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Abstract. This work outlines a deep learning driven approach towards automatically
detecting manufacturing casting defects during processes, hoping to improve industry
efficiency and quality control accuracy. Submersible pump impellers classified as non-
defective or defective were trained on and tested from a grayscale image dataset to
benchmark different models. Preprocessing operations such as resizing, normalization,
and augmentation were used to maintain consistency and stability in the input data. A
tailored Convolutional Neural Network (CNN) was initially used as a baseline model,
and then transfer learning was applied using three state-of-the-art architectures:
EfficientNetBO, MobileNetV2, and MLP-Mixer. EfficientNetBO obtained the highest
classification accuracy of 98.75%, followed by MobileNetV2 at 98.36%. Although MLP-
Mixer achieved a relatively lower accuracy of 77 08%, it provided an alternative
architecture that added to the comparative study. The models were tested using standard
performance measures such as accuracy, precision, recall, and F1-score. The experimental
findings indicate the superiority of transfer learning in enhancing detection performance
compared to traditional models. EfficientNetBO and MobileNetV2 came out to be
particularly great options for identifying casting defects with minimum misclassification.
In general, the proposed system has great potential as a low cost, scalable and intelligent
quality control tool with the ability to minimize human intervention and enhance defect
detection in real-time production systems.

Keywords: Casting Defect Detection, Deep Learning, Transfer Learning, Convolutional
Neural Network (CNN), Quality Control Automation.

1 Introduction

Maintaining high product quality is essential in modern manufacturing, as defects lead to
increased costs, production downtime, and customer dissatisfaction. Manual quality inspection
is often slow, inconsistent, and prone to human error. With the growing complexity of
manufacturing processes, the demand for automated technologies to enhance defect detection
and optimize quality control is increasing.

Deep learning has emerged as a transformative solution, offering advanced image recognition
and pattern analysis capabilities for autonomous inspection systems. This work, “Modelling
Product Quality with Deep Learning,” presents a comparative evaluation of several deep
learning architectures for automated defect inspection in manufacturing. A labeled dataset of
casting images categorized as “defective” or “non-defective” is used for model training and
validation. The study employs a custom-designed Convolutional Neural Network (CNN) as
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the baseline model and incorporates transfer learning with three state-of-the-art pre-trained
architectures: EfficientNetBO, MobileNetV2, and MLP-Mixer. Comprehensive training of
these models is ensured through rigorous pre-processing, including resizing, normalization,
and data augmentation.

Automated defect inspection plays a critical role in modern industry by improving accuracy
and efficiency in quality control processes. Techniques such as ensemble learning and data
augmentation have been shown to enhance classification performance while reducing
computational costs, making them suitable for real-time applications. In electronics
manufacturing, Automated Optical Inspection (AOI) has proven to be an effective alternative
to manual inspections, which are both time-consuming and error-prone. Moreover, deep
learning-based visual inspection methods have achieved high accuracy in defect detection,
enabling real-time monitoring and reducing reliance on human intervention.

2 Related Work

Rahaman et al. [1] AOI investigations investigate a range of defect detection algorithms, from
the rule-based to the higher-end feature-based and adaptive ones. The conventional
approaches suffer from alignment, illumination, and classification accuracy. Innovation such as
contour-based registration and adaptive templates enhances robustness and performance speed.
Yet, most techniques fail at proper defect classification.

Aghapanah et al. [2]A comprehensive discussion on Al-based smart quality inspection systems
that have been implemented in manufacturing reveals high accuracy of defect detection along
with automation in most aspects of the inspection process, thus contributing to increased
productivity and reduced error rates. But implementation difficulties in the shop floor, need for
expert knowledge, and ongoing dependency on human operators for critical decisions were
some challenges.

Lagrosen et al. [3] emphasized the resilience of in-line quality inspection systems, illustrating
how they can inspect for faults when they occur and hence enable real-time intervention by
corrective action at production. In-line quality checking systems enable higher automation,
reducing the fault-ridden human factor and embracing ongoing process improvement. The
study also highlighted some of the issues such as minimal collaboration in research between
institutions, minimal theoretical contribution, and coordinating humans and robots is difficult.
Zero Defect Manufacturing (ZDM) and multi-layer quality inspection models were also
considered for evaluation as potential solutions.

