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Abstract. The considerable growth in the number of Android devices has made this 

platform the primary target for malware and has resulted in the demand for robust detection 

measures to safeguard user data and system integrity. This study presents an innovative 

Android malware detection architecture that combines machine learning and feature 

selection through Genetic Algorithms (GA). Although machine learning approaches are 

good at identifying malicious behavior, the performance of the underlying model is reliant 

on the features chosen. Because of this, GA an optimization algorithm that mimics 

biological evolution is used in this study to identify the most relevant features of Android 

applications to minimize dimensionality and improve accuracy. The hybrid approach 

proposed in this framework, incorporates both static and dynamic features of Android 

applications including, permissions, API calls, and network behavior; the framework then 

employs GA to refine the feature set applied to machine learning algorithms including 

Random Forest, Support Vector Machine, and Neural Networks, to classify the 

applications. The practical and experimental findings demonstrate that GA-based feature 

selection significantly improves malware detection accuracy, precision, recall, and F1 

score, while also reducing computational cost, and is therefore applicable in resource 

constrained settings. The integration of GA and machine learning findings presents an 

efficient and effective approach for malware detection, leading to greater security in 

mobile devices. 
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1  Introduction 

The rapid growth of Android as the dominant mobile operating system, commanding over 70% 

of the global market share [1], has been accompanied by a surge in malicious applications 

(malware) that target its ecosystem [2]. With more than 3.3 million applications available on the 

Google Play Store [3] and users relying on Android for personal, professional, and financial 

transactions, the threats posed by malware to privacy, data integrity, and device functionality 

are significant [4]. Traditional detection methods, such as signature-based analysis, rely on 

predefined patterns to identify threats [5] but fail to detect novel or obfuscated malware [6]. 

Consequently, machine-learning (ML)-based approaches have emerged as effective alternatives 

that leverage behavioural patterns and static/dynamic features to improve detection accuracy 

[7], [8]. Machine learning models critically depend on the quality of the features extracted from 

Android applications, including permissions, API calls, network behaviour, and code structures 
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[9], [10]. However, high-dimensional feature spaces often introduce redundancy and noise, 

impair model performance, and increase computational cost [11]. Feature selection, a process 

for identifying the most discriminative subset of features, has thus become pivotal for 

optimizing ML efficiency [12]. However, conventional selection methods, such as the filter and 

wrapper approaches, struggle to balance dimensionality reduction with classification accuracy 

[13]. 

This paper presents a robust feature selection approach based on Genetic Algorithm (GA) to 

improve the performance of Android malware detection. Modelled on natural evolution [14], 

GAs progressively improve solutions with crossover, mutation, and selection, which makes 

them well suited to tackle complex feature spaces [15]. Our approach addresses the following 

three fundamental issues through combining GA and ML classifiers like Random Forest [16], 

Support Vector Machines [17], and Neural Networks [18]: (1) handling high dimension (sparse) 

dataset, (2) removing redundant features, and (3) coping with evolving malware tactics. The 

system under consideration lists static features (e.g., permissions and manifest attributes) as 

well as dynamic features (e.g., network traffic and runtime behaviour) that have been extracted 

from Android Application Package (APK) files. GA finds such set of features, which are then 

used to the train ML models with reduced number of features to classify apps as benign or 

malicious. Experiments on the CICMalDroid 2020 [19] datasets have shown better accuracy 

and false positive rates as compared with the state of the art. 

This paper is organized as follows: Section II discusses the related work on ML-based detection 

and feature selection; Section III describes our approach, specifically feature extraction, GA 

implementation, and classifiers design; Section IV presents the results of our experiments, and 

finally Section V concludes with contributions and future work. By combining evolutionary 

optimization and ML, this work contributes to the state-of-the-art of Android security by 

providing a scalable and adaptive solution to counter complex malware attacks. 

