
 
 

EEG-Based PTSD Detection using Machine Learning 

Approaches 

Rekha Ravi1, Janani Selvam2, Yamunarani T3 and R. Prabu4 

{ rekhaa07@gmail.com1, vijayjanani.s@gmail.com2, yamunabme@gmail.com3, 

prathinam11@gmail.com4 } 

PhD. scholar, Lincoln University College, Malaysia1 

Faculty of Civil and Built Environment Engineering, Lincoln University College, Malaysia2 

Assistant Professor, Department of Biomedical Engineering, KSR College of Engineering Tiruchengode-

637215, Tamil Nadu, India3 

Associate Professor, Department of Biomedical Engineering, KSR College of Engineering, 

Tiruchengode-637215, Tamil Nadu, India4 

Abstract. Post-Traumatic Stress Disorder (PTSD) is a multifaceted mental health 

condition characterized by prolonged emotional distress, cognitive disturbances, and 

heightened stress responses following exposure to traumatic experiences. Traditional 

diagnostic approaches often rely on subjective clinical evaluations, which can sometimes 

lead to inconsistent or inaccurate diagnoses. To address these limitations, this study 

proposes leveraging electroencephalography (EEG) in conjunction with machine learning 

(ML) algorithms to enable a more objective and automated method for detecting PTSD. 

EEG, being a non-invasive and relatively affordable technique, provides real-time 

insights into brain function and has shown potential in revealing distinct neural patterns 

associated with PTSD—such as elevated delta and theta activity, reduced alpha power, 

and disruptions in frontal brain asymmetry. This research utilizes a variety of ML 

classifiers, including Support Vector Machine (SVM), Random Forest (RF), 

Convolutional Neural Network (CNN), and Least Angle Regression (LARS), to interpret 

EEG-derived features. Feature analysis incorporates elements from the spectral profile, 

time-domain patterns, and neural network connectivity metrics. To ensure robustness, the 

models undergo evaluation using cross-validation techniques like 10-fold and Leave-

One-Out Cross-Validation (LOOCV). Among the tested models, LARS demonstrated the 

best average performance with an 85% classification accuracy and F1-score, while CNN 

followed closely with steady results. Although SVM and RF achieved higher peak 

accuracies (up to 94–95%), their performance was more variable. The outcomes highlight 

the promise of integrating ML with EEG analysis to enhance the reliability and precision 

of PTSD diagnosis, potentially paving the way for early detection and scalable mental 

health interventions. 
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1 Introduction 

Post-Traumatic Stress Disorder (PTSD) is a serious, multidimensional psychological disorder 

that develops after exposure to extreme stress or trauma inducing conditions (e.g., battle, 

natural disasters, violent personal attacks, and serious accidents). People with PTSD may have 

intrusive, distressing recollections of traumatic events, a heightened startle response, 

emotional numbing, and avoidance of traumatic cues. These symptoms interfere with normal 

life and quality of life. While recognition of PTSD has grown — especially amid high-risk 

populations, such as service members, first responders and trauma survivors — it remains 

more likely to be ignored or misdiagnosed. One of the major obstacles in an accurate 

diagnosis is due to this dependence on subjective evaluations. Currently accepted diagnostic 

criteria, such as DSM-5, mostly rely on self-reports of patients and standardized interviews. 

This reliance on self-reporting can contribute to diagnostic inconsistency, particularly where 

people underreport symptoms, because of social stigma, lack of memory, or denial. 

Additionally, the symptom overlaps between PTSD and other mental health disorders—such 

as depression, generalized anxiety, and traumatic brain injuries only complicates matters 

further, impeding timely identification and treatment. Fig 1 shows the Flow diagram: PTSD 

detection using EEG and machine learning. 

 

Fig.1. Flow diagram: PTSD detection using EEG and machine learning. 

