
FPGA Implementation for Image Improved Edge

Detection Algorithm Using Xilinx ISE Simulator

G. Sujatha1, Avula Sushitha2
, VemuYayaathi Datta3, Kamarthi Shashidhar4,

Marella Pavan Kumar5 and Bairagi Kiranmayee6
{sujatha.g@svcolleges.edu.in1, sushitha20@gmail.com2, yayaathidatta2004@gmail.com3,

shashidharkamarthi@gmail.com4, marellapavankumar00@gmail.com5,

lakshmibupathi273@gmail.com6}

Professor, Department of Electronics and Communication Engineering, Sri Venkateswara College of

Engineering, Tirupati, Andhra Pradesh, India1

UG Scholar, Department of Electronics and Communication Engineering, Sri Venkateswara College of

Engineering, Tirupati, Andhra Pradesh, India2, 3, 4, 5, 6

Abstract. The Canny edge detection algorithm is one of the most widely used methods for

edge detection due to its superior performance. However, it is a complex and time-

consuming process that also has a high hardware cost. In addition, most existing

implementations use a fixed pair of high and low threshold values for all input images.

Such fixed thresholds cannot automatically adapt to changes in the external detection

environment, resulting in decreased performance. To address these issues, this paper

proposes an improved Canny algorithm. It employs the Sobel operator and approximation

methods to calculate the gradient magnitude and direction, thereby replacing complex

operations and reducing hardware cost. Otsu’s algorithm is introduced to adaptively

determine the image threshold. Since Otsu’s algorithm involves division operations that

are slow and inefficient, this paper incorporates optimizations to improve efficiency. An

optimized pipeline architecture is implemented for the Canny edge detection algorithm on

an FPGA (Field Programmable Gate Array). The proposed method significantly enhances

performance compared to the conventional approach, specifically on the FPGA device

7vx485tffg1157-3. The existing method, which used the conventional Canny algorithm

with a pipeline architecture, achieved a delay of 6.061 ns (Maximum Frequency: 165.003

MHz) and consumed 1,908 Slice LUTs. In contrast, the proposed method reduces the delay

to 3.897 ns (Maximum Frequency: 256.614 MHz) while utilizing only 889 Slice LUTs on

the same FPGA device. These improvements are attributed to the optimized pipeline

architecture, which streamlines data flow and computational stages. As a result, the

proposed design demonstrates notable gains in both speed and resource utilization without

compromising the accuracy of edge detection.

Keywords: Image processing, Canny edge detection algorithm, FPGA, Otsu’s algorithm,

logarithm approximation etc.

1 Introduction

Image processing is an essential topic used in medical diagnosis, computer vision, satellite

picture and video surveillance. Among the various image-processing problems, edge detection

is considered as one of the most significant processes because to determine object boundaries

would help separate objects from backgrounds and detect intensity transitions. The Canny Edge

Detection Algorithm One of the most widely used and successful algorithms is developed by

John Canny in 1986. It became popular due to its good tradeoff between noise cancelation,

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358041

mailto:sujatha.g@svcolleges.edu.in
mailto:sushitha20@gmail.com
mailto:yayaathidatta2004@gmail.com
mailto:shashidharkamarthi@gmail.com
mailto:marellapavankumar00@gmail.com
mailto:lakshmibupathi273@gmail.com6

localization and edge detection. Nevertheless, the Canny approach is relatively computational

costly and not well suited for real-time implementation on traditional processors.

FPGAs have been put into service to ameliorate the limitation. In particular, FPGAs have the

better power-performance when dealing with real-time image processing due to their ability of

parallel computation and extreme low latency. However, the complexity of Canny algorithm

such as square root and arctangent operations turns out to be challenging for its implementation

on FPGA with limited resources. Moreover, it has fixed high and low thresholds of hysteresis

that may perform poorly on images taken in different illuminations and contrasts.

To tackle these problems, we introduce an improved Canny Edge Detection Algorithm aimed

at the FPGA-based realization using XILINX ISE as its software simulator. The advancements

which include gradient magnitude and direction computation with both the Sobel operator and

approximations, reduce computational over-heads. The Sobel filters are used to approximate

computationally intensive mathematical operations, which lightens the computational load

while preserving detection quality. Moreover, adaptive thresholding is achieved by using an

efficient implementation of Otsu’s approach with dynamic thresholds depending on the content

of the processed image. This one minimizes expensive divisions as well, with benefit to speed

and resources.

The proposed system uses the pipelined architecture in order to improve performance by

allowing the parallel processing of blocks at different stages. This method increases throughput

and decreases delay, allowing real-time processing of high-resolution images. The architecture

was implemented and tested on Xilinx Virtex-7 FPGA (device: 7vx485tffg1157-3). The

previous Canny approach exhibits better delay (3.1865 ns) at expense of a large number of Slice

LUTs consumption (1324) compared with the classical one, also it needs an enormous area size

(29162 slices), since we proposed method is more efficient in the sense that outperformed both

traditional and previous one obtaining best results in terms of power with 3.897 ns of latency

and consuming only 889 Slice LUTs for 2 steps implementing. These enhancements just prove

the worth of hardware issues and algorithmic decision.

An FPGA-based parallel algorithm architecture is proposed as a computation acceleration and

reconfigurable platform, which can achieve speedup more than twice the conventional solutions,

and possesses reconfiguration facility, low-power property, and inter-image consistence.

Applications that can be benefited from this system range from autonomous navigation, online

surveillance, medicine image and embedded vision systems. The pipeline learning architecture

and adaptive thersholding improve the robustness for different lighting, whereas approximations

ease the hardware complexity with marginal accuracy penalizations. Since it is IP based, it can

be easily implemented into more comprehensive image processing systems and expanded for

future architectures.

