

Fault 

Detected 

T1 1 0 1 1 

T2 0 1 1 0 

T3 1 1 0 1 



 

 

• Encircling the prey: Wolves adjust their positions dynamically based on the best 

solutions identified so far. 

• Hunting: The alpha (α), beta (β), and delta (δ) wolves lead the search towards optimal 

test case selection. 

• Attacking the Prey: A convergence factor gradually decreases, refining the search 

process to identify the most effective subset of test cases. 

4.1.4  Evaluation Module 

Key performance criteria are used to evaluate the condensed test suite: 

• Reduction Ratio (RR): Quantifies the percentage decrease in test suite size after 

optimization. 

• Fault Detection Ratio (FDR): Ensures that the fault detection capability remains intact 

after reduction. 

• Coverage Retention (CCR): Verifies that the required level of code coverage (e.g., 

statement, branch, or path coverage) is maintained. 

4.1.5  Visualization Module 

Provide graphical insights into the reduction process. 

• Test Suite Reduction Trend: A line graph showing how the test suite size decreases 

over iterations. 

• Coverage vs. Fault Detection Trade-off: A scatter plot comparing different solutions. 

• Final Test Suite Selection: A bar chart showing selected vs. eliminated test cases. 

4.2 Algorithm 

Initialize the Population: 

• A set of wolves (solutions) is randomly initialized. 

• Each wolf is a binary representation of a selection of test scenarios. 

Evaluate the Fitness of Each Wolf: 

• Compute coverage retention, fault detection capability, and reduction ratio. 

• The fitness function is defined as:  

𝐹𝑖𝑡𝑛𝑒𝑠𝑠(𝑇′)  = 𝑤1 × 𝐶𝑜𝑣𝑒𝑟𝑎𝑔𝑒(𝑇′)  + 𝑤2 × 𝐹𝑎𝑢𝑙𝑡𝑠(𝑇′)  − 𝑤3 ×∣ 𝑇′ ∣             (9) 

Update Wolf Positions: 

• The best solutions (α, β, δ) influence other wolves. 



 

 

• New positions are calculated as: 

                        𝑋(𝑡 + 1) = 𝑋𝑏𝑒𝑠𝑡 − 𝐴 ⋅∣ 𝐶 ⋅ 𝑋𝑏𝑒𝑠𝑡 − 𝑋 ∣                                      (10) 

where A and C are adaptive coefficients. 

Check for Convergence: If no significant improvement occurs over several iterations, the 

algorithm terminates. 

Return the Best Solution: The wolf with the highest fitness score represents the reduced test 

suite. 

4.3 Pseudocode 

Initialize population of wolves (solutions) 

Assign the first three solutions as alpha (α), beta (β), and delta (δ). 

Repeat the process until the stopping criteria are satisfied: 

for each wolf: 

• Update position using α, β, and δ influence 

• Calculate new fitness 

• Update α, β, δ based on fitness 

• Return best solution (reduced test suite) 

4.4 Summary of Implementation 

• Test cases are represented as binary vectors. 

• Coverage and fault detection data are collected using automated tools. 

• GWO Algorithm iteratively optimizes test suite selection. 

• Fitness function balances size reduction with coverage and fault detection. 

• Evaluation metrics ensure the reduced suite retains its effectiveness. 

• Visualization helps in analysing trends and trade-offs. 

• The implementation successfully balances efficiency and fault detection capability, 

making it a viable approach for test suite reduction. 

5 Experimental Results 

5.1 Experimental Setup 

The experiment was conducted using Google Colab, leveraging its computational capabilities 

for efficient execution of the Grey Wolf Optimization algorithm. The dataset, stored in an Excel 

file on Google Drive, contains test cases with attributes such as Execution Time (sec), Code 

Coverage (%), and Defects Found. The goal was to choose a small group of test cases that 



 

 

minimized execution time while offering good fault detection and code coverage. 

5.2 Results of Test Case Selection 

After executing the GWO-based test case reduction algorithm, the system selected 244 test cases 

from the dataset. The selected test cases are displayed, which shows the Test Case ID, Execution 

Time, Code Coverage, and Defects Found. Fig 2 shows Selected Test Cases. Some key 

observations from the selected test cases: 

• High Code Coverage: Many selected test cases exhibit a code coverage of over 90%, 

ensuring that the software is well-tested. 

• Optimized Execution Time: The runtime of the selected test cases varies, with most 

completing within 1 to 4 seconds, demonstrating efficiency. 

• Fault Detection Capability: The chosen test cases effectively identify defects, with 

several detecting three to four faults. 

 

Fig. 2. Selected Test Cases. 

5.3 Visual Analysis 

To better understand the distribution of test case attributes in the reduced test suite, three key 

histogram visualizations were generated.  

5.3.1 Code Coverage Distribution 

• The majority of selected test cases cover between 75% and 95% of the code. 



 

 

• A significant portion of test cases reaches above 90% coverage, highlighting the 

effectiveness of GWO in selecting high-coverage test cases. Fig 3 shows Code Coverage 

Distribution Graph.  

 

Fig. 3. Code Coverage Distribution Graph. 

5.3.2 Fault Detection Distribution 

• The distribution shows that many selected test cases detect at least 1 defect, with a 

substantial number detecting 3-4 defects. 

• This confirms that the optimized selection retains fault-detecting capability while 

deducting the no. of test cases. Fig 4 shows Fault Detection Distribution. 

 

Fig. 4. Fault Detection Distribution. 



 

 

5.3.3 Execution Time Distribution (Right Graph - Green) 

• Execution times vary, with most test cases executing within 1 to 4 seconds. 

• The distribution shows that while some test cases take longer, the optimization ensures 

a balance between test execution efficiency and defect detection. Fig 5 shows Execution 

Time Distribution. 

 

Fig. 5. Execution Time Distribution. 

5.4 Performance Evaluation 

The GWO-based optimization successfully reduced the test suite while maintaining strong code 

coverage and fault detection capabilities, according to the results. The final selection of 244 test 

cases strikes an optimal balance between execution efficiency and testing effectiveness. Further 

confirming that the condensed test suite preserves high-quality test cases, visualizations provide 

a workable and dependable option for software testing applications. 

6 Conclusion 

It also proves out robustness, correctness, and dependability of software’s. We in this dub re-

optimized test case selection method using Grey Wolf on the test case reduction technique with 

consider three important factors in mind: fault detection efficiency, code coverage and 

execution time according to Grey Wolf Optimization (GWO) algorithm. The results show that 

the GWO scheme effectively reduces the test suite size with preserving high fault detection and 

coverage. The best suite which contains 244 test cases is not only efficient but also effective. 

Most of those test cases are hitting >90% which should cover almost everything. Its 



 

 

effectiveness in finding software bugs is supported by test cases detecting up to 4 defects. Most 

of the selected test cases are solved in 1-4 seconds, which again shows the efficiency. The 

histograms also support that the minimized test suite contains diverse and high-profile test cases 

and so the trade-off between execution cost and quality of the software is reduced. The Kafka-

Storm Tool suite DATATYPES Used as an optimization method, GWO is quite efficient in test 

case selection compared with the traditional random method and greedy method. 

In summary, this study demonstrates the potential for GWO in software testing while providing 

a scalable solution for test suite minimization. Possible future work could investigate a 

combination of optimization techniques, including integration of additional test case attributes 

(e.g. with-dependencies and risk) to improve test selection strategies even more. 
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