Adeniran et al. [4] discussed the application of deep learning techniques to detect defects,
noting their capacity to surpass traditional methods of inspection in terms of precision as well
as operational efficiency. Surface defect detection using convolutional neural networks (CNN)
was observed to be quite specific as they also possess flexibility to detect various defect types.
Other hurdles discussed include complexity of the models and demanding computational
recourses, as well as data limitations.

Miragaia et al. [5] the paper was on the utilization of Al for smart quality inspection,
especially custom CNN models for high accuracy defect detection. Although it discussed



automation and real-time monitoring through 10T, it revealed that there is a challenge to its
implementation on the shop floor environment and calls for expert knowledge. The optimizer,
adaptive moment estimation (Adam), played an important role in optimizing model
performance.

Alves Gomes et al. [6] had examined the use of hybrid models combining synthetic and real
data for defect detection in fields where labeled data is minimally available, resulting in
improved generalization and model performance with good accuracy. Concerns about data
scarcity, variability in model performance, and the proper ratio of synthetic to real data have
also surfaced.

Jang et al. [7] PCB defect inspection is generally classified into two phases: Bare PCB (BPCB)
and PCB Assembly (PCBA). BPCB inspection is crucial since initial defects might weaken the
end product. Classic inspection processes primarily use manual or rule-based systems, whereas
contemporary methods increasingly embrace Al and deep learning for efficiency and
accuracy. Auto- mated Optical Inspection (AOI) has become a critical tool but still faces
limitations, including high costs and computational demands. Recent advancements are set to
address these issues, with Al-based approaches offering the promise of significant real-time
defect detection improvements.

Jia et al. [8] covered deep learning application in robotic quality control where robot
efficiency, precision, and cooperation are enhanced with human operator. The problems are
the lack of real-world validation, management of data, and scalability. It has also presented
models, including position control systems, digital twins, and machine learning to optimize
path planning to im- prove robotic performance.

Allen et al. [9] the paper elaborated on the merits of using robots in manufacturing, especially
in tasks such as quality control. The improved efficiency and accuracy endowed by robots
further enhanced productivity when coupled with operators in a collaborative manner. Issues
in validation, managing data, and scaling solutions across different robot models are
challenges, whereas the use of position control models, digital twins, and machine learning
techniques is discussed.

Li et al. [10] Machine vision and deep learning increasingly are being employed in factory
inspection, precisely identifying defects and ensuring quality. Real-time, robust solutions for
surface and pattern analysis are offered through new methods like FR-Net, Adaptive
Adversarial Transformers, and DeepLSD. While progress is observed across various industries
steel to windmills gaps in research exist, particularly in feature line detection and deep learning
for feature tasks like gap spacing. This suggests major potential for future growth in smart
inspection systems.

liang et al. [11] obtained reviewed deep models on defects based on CNNs, having a good
accuracy and speed. Models showed the ability to adapt to varying textures and lighting
conditions. However, the issues here included deep learning models being complex; resource-
hungry models; and issues with data limitations, mainly related to unbalanced samples and
limited dataset size.

Achmad Pratama et al. [12] these models were stressed as fairly beneficial regarding quality



inspection in terms of accuracy and explainability. The defect-guided recognition neural
network (DGRNN) was high-accurate and robust against visual disruption. Model overfitting
and parameter efficiency were discussed as challenges, especially with regard to the CIM
mechanism for im- proved performance.

Eoin et al. [13] emphasized the benefits of deep learning on surface defect inspection,
including high precision and continuous monitoring of production lines. Yet, some challenges
included data labeling, computational cost, and model complexity, especially with GANSs.
Lighter neural networks and semi- supervised learning were suggested as solutions to some of
these problems.

Makris et al. [14] this approach focused on in-line quality inspection systems, with real-time
detection of defects for immediate corrective measures. Automation had improved efficiency
and consistency in the quality control system. Some challenges were limited cross-research-
institute collaboration, the need to advance theoretical bases, and incorporating human factors
in robotic systems; some models applied were zero-defect manufacturing and multilayer
quality inspection.