In the past few years, there has been a growing interest in identifying and validating 

objective, biological markers to assist in the diagnosis of Post-Traumatic Stress Disorder 

(PTSD). Of all the neuroimaging techniques, electroencephalography (EEG) has become 

popular because it is non-invasive, inexpensive, has high temporal resolution, and is capable 

of real time tracking the neural dynamics [1], [2], [3], [4]. EEG captures the electrical activity 

of the brain through electrodes attached to the scalp, and serves as a source of information 

about the functional status of the brain. Studies have shown that people with PTSD commonly 

exhibit distinct EEG features, especially a change in the frequency bands, abnormalities of the 



 
 

event-related potentials, and altered neural connectivity so speculate that EEG can reflect 

PTSD-specific neurophysiology changes. Combining ML techniques with EEG analysis is a 

big step toward developing automated, data-driven diagnostic systems for PTSD. "However, 

machine learning techniques can be used to unveil nonlinear, high-order relationships within 

high-dimensional EEG signals, and produce classification applications that could successfully 

differentiate between PTSD patients and healthy individuals [5], [6]. When trained on EEG 

data, ML models can isolate meaningful features and patterns indicative of the disorder, 

paving the way for the creation of diagnostic systems that are not only objective but also 

scalable and consistent, as outlined in the workflow in Figure 1. The current study focuses on 

assessing the performance of different ML models in identifying neural markers associated 

with PTSD and examines how these models might enhance conventional diagnostic tools. The 

broader aim is to support the establishment of a biologically grounded framework for PTSD 

assessment, promoting earlier detection; more individualized treatment plans, and improved 

therapeutic outcomes.  

2 Related Works  

Numerous studies from 2018 to 2022 have applied ML techniques to EEG datasets to detect 

PTSD symptoms, consistently reporting favorable outcomes. Table 1 outlines key 

contributions in this research domain. 

Table 1: Summary of related works and their limitations 

Author & Year Algorithm Used 
Accuracy 

(%) 
Limitation 

Shim et al., 2022 SVM with LOOCV 86.61 Medication effects not controlled 

Li et al., 2022 
Logistic Regression, Random 

Forest 
79.4 

Feature selection limited to specific 

areas 

Watts et al., 2022 SELSER 85.7 
Psychological variations not 

standardized 

Rivera et al., 2022 CNN 84.75 
Lacks generalization to other EEG 

domains 

Wiegersma et al., 2022 Linear SVM with Cross-validation 52.0 Comorbidity issues 

Zafari et al., 2022 MLNN, RF, CNN 82.0 Highly skewed datasets 

Zhang et al., 2020 
SVM, RF, Recursive Feature 

Selection 
94.0 Small sample size 

Kim et al., 2020 LARS Regression 90.0 No healthy controls, small sample 

Schultebraucks et al., 

2021 
SVM, RF 95.0 External validation missing 



 
 

 

Cross Validation (LOOCV) method on EEG data for PTSD detection. Their method achieved 

a classification accuracy of 86.61%, which is indicative of robust discrimination between 

PTSD, and non-PTSD subjects. This study, however, did not consider participants medication; 

this could have affected the EEG measurements and hence the study´s objectivity could have 

been subdivided [7]. 

Li et al. (2022) employed Logistic Regression and Random Forest classifiers to differentiate 

PTSD cases based on EEG features. These models reached an accuracy of 79.4%, which was 

acceptable performance. However, it should be acknowledged that the systematic evaluation 

of a few brain areas as the seeds during feature selection in this study might have hindered the 

models from capturing some whole-brain neural patterns related to PTSD [8]. 

Watts et al. (2022) introduces an ensemble model named SELSER (Selective Ensemble 

Learning with Subspace-based Error Reduction) and achieves 85.7% of classification 

accuracy. The method sounded very promising, but the psychological countermeasures, like 

the participant’s emotional/mental state and their stress level of the baseline were not 

considered in the study setting in order to allow control in the EEG data variation [9]. 

Rivera et al. (2022) developed a deep learning architecture based on the Convolutional Neural 

Network (CNN) for the classification of PTSD EEG recordings and reported accuracy of 

84.75%. Although performance was promising; the method had limited cross-dataset 

generalization making it difficult to apply to other EEG collections and overfitting, which 

may not make the model applicable in a broader clinical context [10]. 

Wiegersma et al. (2022), the linear SVM with cross-validation reported 52.0% accuracy. The 

main challenge came from the comorbidities of the participants, which disrupted the 

differences of the EEG signals, required for correct classification of PTSD, and limited the 

power of the model [11]. 