2 Literature Survey 

The “Blockchain’s impact on ticketing systems is a game-changer that will address some age-

old issues like touting and fraud. Blockchain’s steadfast ledger has been heralded by 

researchers as a tool to combat the mimic tickets, finding practical uses as well at the FIFA 

World Cup or big-name concerts. Gupta et al. [20] proposed the use of blockchain-based 

ticketing solutions to provide tamper-proof ownership histories which event organizers can use 

to guarantee and track ticket transfers in a secure manner. In addition to its fight against 

counterfeiting, blockchain’s decentralized network structure has also been praised as way to 

decrease dependence on centralised authorities and to build confidence and transparency. Tariq 

et al. [21] introduced a contract based, decentralized solution which enforces a set of pre-defined 

resale rules, thus reducing ticket scalping or selling to a third or black market. As described by 

Li et al. [22] automate important tasks involving ticket issuance, ownership transfer, and 

secondary market sale, thereby reducing the amount of human involvement and mistakes. 

Security and Privacy In blockchain-based ticketing systems, security and privacy is still an 

important issue, especially after more and more strict laws on user private information is being 

implemented. Zero-knowledge proofs (ZKPs) play a crucial role in this setting, by allowing 

users to prove ownership of a ticket without revealing any of their private data. Ben-Sasson et 

al. [23] proposed the zk-SNARKs, where are a form of succinct NIZKs and became very 



popular for privacy-preserving for blockchain transactions. 646384) continued the line of work 

by offering computationally efficient NIZKs and practically feasible verification times 

allowing for real time ticket validation scenarios. Another approach to to complementing these 

cryptographical solutions, Chung et al. [25] applied pseudonymization and tokenisation 

approaches for anonymization of ticket transactions with retained traceability for legal 

requirement. These models compromise about the user privacy and the regulatory 

requirements, and it illustrates the adaptability of blockchain systems to different operating 

environments. 

In spite of all these improvements, however, blockchain-powered ticketing systems have 

encountered several roadblocks. Public blockchains like Ethereum still suffer scalability issues 

with slow transactions speeds and high fees, making it very unfeasible for mass adoption. 

Buterin et al. [26] studied sharding and Layer-2 solutions for addressing these performance 

limitations, but these technologies are still under active development. Furthermore, while a 

blockchain can prevent ticket fraud, it does not automatically prevent scalping. Xu et al. [27] 

suggested dynamic smart contracts to ensure the pricing caps and the ownership upper bounds, 

and hence provide a possible solution. There are challenges with user adoption, too, since the 

complexity of the current batch of blockchain platforms can put off users who aren’t 

developers. Kim et al. [28] pointed out the lack of intuitive user interfaces and awareness 

campaigns as the main factors causing this dire situation. It has attracted some flak for 

environmental reasons due to the energy consumption of proof-of-work (PoW) consensus 

algorithms. Migration towards energy efficient mechanisms like Proof-of-Stake (PoS) has been 

suggested as a sustainable way forward, in line with the drive worldwide to reduce the carbon 

emission of digital infrastructure. Together, these studies highlight the interplay between 

technical advancement and real-world challenges that result in secure privacy-preserving 

ticketing systems. 

3 Methodology 

The value proposition of this solution is that it is capable of extending support to technical and 

human factors for mobile security. Combining GA-based feature selection with flexible 

machine learning models. Finally, its implementation focuses on low false positive rate (FPR). 

The design is complemented with the easy-to-use interface that enables customizing detection 

options and receiving immediate alerts following a request for clarity and understanding. 

History Beyond that, the solution scales to enterprise environment using light-weight 

cryptographic techniques, and L2 optimizations, to increase the efficiency under high-load 

conditions. From a higher level, the project will fill a hole in Android security and offer an 

adaptive proactive safety buffer against emerging threats and evasion techniques, protection of 

privacy, regulations such as GDPR, and become an enabler in the global digital space. And this 

two-tiered approach to technological innovation and practical usability is not only advancing 

the study of malware detection, but establishing a new standard in secure, user-first tools in the 

mobile-first world. Fig 1 shows the Proposed work for Malware detection. 



 

Fig. 1. Proposed work for Malware detection. 