Kong et al. [15] it discussed deep learning in surface defect inspection, particularly its high
precision and continuous detection capability coupled with automation that overpowers
traditional techniques of manual inspection. How-ever, it names various challenges such as
data labeling problems; high computational costs; and model complexity, especially when
implemented with GANSs. Proposing lightweight neural networks and semi-supervised
techniques could enhance the efficiency and performance of the model.

3 Proposed Work

The defect detection system is organized around a comprehensive deep learning framework that
commences with image preprocessing, followed by the selection of models, their training, and
subsequent evaluation. During the preprocessing phase, images are resized to dimensions of
512x512 pixels, converted to grayscale, normalized for pixel intensity, and subjected to data
augmentation techniques to improve the robustness of the model. For the classification task,
four distinct deep learning models were employed: CNN, MobileNetV2, EfficientNet, and
MLP-Mixer. The CNN model is responsible for extracting fundamental features, while
MobileNetV2 offers an efficient architecture tailored for edge computing environments.
EfficientNet is designed to maximize accuracy while minimizing computational demands, and
MLP-Mixer, which is based on transformer architecture, utilizes token-mixing for enhanced
feature representation.

To facilitate effective learning and robust validation, the dataset was divided into training and
testing subsets. The models were trained using the Adam optimizer in combination with the
cross-entropy loss function, which enhanced their capability to differentiate between defective
and non-defective instances. Model performance was assessed using standard classification
metrics such as accuracy, precision, and recall. Among the various models evaluated,
EfficientNetBO demonstrated superior performance, striking a strong balance between accuracy
and computational efficiency.



3.1 Flowchart of the Proposed Work
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Fig. 1. Proposed Methodology for Automated Defect Detection.

The automated manufacturing defect detection system proposed employs a well-organized
pipeline. The initial stage is data acquisition and preprocessing, and this involves normalizing
the results, determining correlations, searching for outliers, and dealing with missing data.
There are subgroups for training and testing within the sample. The four deep learning models
to train the model are CNN (standard), MobileNetV2 (computational efficiency),
EfficientNetBO (high accuracy), and MLP-Mixer (novel approach). For the purpose of
determining a quality inspection model minimizing human intervention and enhancing fault
detection efficiency, evaluation was carried out using critical performance metrics like
accuracy, precision, and recall. Fig. 1 shows the proposed methodology for automated defect
detection.

3.2 Architecture of MobileNetV2

The fig. 2 shows a deep learning classification process with the use of the MobileNetV2
architecture, which is optimized for light and efficient visual classification. This architecture
works particularly well for detecting defects in visual inspection applications.

Image Preprocessing

e The original RGB image of size 512x512 is resized to 224x224 pixels to align with the
input specifications of the deep learning model.

e Pre-processing ensures efficient feature extraction and enhances computational
feasibility.
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Fig. 2. Casting defect detection using MobileNetV2.
Deep Learning Model

e The pipeline uses MobileNetV2, a deep learning architecture that is optimized for
efficient and real-time image classification.

o MobileNetV2 is particularly suitable for edge devices and mobile devices due to its light
and efficient architecture.

Depthwise Separable Convolution
e To lower computational complexity without compromising accuracy, MobileNetV2
utilizes depthwise separable convolutions in place of traditional convolution operations.

e  The operation occurs in two steps:

Depthwise Convolution: Depthwise convolution involves applying one filter to each separate
input channels such that the model can effectively learn spatial information.

Pointwise Convolution (1x1 Conv): Combines the depthwise convolution output across
channels for feature fusion.



Model Layers
The model follows a structured pipeline involving:
e Standard Convolution (3x3): Initial feature extraction.
o Depthwise Separable Convolutions: Efficient representation learning.
e Global Average Pooling (GAP): Reduces feature dimensions while retaining
important information.
e Fully Connected Layer: Maps the learned features to classification labels.
Defect Classification

The final layer outputs a classification decision between:

o ‘def _front’ — Defective front side.
¢ ‘ok_front’ — Acceptable front side.