Zafari et al. (2022) employed Multi-Layer Neural Networks (MLNN), CNNs and Random 

Forest among others and the sum was 82.0%. Yet, the dataset utilized in the study was largely 

unbalanced for PTSD vs. non-PTSD. The imbalance might have influenced the training results 

and resulted in an overoptimistic estimation for the performance of the model [12]. 

Zhang et al. (2020, p. 3) employed a combination of SVM, Random Forest, and Recursive 

Feature Selection methods for relevant features for PTSD detection through EEG. The 

performance of their ensemble model was unconventionally high (94.0%), demonstrating the 

importance of feature purifying and hybrid modelling. Nonetheless, the small sample size of 

the study also caused concerns about its reproducibility and applicability to larger or different 

populations [13]. 

Kim et al. (2020) utilized the LARS for classifying PTSD based on EEG signals, achieving an 

accuracy of 90.0%. Although the results were encouraging, the absence of a control group 

and the small sample size limited the study's capacity to make firm conclusions about the EEG 

biomarkers of PTSD [14]. 



 
 

Schultebraucks et al. (2021) utilized SVM and Random Forest classifiers and achieved the 

best accuracy of 95.0% among the reviewed studies. The results were encouraging; however, 

the study was lacking the external validations with the independent datasets, which are critical 

to testing the reliability and generalizability of the machine learning model in the real world 

[15], [16], [17]. 

The studies used such classifiers as SVM, RF, CNN, and LDA for the purpose of features 

extraction for PSD or connectivity measures or directly applying the deep learning technique 

to the raw EEG. The accuracy ranges from 52% to 95% depending on sample differences, data 

processing and feature engineering. 

3 Methodology 

3.1 Objective 

The aim of this research is to design a reliable ED based diagnostic model of PTSD using state 

of the art machine learning (ML) methodology to identify individuals with Post-Traumatic 

Stress Disorder (PTSD) and healthy controls. It is intended that the system will work as an 

objective, non-invasive help for clinical diagnosis, surpassing the traditional subjective 

symptom-based evaluations. The performance of the model will be assessed (sensibility and 

specificity) by classification accuracy, highlighting that the goal is clinical relevance. 

3.2 Dataset Source 

In a healthy individual during a resting state, EEG activity is typically dominated by alpha 

waves (8–13 Hz), particularly in the occipital regions, reflecting a relaxed but alert state. Beta 

waves (13–30 Hz) are also present, especially in the frontal lobes during mental engagement 

or when the eyes are open. Meanwhile, delta (0.5–4 Hz) and theta (4–7 Hz) waves are minimal 

during wakefulness. In contrast, individuals with PTSD exhibit distinct EEG patterns. Fig 2 

shows the Sample EEG waveform for Healthy and PTSD person. 

 

Fig.2.Sample EEG waveform for Healthy and PTSD person. 



 
 

There is often increased theta and delta activity, especially in the frontal and temporal regions, 

which may indicate impaired cognitive regulation and emotional processing. Alpha power is 

generally reduced, suggesting diminished relaxation and altered neural functioning. Moreover, 

elevated beta or high beta activity (above 30 Hz) is commonly observed, associated with 

hyperarousal, anxiety, and stress reactivity. Some studies also note asymmetric frontal EEG 

activity in PTSD patients, linked to emotional dysregulation. Overall, while healthy EEG 

patterns show smooth and balanced alpha and beta rhythms, EEGs from PTSD patients tend to 

reveal dominant theta and high beta waves, weakened alpha presence, and irregular high-

frequency activity indicative of psychological distress. 

The dataset utilized in this work was compiled from existing PTSD-related EEG research for 

the purpose of meta-analysis. The EEG recordings were preprocessed and segmented 

according to established frequency bands—delta (0.5–4 Hz), theta (4–8 Hz), alpha (8–13 Hz), 

beta (13–30 Hz), and gamma (>30 Hz)—which represent different states of brain activity. 

These brainwave segments are known to exhibit distinguishable alterations in PTSD patients. 

