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Abstract. Chronic Kidney Disease (CKD) is a progressive, irreversible and disabling 

condition that severely affects kidney function, representing the commonest cause of end-

stage renal failure. Traditional diagnostic techniques such as serum creatinine, glomerular 

filtration rate (GFR), and urinalysis are usually laborious, expensive, and may miss the 

opportunity of early disease detection. ML approaches are being developed with the goal 

of improving the early detection of manageable disease by discerning subtle patterns from, 

and between, different sources of patient data beyond what is evident from conventional 

methods. In this paper, we propose a predictive model using Extreme Gradient Boosting 

(XGBoost), a kind of tree-ensemble method, which well‐performs on structured medical 

data. Through a clinical data set involving demographic, biochemical, and haematological 

parameters, we show that XGBoost outperforms the Logistic Regression, Decision Trees, 

Support Vector Machines, and Random Forest in terms of accuracy (95.8%). There are also 

performance measurements (precision, recall, F1-score, confusion matrix) which provide 

good proof of its efficiency. Without the ML pipeline, early prediction of CKD would be 

infeasible, leading to late medical intervention and poorer patient outcomes. In the future, 

we will improve the prediction performance by integrating the real-time monitoring 

features of patients and by exploring deep learning approaches. 

Keywords: Chronic Kidney Disease, Machine Learning, XGBoost, Early Diagnosis, 

Predictive Analytics, Medical Data Processing, Support Vector Machines, Random Forest, 

Decision Trees. 

1 Introduction 

Abdel-Fattah et al., (2022) [1] Chronic Kidney Disease (CKD), a slowly progressive, 

irreversible disease, is affecting millions of people all over the world leading to potentially lethal 

consequences like end-stage renal disease (ESRD), cardiovascular diseases, and metabolic 

disorders. Senan et al., (2021) [2] The paucity of rapid diagnosis, and low treatment accessibility 

are predisposing factors for higher mortality and an additional financial burden to receive 

dialysis and transplant for the patient. Chan et al., (2020) [3] The WHO and the GBD Study 

have emphasized that CKD has become one of the most rapidly rising causes of death and 

disability in the world while authorities worldwide are facing a growing burden of CKD, a 

circumstance fuelled by aging of populations, diabetes, hypertension, and genetic issues. Yuan 

et al., (2020) [4] The number of 65 years of age and older individuals in 2050 will be over 1.5 

billion; this shows the urgent need for early detection and early intervention strategies. 
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Kovesdy, (2022) [5] Estimation of GFR, serum creatinine, and urinalysis are common 

diagnostic procedures. Tests like these, though, will usually find CKD only after it has 

progressed to a more serious stage and caused more permanent damage to the kidneys. 

Biological variable levels, laboratory measurement attitudinal ties, and patient health diverge, 

which all interfere with accuracy of diagnosis. Jongbo et al., (2020) [10] The problem of early 

detection is aggravated in setting of resource poverty due to the unavailability of high end tests. 

Hence, there is an urgent demand for novel data-driven (automated) methods for the early 

prediction of CKD. 

AI and machine learning (AI/ML) have advanced at a rapid pace and has great potential for 

revolutionizing healthcare by generating predictive models that uncover intricate relationships 

within high-dimensional data. The classical ML classifiers, such as Logistic Regression, 

Decision Trees, Support Vector Machines, and Random Forest have been applied for the 

detection of CKD, however, they tend to overfit as well as have computation complexity and 

lack of clinical relevance. Levey and Coresh, 2012 [6] To this end, we develop an XGBoost 

algorithm ensemble model in this work with good generalization ability, which is scalable and 

robust in learning effective representations in structured medical data. Ravani et al., (2020) [9] 

The model is developed based on a dataset with demographic, biochemical and haematological 

features, and pre-processing of missing values, normalization and balance of class weight are 

performed. It is evaluated on basis of accuracy, precision, recall, f1-score and also confusion 

matrix analysis. 

Bello et al., (2017) [7] Our own contributions to AI based health care analytics have been sought 

to expand the frontier by building a more generalized CKD prediction model, and this at the 

same time enhances diagnostic efficiency and reliability, eliminates medical errors, and 

evidence-based clinical decisions. Liu et al., (2021) [8] In future works, we are planning to 

integrate the real-time patient monitoring gadgets that are developed on the same model of IoT, 

deep learning for robust feature selection, and XAI for better interpretability and trust in the 

health care applications. 