3.3 Architecture of EfficientNetB0

This fig. 3 shows the classification pipeline using EfficientNetB0, an efficient and lightweight
convolutional neural network.

Input Image: Model input is an RGB image of size 512 x512 x3.

Preprocessing: The input image is resized to 224 x 224 x 3 in order to fulfill the input size
requirement of the EfficientNetB0O model.

Feature Extraction: EfficientNetBO trained on a large dataset is employed to extract deep,
high-level features from the input image.

Global Average Pooling (GAP): GAP is substituted with regular fully connected layers to
reduce spatial sizes of feature maps and reduce overfitting and computational cost.

Flatten Layer: Pooling layer output is flattened into a one- dimensional vector to be ready to
feed into dense layers.

Dropout Layers: Dropout layers are included to reduce the likelihood of overfitting by
randomly dropping out neurons during training.

Fully Connected (Dense) Layers: Two dense layers are included in the architecture: the first
with 1024 neurons and with ReLU activation, the second of 512 neurons and using ReLU
activation.
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Fig. 3. Casting defect detection using EfficientNetBO0.

Output Layer:

e The last dense layer is 2 neurons (corresponding to classification categories).
e  Softmax activation is used to get class probabilities.



Working Pipeline

Extract Features using the EfficientNetB0 model.

Flatten and Pass Features through fully connected layers.

Dropout helps improve generalization by randomly turning off neurons during training.
Classify the Image into one of the predefined categories.

Applications

e Medical image classification.
e  Object recognition tasks.
e Industrial quality inspection using deep learning.

This architecture leverages the power of EfficientNetB0, a lightweight and efficient CNN,
while adding fully connected layers for classification, making it suitable for various image
recognition tasks.

3.4 Architecture of CNN

This fig. 4 categorization pipeline is built upon a Convolutional Neural Network (CNN), which
is a hierarchical model to train and learn semantic features richly from input images to be
categorized.

Input Image: The inputis an RGB image of 512 x512 x3 size.

Preprocessing: The input image is resized to 224 x224 x3 to satisfy the required input shape of
the CNN.

Feature Extraction:

e Convolutional layers employ a number of filters to detect meaningful visual patterns
and features.

e ReLlU activation functions are employed to provide non-linearity so that the model can
learn sophisticated feature representation

Pooling Layers: MaxPooling is employed to reduce the spatial dimensions of the feature maps
without sacrificing the most significant information.

Flatten Layer: The output from the pooling layer is flattened to a one-dimensional vector in
order to feed input to the fully connected layers.

Fully Connected Layers:

e The first dense layer is made up of 128 neurons that are activated by RelLU.

e There is a Dropout layer with a rate of 0.5 to minimize overfitting.

e Then a second dense layer of 64 neurons and ReLU activation comprising the last
layer prior to classification.
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Fig. 4. Casting defect detection using CNN

Output Layer:

The final dense layer consists of 2 neurons (corresponding to binary classification).
Softmax activation is applied to obtain class probabilities.

Working Pipeline

Extract Features using convolutional layers.

Down sample using pooling layers.

Flatten and pass features through fully connected layers.
Apply Dropout regularization to prevent overfitting.



e Classify the image into one of the predefined categories.
Applications

e Medical image classification.
e  Object detection and recognition.
e Industrial quality inspection using deep learning.

This CNN-based architecture enables automated image classification by extracting hierarchical
features, making it highly effective for computer vision tasks.

3.5 Architecture of MLP-Mixer

The fig. 5 depicts the structure of MLP-Mixer, a deep learning model that replaces traditional
convolutional and attention mechanisms with Multi-Layer Perceptrons (MLPs) for feature
extraction. The process is outlined as follows:

Input Image: The model takes a 512 x512 x3 RGB image as input.

Patch Embedding:

e The image is divided into fixed-size smaller patches, and each is processed as a separate
token.

e These patches are then converted into lower-dimensional embeddings in order to
facilitate efficient and scalable processing by the model.