The curated dataset includes samples labeled as PTSD or healthy control, allowing for 

supervised classification tasks. 

3.3 Feature Engineering 

To effectively train machine learning models, comprehensive feature extraction was carried 

out, focusing on three primary categories of EEG signal characteristics [18], [19]: 

• Spectral Features: Power Spectral Density (PSD) values were computed for each 

EEG frequency band. These values quantify the power distribution across frequencies 

and provide insights into the neural oscillatory activity associated with PTSD. 

• Connectivity Features: Functional connectivity was assessed using coherence and 

phase synchronization metrics between various EEG channel pairs. These features 

reflect the degree of communication and coordination between brain regions, often 

disrupted in PTSD cases. 

• Temporal Features: Time-domain characteristics such as Event-Related Potentials 

(ERPs) and amplitude variations were analyzed. ERPs are known to reflect cognitive 

and emotional processing and may differ significantly between PTSD and control 

groups [20], [21]. 

All features were normalized and, where appropriate, dimensionality reduction techniques 

were applied to enhance model generalization and computational efficiency [22]. 

3.4 Machine Learning Algorithms Used 

A set of four machine learning algorithms was chosen for the classification task based on their 

established effectiveness in EEG-related diagnostic studies: 

• Support Vector Machine (SVM): Leveraged for its capacity to manage high-

dimensional data effectively, the SVM model incorporated a radial basis function 

(RBF) kernel to draw complex, non-linear decision boundaries suited for EEG 

classification. 



 
 

• Convolutional Neural Network (CNN): This deep learning model excels in 

automatically identifying both spatial and temporal characteristics in EEG signals. 

The CNN architecture was specifically adapted to detect localized patterns within 

EEG topographical maps. 

• Random Forest (RF): Selected for its ensemble learning approach, RF offers strong 

resistance to overfitting and performs well with noisy datasets that contain a mix of 

categorical and continuous features. 

• Least Angle Regression (LARS): Chosen for its computational efficiency in high-

dimensional spaces, LARS is particularly effective at feature selection and handling 

multicollinearity among EEG variables. 

• To evaluate model performance and ensure result reliability, each algorithm 

underwent thorough testing using either 10-fold cross-validation or Leave-One-Out 

Cross-Validation (LOOCV), depending on dataset size and structure. These 

validation techniques help minimize bias and support the development of models that 

generalize well to unseen data, thus enhancing the credibility and reproducibility of 

the findings. 

 

Pseudo Code for the SVM: 

Input: EEG feature matrix X, labels y 

Step 1: Normalize the data (e.g., z-score normalization) 

Step 2: Define RBF kernel function: K (x1, x2) = exp (-gamma * ||x1 - x2||^2) 

Step 3: Initialize SVM with RBF kernel 

Step 4: Perform hyperparameter tuning (e.g., grid search on C and gamma) 

Step 5: Train SVM model on training data 

Step 6: Predict labels for test data using the trained SVM 

Output: Predicted labels 

 

Pseudo Code for the CNN: 

Input: EEG time-series data (e.g., 2D/3D matrices representing EEG channels and time) 

Step 1: Preprocess EEG data (filtering, segmentation, normalization) 

Step 2: Define CNN architecture: 

        - Input layer (EEG segments) 

        - Convolutional layers (with kernels to learn spatial patterns) 

        - Activation functions (e.g., ReLU) 

        - Pooling layers (e.g., MaxPooling) 

        - Fully connected (dense) layer(s) 

        - Output layer with softmax (for classification) 

Step 3: Compile model (define loss function, optimizer) 

Step 4: Train CNN on labeled EEG training data 

Step 5: Evaluate CNN on validation/test data 

Output: Predicted class probabilities or labels 

 

Pseudo Code for the RF: 

Input: EEG feature matrix X, labels y 

Step 1: Normalize or standardize input features (if needed) 

Step 2: Define number of decision trees (n_estimators) 

Step 3: For each tree: 

        - Sample training data with replacement (bootstrap sampling) 



 
 

        - Train a decision tree on the sampled data using a random subset of features 

Step 4: Aggregate predictions from all trees (majority vote) 

Step 5: Predict labels for test data 

Output: Final predicted class labels 

 