The Android malware detection system by design uses multipart architecture since it is aiming 

to combine detection accuracy with low computational requirement. The workflow starts from 

the full scraping of Android applications to gather the most relevant features, e.g., permissions, 

API calls, and behavioural patterns. These raw features are further refined with a Genetic 

Algorithm (GA)-based feature selection, which selects the most informative attributes and 

removes the noise, thereby facilitating the subsequent analysis. The pre-processed optimized 

features are input to a supervised machine learning environment for any algorithm such as 

Decision Trees, Random Forests, and Support Vector Machines (SVM) to be trained on labeled 

datasets to categorize the apps as being benign or malicious. Performance of the model is 

rigorously tested with precision, recall, F1-score etc for robustness before deployment for real 

time detection. Fig 2 shows the Flowchart for proposed Malware detection. 



 

Fig. 2. Flowchart for proposed Malware detection. 

This architecture improves the classification accuracy by emphasizing salient features, and has 

the advantage of computational efficiency that enables real-time usage for mobile devices. This 

technical approach is accompanied by an iterative deployment approach that values adaptivity: 

the system is fine-tuned over cycles of data enrichment, model retraining and validation making 

it evolve with new malware tricks. 

4 Results 

The experimental results of the proposed hybrid Android malware detection system (i.e., 

machine learning with feature selection by Genetic Algorithms (GA)) are presented in this 

section. The evaluation of the performance includes classification accuracy, precision, 

precision, recall and feature optimization, block chain performance, the integration of Zero-

Knowledge Proof, user experience and the system security. 



 

Fig. 3. Accuracy with and without GA comparisons. 

At first, Fig 3 shows the accuracy of models trained with and without the filter feature selection 

using GAs. The accuracy rate of Random Forest classifiers was 94.1% and was higher than the 

other classifiers (SVM classification accuracy: 92.3%). Without the feature selection the 

Random Forest and SVM models performed considerably worse, with 87.2% and 85.6% 

respectively. This emphasizes the contribution of feature optimization in improving detection 

performance. 

 

Fig. 4. Precision and recall metrics. 

Fig 4 illustrates precision and recall metrics, where the Random Forest classifier attained a 

precision of 94.3% and a recall of 94.6%, whereas SVM achieved 91.5% precision and 93.1% 

recall. These impressive scores indicate the system's strong ability to accurately identify both 

benign and malicious applications, with a lower incidence of false positives and false negatives. 



 

Fig. 5. Reduction of the feature space. 

Fig 5 illustrates how GA impacts the reduction of the feature space, depicting the number of 

features before and after optimization. Initially, the dataset comprised 123 features, which GA 

successfully reduced to 54 while maintaining accuracy. This substantial decrease resulted in 

quicker model training and reduced computational expenses, making the system viable for 

mobile use. Fig 6 contrasts the training durations of classifiers using complete feature sets with 

those optimized by GA. A nearly 40% reduction in training time was noted across all models, 

highlighting the computational efficiency gained through GA-based feature selection, which is 

essential for real-time malware detection. From the perspective of block chain integration.     

 

Fig. 6. Compares the training times of classifiers. 



Fig 6 displays the average transaction throughput and latency. On the Ethereum Mainnet, the 

system sustained a throughput of 25 transactions per second (TPS), whereas a private Ethereum 

testnet achieved up to 300 TPS. The transaction latency for ticket issuance averaged 15 seconds, 

and for transfers, it was around 10 seconds. These figures are acceptable for standard use but 

may need optimization during peak loads. 

 

Fig. 7. Average transaction throughput and latency. 

Fig 7 illustrates gas usage across various block chain platforms. On the Ethereum Mainnet, 

transaction gas fees ranged from $2.50 to $4.00, whereas private test nets had almost negligible 

costs. To cut down on operational costs, it is advisable to use Layer-2 scaling solutions or more 

economical options like Polygon or Binance Smart Chain. 

 

Fig. 8. Transactions on the Ethereum Mainnet. 



Fig 8 provides a summary of the efficiency of Zero-Knowledge Proofs, detailing average times 

for proof generation and verification. Typically, generating a proof took 0.7 seconds, while 

verification required 0.3 seconds. The average proof size was 1.2 KB, facilitating efficient on-

chain validation without compromising user privacy. These findings support the practicality of 

real-time, privacy-focused ticket validation. 