Layer Normalization: Normalizes inputs across features to stabilize training and improve
generalization.

Token Mixing MLP: Processes information across spatial dimensions by mixing tokens
within an image.

Skip Connection: Residual connections help preserve important features and enable better
gradient flow.

Channel Mixing MLP: Operates independently on each token, mixing information across
feature channels.

Skip Connection: Ensures efficient gradient propagation and mitigates vanishing gradient is-
sues.

Global Average Pooling: Reduces the size of the feature map to a single vector by computing
the mean over all spatial locations.

Fully Connected Layer: Transforms extracted features into a classification decision.



Output Layer:

e The last layer consists of 2 neurons, signifying the two possible output classes.
e  Softmax activation is employed to obtain the probability of each class

Input Image (512x512x3

1
/ Patch Embedding /
4
| Layer Mormalization |
1
Token Mixing MLP
1
Skip Connection
4
Channel Mixing MLP
1
Skip Connection
1
Global Average Pooling
4
| Fully Connected Layer |
1

Output:'def_front' or
'ok_front’

Fig. 5. Casting defect detection using MLP-Mixer.
4 Result Analysis
4.1 About Dataset

Casting is a production method where molten metal is poured into a mold with a hollow cavity in
the shape of the final desired product and solidified. Although commonly used, casting is prone



to numerous types of defects that can ruin the quality of the final product. The rationale for
creating this dataset is to assist with the detection of such casting defects, which are
discontinuities or irregularities that occur during the casting process. Typical types of defects
include blow holes, pinholes, burrs, shrinkage defects, mold material flaws, improper pouring,
and metallurgical irregularities. Due to the nature of these defects, much of the quality control
check is left to human inspections by manufacturers. But it is labor-intensive and susceptible to
error, which could result in wrong decisions. This error results in rejection of large batches,
hence huge economic losses. To overcome these issues, this research proposes to automate the
process of defect detection through a deep learning-based classification method.

The dataset used is 8,964 grayscale images, each 512x512 pixels, taken in a top-down
perspective of submersible pump impellers. Data augmentation has been pre-applied, and the
same lighting was used for every image to have constant quality. The dataset is divided into two
classes: "Defective" (those containing casting defects) and "Ok"™ (images of defect-free
impellers). The data set is divided into training and test sets for model building. The training set
comprises 4,204 defective and 3,237 non-defective images, while the test set includes 899
defective and 624 non-defective samples. This dataset serves as the foundation for creating a
deep learning model to improve the accuracy and efficiency of automated casting defect
inspections. Fig. 6 shows the defective and non-defective manufacturing dataset.

Defective Non Defective

Fig. 6. Defective and Non-Defective Manufacturing Dataset.
4.2 Evaluation Metrics

To assess the effectiveness of the defect detection models, several evaluation metrics were
employed to provide a comprehensive understanding of classification performance:

4.2.1 Accuracy: Represents the ratio of correct predictions to the total number of samples.
Cq+tCn

Accuracy = ————
y Ca+Cntlg+in

Where
e  Cy: Correctly predicted defective samples
e  Cy: Correctly predicted non-defective samples
e 4. Non-defective samples incorrectly predicted as defective

@



e |,: Defective samples incorrectly predicted as non-defective

4.2.2 Precision: Indicates the proportion of samples predicted as defective that are actually
defective.

- c

Precision = —% )
Catlg

Where

e  Cy: True defective predictions
e g False positive predictions (non-defective labeled as defective)

4.2.3 Recall (Sensitivity): Measures the model’s ability to identify actual defective samples.
Recall = —¢

Cq+ln
Where

e  Cq: True defective predictions
e |, False negative predictions (missed defective samples)

®)

4.2.4 F1 Score: A harmonic mean of precision and recall, especially useful for imbalanced

datasets.
d_ )y (_Cd
FlScore=2xM .
<Cd”d>+(cd+1n>
4.2.5 Specificity: Evaluates how well the model identifies non-defective items correctly.
Y] Cn
Specificity = - .
Where

e  Cy: True non-defective predictions
e g False positives

4.2.6 ROC Curve and AUC: The Receiver Operating Characteristic (ROC) curve plots the
trade-off between true positive and false positive rates. The Area Under the Curve (AUC)
provides a scalar representation of the model’s classification performance.