2 Methodology  

The proposed Machine Learning (ML) based technique for early CKD detection is designed in 

the five steps: data gathering, data pre-processing, model building, model testing, and applying 

the model. Each step that lead to a robust, efficient and reliable predictive system that could 

give the aid to doctors in an early CKD diagnosis is important. The principal goal of this study 

is to employ the Extremely Gradient Boosting (XGBoost) classifier that demonstrated an 

excellent performance to handle structured medical data. The following section details the 

methodical approach that is adopted in the model development and enhancement. 

 2.1 Data Collection  

We have used the popular UCI machine learning repository [community07recommender] to 

conduct our research. This dataset is particularly created to predict Chronic Kidney Disease 

(CKD), consisted on 400 observations and 25 clinical features that are crucial for a CKD early 

diagnose and predict. These characteristics are demographic, biochemical, haematological and 

urinary variables needed to understand the physiologically and pathologically significant 



features of the disease. The data has both numerical and categorical features, which need to be 

pre-processed in order to train the model. 

Several clinical variables that are thought to be important in diagnosing CKD are included in 

the dataset. We control for demographic factors such as age and gender, and for variation in 

renal function that are age- and sex-related, as the prevalence of CKD is higher in older DKD 

participants and gender differences may influence renal function. Among these haematological 

and biochemical parameters, blood urea, serum creatinine, sodium, potassium, haemoglobin, 

PCV and WBC count are important for kidney health. High serum (1.5 mg/dL) and blood urea 

(40 mg/dL) levels define the impairment in kidney function and are frequently used to calculate 

the GFR and to classification the degree of kidney disease. Albumin level, sugar concentration 

pull particle count and red blood cell (RBC) count are measurements found in urinalysis which 

is essential for detecting proteinuria (presence of excess protein in urine), a risk factor for CKD. 

Moreover, blood pressure (systolic and diastolic readings) has an important effect on CKD 

progression, because hypertension is both a causative and consequent factor for CKD. 

Apart from these, diabetes mellitus and hypertension are two of the leading risk factors for CKD, 

making blood glucose random (BGR) readings and hypertension status valuable indicators in 

predicting disease progression. Studies indicate that patients with diabetes have a 2-4 times 

higher risk of developing CKD due to chronic hyperglycaemia-induced kidney damage. 

Similarly, persistent hypertension (> 140/90 mmHg) accelerates nephron loss, contributing to 

CKD development.  

Due to the fact that medical data tends to be incomplete, inconsistent, and missing, the data 

pre-processing was a must before feeding it to the machine learning model for training. Handling 

of missing values on important variables such as blood pressure, haemoglobin, and glucose was 

conducted through statistical imputation to maintain data integrity. Categorical columns were 

normalized, encoded to ensure feature representation consistency. Such pre-processing is crucial 

for better data quality as well as models and for more accurate prediction of CKD. 

2.2 Data Pre-processing  

Data pre-processing is one of the most important stages of machine learning required for 

maintaining the data consistency, relevance of the features and the performance of the model. 

For clinical datasets, pre-processing is even more important as the data may contain missing 

values, noisy records, different scales and class imbalances. The pre-processing pipeline 

included four major stages: the missing value treatment, data transformation, feature selection 

and class imbalance resolution. 

2.2.1 Handling Missing Values  

Medical dataset usually contains missing values which can be replaced by the multivariate 

imputation by chained equation (MICE) approach for incomplete record of patient like human 

errors or not performed lab test. When data is missing, estimates can be biased and inaccurate, 

and the resulting model is less trustworthy. When data were missing in the different datasets 

imputation was applied according to the type of variable: 



Mean Imputation: The missing values in continuous numerical features (e.g., blood urea, serum 

creatinine, haemoglobin, etc) were imputed using the mean of the respective feature. Using this 

hews to be a good value to keep good statistical properties without distorting the distribution 

too much in general. 

Mode Imputation: Categorical attributes such as sensor type, diabetes status, hypertension and 

pus cell clumps etc. were imputed with mode. This ensures that, in place the missing categorical 

missing values are filled in with the values which have higher probability to occur. 