Pseudo Code for the LARS: 

Input: EEG feature matrix X, target values y (for regression or transformed classification) 

Step 1: Normalize features (mean = 0, variance = 1) 

Step 2: Initialize all coefficients to zero 

Step 3: While not all variables are in the model: 

        - Identify variable most correlated with residual 

        - Move coefficient of that variable toward least-squares solution 

        - Adjust other coefficients proportionally 

        - Stop when desired number of features or error threshold is reached 

Step 4: Use learned model for prediction on new data 

Output: Predicted target values or probabilities (if used for classification) 

 

4 Results and Discussion 

Figure 3 illustrates the estimated precision, recall, and F1-score for four machine learning 

algorithms—SVM, Random Forest, CNN, and LARS—used in EEG-based PTSD detection. 

LARS demonstrates the highest performance across all three metrics, with a precision of 86%, 

recall of 84%, and F1-score of 85%, indicating its strong ability to accurately identify PTSD-

related EEG patterns while minimizing false positives and false negatives. Fig 3 shows the 

Estimated Precision, Recall and F1-Score for EEG-base Detection. 

 

Fig.3.Estimated Precision, Recall and F1-Score for EEG-base Detection. 

CNN also shows robust performance with slightly lower but well-balanced scores (precision 

84%, recall 83%, F1-score 83.5%), making it suitable for scenarios requiring high sensitivity. 

SVM and Random Forest trail slightly, with SVM achieving moderate scores around 75–76% 

and Random Forest slightly lower. These metrics reflect not just the correctness of the models 

(accuracy) but also their reliability in identifying true PTSD cases, underscoring LARS and 

CNN as the most effective classifiers in this context. 



 
 

The comparative performance of various algorithms is summarized in Table 2. 

Table 2: Model Accuracy Comparison 

Algorithm Average Accuracy (%) Best Accuracy (%) Validation Method 

Support Vector 

Machine 
75.8 94.0 LOOCV, Cross-Validation 

Random Forest 72.1 95.0 Hold-out 

CNN 83.3 84.75 Cross-Validation 

LARS 85.0 90.0 10-Fold 

 

The findings reveal the effectiveness of four machine learning algorithms for PTSD diagnosis 

using EEG data. Least Angle Regression (LARS) achieved highest average accuracy of 

85.0%, indicating good performance of LARS in classification, especially because of its 

effective feature selection in solving complex and high-dimensional EEG data. The CNN 

model, with a mean accuracy of 83.3% and best accuracy of 84.75%, demonstrated stable 

performance among different CV folds, as the CNN model can learn temporal and spatial 

feature of EEG. Support Vector Machine (SVM) had a marked best-case accuracy of 94.0% 

but a lower average of 75.8, indicating high variance in relation to the data split. The best 

accuracy was achieved in RF (95.0%) whereas the lowest average (72.1%) was observed in 

the same model, probably because of overfitting withhold-out validation instances. On the 

whole, although the RF and SVM have the best potential, the LARS and the CNN models 

provide more robust general-use models for PTSD classification from EEG signals. 

5 Conclusion 

This article provides an extensive methodology for detection of Post Traumatic Stress 

Disorder (PTSD) from the EEG recording using advanced machine learning techniques. The 

goal was to aid diagnosis of the disorder without the need for invasive blood tests and to 

overcome subjectivity of physician clinical judgement. Performances of models were 

assessed in terms of accuracy, precision, recall and F1-score of given spectral, temporal and 

connectivity features of EEG recordings using classifiers as SVM, CNN, Random Forest and 

LARS. Across the models studied, LARS achieved the higher reliability in general, with the 

average precision of 85% and the CNN offered balanced performance with the consistent 

trend. SVM and RF reached impressive peak accuracies with higher fluctuations of 

performance. 

The findings highlight the applicable nature and potential of the EEG-based ML systems for 

the enhancement of PTSD diagnosis, opening new avenues for early-stage intervention and 

precision therapy design. Further investigations in the future may include enlarging the current 

dataset, adding more biomarkers, and validating the model in diverse populations, thus 

improving the generalizability and clinical utility. 
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