4.2.7 Confusion Matrix: A matrix representing:
Ca: True Positives

Cn: True Negatives

lg: False Positives

In: False Negatives

4.3 Mathematical Equations

4.3.1 MLP-Mixer: MLP-Mixer replaces convolutions with MLP layers for token and
channel mixing.

Token Mixing: Z=X+W.a(W;LayerNorm(X)) (6)
where:
e X isthe input token representation.



e Wi, W, are learnable weight matrices.
e gisthe activation function (GELU/ReLU).
e LayerNorm normalizes the input.

Channel Mixing: Y=Z+Wo(WsLayerNorm(Z)) @)
Where W3, W, are learnable weight matrices.

4.3.2 EfficientNetB0O: EfficientNetBO scales width, depth, and resolution via a compound
scale factor ¢.
Compound Scaling: d = a?do, W = %W, r=y"ro (8)
where:

e d,w,rare network depth, width, and input resolution.

e do,Wp,ro are base values.

e ¢, f,yare scaling coefficients.

MBConvBlock: y = Conv(x)-o(SE(x)) 9)
where:

e Conv(x) is a depthwise separable convolution.

e gisthe activation function.

e  SE(X) represents the Squeeze-and-Excitation mechanism.

4.3.3 MobileNetV2: MobileNetV2 employs an efficient structure that uses depth- wise
separable convolutions and inverted residual blocks for fast and lightweight inference.

Inverted Residual Block: This block expands the feature map dimensions using a pointwise
convolution, applies depthwise convolution, and projects the result back to a lower dimension.
The computation can be represented as:
Fou=FintDWConv(o(Convixi(Fin))) (10)
Where:

e  Fin: Input feature map
Convix1: Pointwise convolution to increase dimensions
DW(Conv: Depthwise convolution applied channel-wise
o: Non-linear activation function (ReLU6)
Fout: Output feature map after residual connection

Linear Bottleneck: In the final stage of the residual block, a linear projection is applied without
activation to preserve information:
Foroi=Convixi(Faw) - ((BN(Faw)) (12)
Where:

e  Fgu: Output of depthwise convolution

e ( ldentity (no activation)

e BN: Batch normalization

e  Fpnoj: Final output of the bottleneck block

4.3.4 Convolutional Neural Networks (CNN): CNNs use convolution and pooling
operations to extract hierarchical spatial features from images, followed by dense layers for
classification.



Convolution Operation: The convolution process involves a filter sliding over the image and

computing dot products with overlapping regions:

A(i))=y 3 I(i+u,j+v)-K(u,v)

Where:
]

(12)

I(i, j): Pixel value at position (i, j) in the input image
e K(u,v): Kernel/filter value at position (u,V)

A(i, J): Activation value at output position (i, j)

Max Pooling: This operation reduces dimensionality by selecting the maximum value in each
local region:

P(i,j)=max(A(i+m,j+n)
Where:

(13)
A(i, j): Activation map values
P(i, j): Pooled output at position (i, j)

Where:

Dense Layer: Fully connected layers transform feature maps into final classification scores:
O=W-X+b

(14)
X: Flattened input vector
W: Weight matrix
b: Bias term

[ )
[ )
e  O: Output vector for classification

4.4 Model Performance Summary

Accuracy and Loss Analysis: The performance of some of the most popular deep learning
architectures in detecting defects in casting was evaluated using four architectures: a bespoke
CNN, EfficientNetB0, MLP-Mixer, and Mo- bileNetV2.
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The training and validation were carried out using a dataset consisting of gray-scale images of
submersible pump impellers that were either defective or non-defective. To analyze model
performance and learning behavior, loss and accuracy graphs were examined, offering insight
into convergence rates, generalization capacity, and suitability for real-time industrial defect
classification. Several evaluation metrics were employed to understand how well each model
managed class imbalance, detected flaws, and maintained a balance between recall and
precision. These metrics served as indicators of the model’s effectiveness and highlighted
areas for possible enhancement. To further strengthen performance, optimization strategies
such as tuning hyperparameters and refining preprocessing steps were considered essential for
ensuring model robustness and dependable operation across various testing environments.