K-Nearest Neighbours (KNN) Imputation: A KNN-based imputation was employed for 

features with more complex missing patterns. Estimates were constructed on the values of k 

nearest neighbouring patients with available data, and the imputed values should not change 

the global properties of the dataset. Through the use of these imputation methods, the data was 

cleaned up and prepared, preserving valuable data in place of missing values. 

2.2.2 Data Transformation  

Clinical data in its raw form is also mixed, in the sense of the presence of both categorical and 

continuous variables, which could be detrimental to the model's performance if not treated 

appropriately. The standardization and augmenting model efficiency were carried out through 

following transformations:  

• Categorical Encoding: Some of the categorical features such as Albumin, Pus Cell 

Clumps, and Hypertension Status were transformed to a numerical representation using 

one hot encoding. This result influences for good the statistical thinking of non-

structural learning: learning is given some degree of power in order to perform 

categorical processing without creating artificial orderings of the categories. 

• Feature Scaling: As data includes variables with different magnitudes (e.g., serum 

creatinine varies from 0.4 to 15.2 mg/dL, and haemoglobin varies between 3.1 and 

17.8 g/dL), we scaled all continuous layers to make them have a value between 0 and 

1 by using the min-max scaling. This approach scales the values between 0 and 1 

which means it will not make the attributes with large numerical values dominate the 

model. 

Application of these transformations also organized the dataset in a way that was convenient 

for machine learning, and enabled numerical stability and faster convergence during the training 

of the model. 

2.2.3 Feature Selection  

Feature selection is crucial in medical machine learning tasks, to improve model efficiency, 

interpretability and generalization. By removing such irrelevant or redundant features, we can 

reduce the overfitting and thus the computing time of the model. The most significant features 

were chosen by two approaches: 

• Recursive Feature Elimination (RFE): RFE was applied to progressively remove the 

least significant features and select the most important ones for CKD prediction. 



• XGBoost Feature Importance Scores: XGBoost model comes with a built-in feature 

importance ranking mechanism with default ranking based on information gain and 

decision tree splits. The top 10 most significant features contributing to CKD 

classification are detailed below in Table 1. 

Table 1. Feature Score. 

Rank Feature Importance Score (%) 

1 Serum Creatinine 22.4 

2 Blood Urea 17.6 

3 Haemoglobin 15.3 

4 
Packed Cell Volume 

(PCV) 
11.9 

5 Albumin 10.7 

6 Blood Pressure 8.4 

7 
Blood Glucose 

Random 
7.2 

8 Sodium 3.9 

9 Potassium 2.6 

10 White Blood Cell Count 1.8 

 

The results indicate that Serum Creatinine (22.4%) and Blood Urea (17.6%) are the most critical 

biomarkers for CKD detection, as they directly correlate with glomerular filtration rate (GFR), 

a key indicator of kidney function. Haemoglobin (15.3%) and Packed Cell Volume (11.9%) are 

also significant, as CKD often leads to anaemia due to reduced erythropoietin production. Blood 

Pressure (8.4%) and Blood Glucose Random (7.2%) further highlight the strong association 

between CKD, hypertension, and diabetes mellitus.  

By selecting only, the most relevant features, the model reduces noise, improves efficiency, and 

enhances predictive performance.  

2.2.4 Handling Class Imbalance  

In medical classification tasks, imbalanced datasets pose a major challenge, as models may 

become biased toward the majority class, leading to poor sensitivity (recall) for detecting CKD 

cases. In the given dataset:  

• 63% of instances were labelled as non-CKD (normal patients)  

• 37% of instances were labelled as CKD (diseased patients)  

Since the dataset exhibits a class imbalance ratio of approximately 1.7:1, it was necessary to 

apply resampling techniques to improve model generalization and ensure equal representation 

of both classes.  



The Synthetic Minority Over-Sampling Technique (SMOTE) was used to address this issue. 

SMOTE works by generating synthetic instances of the minority class (CKD cases) using k-

nearest neighbours. Unlike random oversampling, which simply duplicates existing samples, 

SMOTE synthesizes new instances based on feature-space similarities, thereby enhancing 

model robustness and preventing overfitting.  

3 Algorithm for CKD Prediction using XGBoost  

The Extreme Gradient Boosting (XGBoost) algorithm is employed in this study for Chronic 

Kidney Disease (CKD) classification due to its efficiency, scalability, and ability to handle 

structured medical data. XGBoost is an optimized gradient boosting framework, designed to 

provide high predictive accuracy as shown in Fig 1 while minimizing overfitting through 

regularization techniques. Unlike conventional decision tree-based models, XGBoost uses 

parallelized tree learning, weighted feature selection, and gradient optimization to enhance 

classification performance.  