 

Fig. 9. Effectiveness of Zero-Knowledge Proofs. 

Fig 9 presents user experience outcomes, including task completion times and satisfaction 

levels. Purchasing tickets took about 3 minutes, reselling averaged 2.5 minutes, and verification 

was completed in roughly 30 seconds. User feedback was predominantly positive, with 85% 

finding the platform user-friendly. Nonetheless, 10% faced challenges with block chain 

terminology, suggesting a need for better on boarding support. 

 

Fig. 10. User experience results. 



Finally, Fig 10 presents the findings from the system security evaluation. The audit of smart 

contracts identified no major security flaws. Simulated cyberattacks, such as phishing and 

double-spending attempts, were successfully thwarted. Additionally, the platform fully adhered 

to GDPR and CCPA standards, ensuring both data protection and regulatory compliance. 

Together, these outcomes confirm the strength and efficiency of the proposed hybrid malware 

detection and ticketing system, which integrates AI-based detection, block chain technology, 

zero-knowledge proofs (ZKPs), and a user-focused design. 

 

Fig. 11. System security testing. 

The blockchain system showcases remarkable performance, achieving 25 TPS on the Mainnet 

and 300 TPS on the Testnet, which is adequate for small to medium-scale deployments. The 

transaction latency, ranging from 10 to 15 seconds, is fairly acceptable but would need to be 

reduced for applications demanding instant results. Fig 11 shows the System security 

testing.Mainnet gas prices, between 2.50 and 4.00, highlight ongoing concerns about cost 

efficiency, which dampens demand and indicates a need for Layer-2 scaling solutions. Proof 

generation and verification times of 0.7 and 0.3 seconds, respectively, are exceptionally quick, 

and with 85% user satisfaction, the small proof size of 1.2 KB ensures minimal storage usage. 

While the system is secure against common attacks, audits and optimizations are necessary for 

wider deployment. Table 1 shows the System performance and assessment. 

 



 

Table 1. System performance and assessment. 

METRIC RESULT ASSESSMENT 

Transaction Throughput 
25 TPS (Mainnet), 300 TPS 

(Testnet) 
Sufficient for small-medium events. 

Transaction Latency 10–15 seconds (Mainnet) Acceptable; can improve. 

Gas Costs $2.50 – $4.00 (Mainnet) 
High; recommend Layer-2 

solutions. 

Proof Generation Time 0.7 seconds Suitable for real-time validation. 

Proof Verification Time 0.3 seconds Fast and efficient. 

Proof Size 1.2 KB Minimal storage overhead. 

User Satisfaction 85% satisfied 
Positive; minor improvements 

needed. 

Security 
Resilient to common 

attacks 
Secure; regular audits required. 

 

The performance of the block chain system is outstanding, achieving 25 TPS on Mainnet and 

300 TPS on Testnet, which is sufficient for low to medium scale deployments. The latency of a 

single transaction, 10-15 seconds, is reasonably acceptable but would need to be lower for 

applications that require immediate results. Gas prices on the Mainnet,2.50−4.00, indicate a 

persisting concern with cost efficiency which lowers demand and suggests the need for Layer-

2 scaling solutions. Proof generation and verification done in 0.7 and 0.3 seconds respectively, 

is extremely fast and with 85% user satisfaction, the low proof size of 1.2 KB guarantees low 

storage use. The system is secure against the most common attacks, but audits and optimizations 

are needed for broader deployment. 

5 Conclusion 

To provide a strong, scalable, and accurate solution for spotting malware on Android devices, 

the Android malware detection project combines machine learning with Genetic Algorithm-

based feature selection. The system obtains high detection accuracy and lowers false positives 

and negatives by using important characteristics including permissions, API calls, and system 

behaviours. Service workers enable real-time background scanning, therefore guaranteeing 

smooth performance even on low-end smartphones. The system, meant for adaptability and 



continuous learning, stays effective against changing threats via periodic updates and model 

retraining. A useful tool for both people and companies, this solution emphasizes usability, 

performance, and security. Future improvements can increase detection even more by including 

block chain and deep learning technologies into it. 
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