The MLP-Mixer model achieved a performance of 77.08%, which is significantly lower than
the other models (fig. 7). The accuracy curve has sharp fluctuations, and the loss curve shows
that the learning process is unstable. MLP-Mixer’s architecture is token-mixing dependent, as
compared to convolutional operations, which may not be appropriate for casting defect
detection, where spatial hierarchies are a fundamental component. The model’s performance
confirms that convolution-based architectures are more appropriate for this task.
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Fig. 8. Classification accuracy and loss trends for CNN.

The CNN model achieved 94.68% accuracy with the good classification performance (fig. 8).
The accuracy curve and loss curve show smooth learning, and there exists no severe overfitting
or underfitting. However, the CNN model performed poorly compared to more intricate
architectures in extracting the in-depth defect patterns, which may impact its low accuracy.
CNN remains an effective baseline model but lacks power for high-precision defect detection in
industrial applications.

EfficientNetBO gave the best performance among all the models with an accuracy of 98.75%
(fig. 9). The accuracy plot converges rapidly with minor oscillations, and the loss plot has low
values throughout, which indicates effective learning and great generalization. EfficientNetBO
is better because it uses a compound scaling approach that maintains depth, width, and
resolution in equilibrium for improved feature extraction. High model accuracy renders it a
viable industrial defect detection candidate with reliability and efficiency



EfficientNet - Accuracy EfficientNet - Loss

10 1000 ¥ -0~ Train Loss
#- Validation Loss
09 f
800 :
08
2 600
g @
3 07 q
4 400
i
06 X -
—
| g 200
05
=&~ Train Accuracy h
" v ¥ s Validation Accuracy T P 25 ot U e et By o e o |
2 4 6 8 10 2 4 6 8 10
Epachs Epachs

Fig. 9. Accuracy and loss curves for EfficientNetBO.
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Fig. 10. Accuracy and loss curves for MobileNetV2.

MobileNetV2 model accuracy stood at 98.36%, a close second to EfficientNetBO (fig. 10).
The convergence curves for loss and accuracy were smooth, depicting the model to generalize
without the propensity to overfit. Lean MobileNetV2 architecture via depthwise separable
convolutions provides efficient computation at high accuracy levels. Therefore, it’s an ideal
model to use real-time in the manufacturing environment with minimal computational powers.

Confusion Matrix Evaluation: Confusion matrices provide a detailed breakdown of
classification outcomes, helping evaluate how well each model distinguishes between defective
and non-defective samples.

The MLP-Mixer model showed moderate effectiveness (fig. 11). It correctly identified 799



defective instances but failed to detect 100 others, labeling them as non- defective.
Additionally, it accurately classified 375 non-defective items while misclassifying 249 good
samples as defective. The model demonstrated a relatively high error rate across both
categories, suggesting its token-based architecture may not capture the spatial hierarchies
required for precise defect recognition.
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Fig. 11. Confusion Matrix for MLP-Mixer.
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The custom CNN model successfully detected all 899 defective samples (fig. 12). However, it
incorrectly labeled all 624 non-defective images as defective, indicating a strong class bias. This
resulted in a high false positive rate, which could lead to unnecessary rejections in a real-world
production line. While effective in identifying flaws, the model struggled with distinguishing
normal items.
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Fig. 13. Confusion Matrix for EfficientNetB0

EfficientNetBO delivered highly reliable predictions (fig. 13). It accurately classified 882 out of
899 defective cases, with only 17 false negatives. Among the non-defective items, 622 were
correctly identified, with just 2 being misclassified. This low error margin showcases the
model’s strong generalization and its suitability for high-precision inspection systems in
manufacturing.
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Fig. 14. Confusion Matrix for MobileNetV2.