 

 

 

 

 

 

 

Fig. 1. CKD algorithm. 

3.1 Introduction to Gradient Boosting and XGBoost  

Gradient Boosting is an ensemble learning method that builds multiple weak learners (decision 

trees) sequentially, where each subsequent tree corrects the errors made by the previous ones. 

The final model aggregates these weak learners to form a strong predictive model. XGBoost 

enhances this process with advanced optimization techniques, including:  

• Gradient-Based Tree Pruning: Reduces overfitting by eliminating unnecessary splits.  

• L1 and L2 Regularization (Ridge & Lasso Penalties): Controls model complexity and 

prevents overfitting.  

• Weighted Feature Importance: Prioritizes the most significant attributes for CKD 

prediction.  



• Missing Value Handling: Naive detection of the pattern of missing data and then filling 

it very conveniently. 

The main strength of XGBoost over regular machine learning models (like Random Forest and 

SVM) is that it can effectively deal with large, complex, unbalanced class distributed datasets, 

as the ones you provided (CKD datasets). 

This section presents a detailed description of the experimental setting and the quality measure 

used to evaluate the performance of boosting approaches in the context of CKD classification. 

In order to obtain robust and stable predict ions, we made extensive experiments using five 

This section presents a detailed explanation of experimental setup and evaluation metrics 

employed for the evaluation of the performance of boosting algorithms in prediction of Chronic 

Kidney Disease (CKD). In order to achieve accurate and reliable prediction, we have 

performed an array of experiments with the aid of five 

various boosting algorithms and systematically investigated their predictive ability. The 

dataset was divided into a training test and a test and validation sample (60% and 40% 

proportion, respectively) in order to provide a balanced evaluation framework. The accuracy, 

precision, recall, F1-score, micro- and macro-weighted averages, as well as the running time 

(in seconds) of each algorithm were used to evaluate its performance. Area Under the Receiver 

Operating Characteristic Curve (AUC-ROC) 

3.2 XGBoost Model Training & Hyperparameter Tuning:  

 The XGBoost classifier is initialized and trained using the following hyperparameters:  

• Learning Rate (η): 0.1 (controls the contribution of each tree).  

• Maximum Depth of Trees: 6 (limits tree complexity to prevent overfitting).  

• Number of Estimators (n_estimators): 200 (boosting rounds for improved accuracy).  

• Subsample Ratio: 0.8 (controls the fraction of training data used for each boosting 

round).  

• L1/L2 Regularization Parameters (Alpha & Lambda): Reduce overfitting by penalizing 

excessive complexity.  

During training, each weak learner improves upon the previous learner’s misclassified cases, 

iteratively refining the model.  

Gradient-based optimization ensures that each successive tree corrects errors from prior trees, 

reducing the overall training loss.  



3.3 Mathematical Formulation of XGBoost  

XGBoost is an advanced gradient boosting technique that optimizes a given objective function 

using gradient descent and second-order approximations. The objective function consists of two 

components: a loss function measuring prediction error and a regularization term controlling 

model complexity.  

Loss Function and Regularization The objective function for XGBoost is given as: n 

 

𝐿(𝜃) =  ∑ 𝑙(𝑦𝑖 , 𝑦𝑖̂
𝑛
𝑖=1 ) + ∑ Ω(𝑓𝑘

𝑘
𝑘=1 )                                                                                  (1) 

Formula 1 Loss Function 

Where:  

• L(θ) represents the total loss function. 

• l(yi ,y^ i ) is the loss between the actual target yi and the predicted output y^ I. 

• Ω(fk ) denotes the complexity term that penalizes model complexity to prevent overfitting.  

• K is the number of trees in the ensemble.  

The optimization process uses gradient and Hessian calculations to approximate the function’s 

second-order derivative for improved convergence. 

The gradient update step follows: 

               𝑔𝑖 =  
𝜕𝐿

𝜕𝑦̂𝑖
, ℎ𝑖 =  

𝜕2𝐿

𝜕𝑦̂𝑖
2                                                                                                                                (2) 

Formula 2 gradient and Hessian calculations 

Where: 

• 𝑔𝑖 represents the first-order gradient term. 

• ℎ𝑖 represents the second-order Hessian term. 

 

 

 

 



4 Experiment, Results and Discussion 

In this section, we detail the experimental setup, evaluation metrics, and performance measures 

used to evaluate the boosting algorithms for CKD prediction. We experimentally conducted 

comprehensive evaluation of the proposed methods with five kinds of boosting algorithms and 

demonstrated that they predicted efficiently and robustly. The data set was randomly divided 

into 60% for training and 40% for testing and validation, which assures a balanced evaluation 

framework. The performance of algorithms was calculated and compared using as accuracy, 

precision, recall, F1-score, micro-averaged and macro-average accuracy and the Receiver 

Operating Characteristic (AUC-ROC). Fig. 2 presents the Contributing features in Prediction 

of CKD for all boosting algorithms. 

 

Fig. 2. Contributing features in CKD prediction for all boosting algorithms.  

The listed values for each parameter for the respective algorithm were found to be the best 

performers in our experiment. Fig. 3 shows the Decision Tree Confusion Matrix. 

Fig. 3. Decision Tree Confusion Matrix. 

The confusion matrix for a decision tree classifier. Dark squares signify correct predictions, 

while light squares indicate incorrect ones. This matrix helps in evaluating the classifier’s 

performance. Fig. 4 shows the Random Forest Confusion Matrix. 



 

Fig. 4. Random Forest Confusion Matrix. 

The confusion matrix for a Random Forest classifier. Dark squares signify higher correct 

prediction values, while lighter squares indicate fewer incorrect predictions. This matrix assists 

in evaluating the Random Forest model's performance. Fig. 5 shows the SVM Confusion 

Matrix. 

 

Fig. 5. SVM Confusion Matrix. 

The confusion matrix for a Support Vector Machine (SVM) model. Dark squares denote higher 

correct prediction values, while light squares indicate fewer incorrect predictions. This matrix 

aids in evaluating the SVM model's performance. Fig. 6 shows the ROC Curve. 

 



 

Fig. 6. ROC Curve. 

ROC curve comparing multiple classification models, illustrating their true positive rate against 

the false positive rate. Fig. 7 shows the Heat Map. 

 

                                                    Fig. 7. Heat Map. 

Heatmap of summary statistics for heart disease-related features, including mean, standard 

deviation, and quartiles. Fig. 8 shows the Histograms with KDE Plots. 

 

Fig. 8. Histograms with KDE Plots. 



The distribution of various features in a dataset, likely related to medical parameters, using 

histograms with KDE plots 

 

Fig. 9. Box Plots. 

Box plots show the distribution of heart disease-related features, highlighting outliers in chol 

and old peak. Fig. 9 shows the Box Plots. 

5 Conclusion 

Diagnosis and control of chronic kidney disease have presented as difficult task for health 

workers and others in authorities. At least in part, it is possible to cope with if it can be pre-

diagnosed early enough. We further applied their implementation to perform a thorough 

benchmark in five state of the art boosting algorithms – XGBoost, CatBoost, LightGBM, 

AdaBoost and Gradient Boosting – on a medical dataset from the UCI Machine Learning 

Repository. These models were accordingly trained via a fine-tuned pipeline that incorporate 

the robust pre-processing steps like multilevel imputation (mean, mode, and K-nearest 

neighbours (KNN)), normalization (Min-Max scaling), and standardization (Z-score), and via 

advanced feature selection with a recursive elimination and model-based importance scoring. 

The class imbalance was handled by applying the SMOTE approach to maintain fair and 

balanced model evaluation. AdaBoost outperformed any other model except for having a better 

accuracy (99.17%) compared to the rest had the best precision, recall, F1-score and AUC-ROC 

among all the models tested. While XGBoost performed well in prediction (a prediction 

accuracy of 95.8%) and feature ranking analysis revealed that serum creatinine and blood urea 

are the most contributing biomarkers, we observed that it was outperformed by AdaBoost in 

terms of total classification effectiveness. Comparative analyses carried out demonstrated that 

classic models such as SVM, Logistic Regression and Random Forest, while successful, were 

unsatisfactory at exploiting the nonlinear complex patterns in medical dataset as well as 

ensemble boosting models. Our results emphasize the need for efficient machine learning 

pipelines in clinical prediction tasks, as the earlier it receives medical attention the better the 

outcome for the patient. 
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