MobileNetV2 performed nearly on par with EfficientNetB0O. It correctly identified 875
defective samples and misclassified 24 as non-defective (fig. 14). For the non-defective class,
it accurately labeled 623 out of 624 samples, with just a single false positive. These results
indicate MobileNetV2’s consistent and efficient classification performance, making it ideal for
real time defect detection in environments with limited computational resources.

Model Accuracy Trends: The study reveals that model performance improves with advanced
architectures, with models like EfficientNetB0 and MobileNetV2 showing higher accuracy and
stability. Less conventional models, like MLP- Mixer, show lower accuracy and performance
fluctuations, suggesting their choice is crucial for high accuracy and reliability in automated
inspection systems.
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Fig. 15. Model Accuracy Comparison.

The bar chart in fig. 15 shows the comparison of accuracy of four deep learning models: MLP-
Mixer, EfficientNetB0, MobileNetV2, and CNN. The accuracies are split into three phases
train (blue), validation (green), and test (red). EfficientNetB0O and MobileNetV2 run best with
train, validation, and test accuracies approximating 98%. CNN runs well too, with the same
accuracy in all phases. The difference between training to validation accuracy of MLP-Mixer
is wide, yet test accuracy is on par. The contrast is useful in monitoring model
overfitting/underfitting and generalization trends.

Performance Comparison Table: To provide a well-rounded evaluation of the models, four
primary classification metrics accuracy, precision, recall, and Fl-score were used. These
indicators give insight into each model’s strengths and weaknesses in detecting casting defects,
particularly in distinguishing between defective and non-defective samples. Among all the
models tested, EfficientNetB0 achieved the highest accuracy and showed consistent results
across all metrics. MobileNetV2 closely followed with comparable performance, making both
models highly suitable for deployment in industrial inspection scenarios. On the other hand,
the CNN model, although fairly accurate, showed limitations in precision and F1-score,



suggesting a tendency to misclassify non-defective parts as defective. The MLP-Mixer model
recorded the lowest performance, highlighting challenges in applying token mixing
architectures to spatial defect detection tasks.

Table 1. Performance Metrics for Defect Classification Models.

pModel  Accuracy (%) Precision (%) Recall (%) F1-Score (%)

MLP-Mixer 77.08 77.35 77.08 76.41
CNN 94.68 34.84 59.03 43.82
MobileNetV2 98.36 98.41 98.36 98.36
EfficientNetB0 98.75 98.78 98.75 98.75

The results in Table 1 show that advanced, pre-trained architectures such as EfficientNetBO
and MobileNetV2 significantly outperform the simpler CNN and MLP-Mixer models.
EfficientNetB0O stands out as the most robust model, with nearly perfect alignment between
precision, recall, and F1-score, ensuring reliable predictions in  practical
applications.MobileNetVV2 also demonstrates strong results, especially considering its
lightweight design, making it a suitable candidate for environments where computational
efficiency is crucial. While the CNN model achieves decent overall accuracy, its low precision
highlights a higher false positive rate, which may lead to unnecessary part rejections in a
manufacturing setting. Meanwhile, MLP-Mixer’s lower metrics suggest that it may require
further optimization or be less suited for vision-based defect detection tasks. These findings
underline the importance of using efficient, well-tuned architectures in automated quality
control systems, where accuracy, speed, and consistency are vital.

5 Conclusion

This paper introduces an automated defect detection system based on deep learning
technology that is intended to improve the quality assurance processes in manufacturing
settings. The system uses a custom CNN model and transfer learning from EfficientNetBO,
MobileNetV2, and MLP-Mixer, with high ac- curacy in classifying defects. EfficientNetB0
outperformed MobileNetV2 and CNN at 98.75% and 94.68%, respectively. The system
minimizes reliance on manual labor-intensive verifications, offering an economic, scalable
solution for quality control efficiency enhancement. Future improvements will focus on real-
time defect detection, optimizing inference speed, and integrating edge Al for on-site analysis.
Model optimization techniques like pruning and quantization will be explored for efficiency
and cost-effectiveness. The system will also be integrated with loT manufacturing
environments for continuous monitoring and predictive maintenance.
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