The contributions of this paper can be summarized as follows:

• An approximation procedure which enables estimating both gradients magnitude and

orientation.

• An adaptive threshold calculation of Otsu algorithm.

• A 32-bit logarithmic arithmetic unit for reducing the complexity of the Otsu

thresholding technique.

The paper is arranged as follows:

In Section 2, a brief review of related works is provided, Section 3 discusses the existing

methods, Section 4 states the proposed method, Section 5 presents and compares the simulation

results for existing and proposed methods, and Section 6 concludes the paper.

2 Literature Review

2.1 Edge Detection Techniques

Kashyap et al. [15] also developed an edge detection method based on Sobel operator with

median filter to enhance the noise robustness of images. Their result further recommands the

merit of preprocessing using for performance boost on noisy environment [1]. Similarly,

Mohammad et al. (2021), the Sobel edge detection method was tested with MATLAB and

demonstrated how image features affect the sharpness of edges and efficiency of detection [2].

Elham et al. (2013) also applied the design study to Sobel edge detection, dealing with algorithm

behavior on detecting image matching boundaries [4]. Meanwhile, Gonzalez et al. (2015)

presented an extensive background for digital image processing, including classical edge

detection models that would later act as the basis of FPGA implementations [8].

2.2 FPGA-Based Implementations of Edge Detection

Khidhir and Abdullah (2022) proposed an FPGA-based Sobel filter architecture with enhanced

processing speed in comparison to the software approach used, with a conclusion that based on

real-time image applications, FPGA is appropriate platform [3]. Anusha et al. (2012) then

applied Sobel edge detection on FPGA, and demonstrated that hardware parallelism can support

high-speed image processing [6].

In Abbasi and Abbasi (2007), an optimal FPGA architecture for the Sobel operator was proposed

to keep resources highly utilized while producing correct results [7]. Xiangxi et al. (2018)

expanded Sobel-based FPGA implementation to eight directions so that the accuracy and

robustness of edge detection is improved in complicated images [9].

Brown et al. (2012) In his work, he introduces an in-depth study of the FPGAs and their

architecture and their reconfigurability as they can be adapted to digital signal processing

applications such as image edge detection [5].

2.3 Image Processing Fundamentals

In the textbook they authored, Gonzalez and Woods (2020) discussed fundamental concepts of

digital image processing such as filtering, enhancing and edge detection, which are used in the

theory design of FPGA [11].

Furthermore, the University of Tartu’s Introduction to Image Processing is a pedagogical tool

for basic methods (like filters and edge enhancement), as they provide theory and practical

examples [10].

2.4 FPGA Tools and Hardware Platforms

The Xilinx resources [12] provide practical context for implementing image processing

algorithms. The official Xilinx documentation explains FPGA devices and their applications,

while the Digilent Zybo Z-10 [13] board information gives insight into hardware platforms often

used for prototyping such designs.

3 Existing Method

As we know, the Canny edge detection algorithm is a standard method for edge detection,

introduced by Canny, designed to compute the optimal edge detection by locating step edges in

the presence of white Gaussian noise. We describe in Fig 1 for an input 𝑀 × 𝑀 size image for

n-bit pixel depth, the algorithm makes several crucial steps. Firstly, the horizontal (Gx) and

vertical (Gy) gradients, for each pixel, are computed by the convolution be applied gradient

masks. Then, the gradient magnitude (G) and direction (θG) which describe the strength and

orientation of the edge are obtained from these gradient components. The algorithm then

performs Non-Maximum Suppression (NMS) to the thin edges by suppressing non-maximal

points on the gradient direction, which are candidate edges. Then thresholding is applied by

thresholding gradient magnitudes to high and low threshold values calculated from the gradient

histogram of the image to make significant edge pixels. In the end, hysteresis thresholding

connects edge segments by validating pixels that are between those thresholds, suppressing

additional responses made by noises or lightening transitions. Although this approach works

well in edge detection and noise elimination, it is computationally demanding especially for

real time processing.

Fig. 1. Block diagram of the canny edge detection algorithm.

4 Proposed Method

4.1 Improved Canny Edge Detection Algorithm

Thresholding to specify edges in hardware: In the hardware- based Canny’s edge detection, the

thresholding procedure holds an important role and basically, thresholding methods are

categorized into two classes: fixed and adaptive. Hard thresholding drastically reduces the

system design and hardware; however, it is less adaptable. It usually has to be recalibrated after

each change of occular movements or specific aspect of external environmental features as

object properties or lighting condition changes, and is not real timely appropriate. Such a

limitation can be resolved if adaptive threshold is used since the algorithm will be able to

automatically adapt to the changes in environmental conditions by itself.

In this work three modifications are proposed to make the Canny edge detector more hardware

friendly. First, we incorporate Otsu's method for adaptive threshold selection so that the

algorithm can automatically find the best threshold value for the image being processed. Then,

a simplified computation for gradient magnitude/direction is employed to reduce the use of

complex mathematical operations (e.g., square root, trigonometric functions) for lower

hardware complexity. Third, we utilize logarithmic approximation to derive a simpler

formulation of Otsu’s thresholding step, which often requires expensive divisions. These

improvements collectively help to refactor the algorithm for real-time processing on FPGA

platforms. Fig 2 shows the block diagram of the enhanced Canny edge detection flow. Each of

these changes is described in further detail in the subsequent sections.

Fig. 2. Architecture of improved canny edge detection.

4.2 Gradient Computation Based on The Sobel Operator

In this project, the Sobel operator is chosen as the gradient mask for its combined ability to

perform differentiation and smoothing, which helps reduce noise while emphasizing edge

regions. This operator assigns higher weights to pixels near edges, improving the detection of

important intensity changes. The gradient is computed using a 3 × 3-pixel window, as shown in

Fig 3, where two Sobel kernels—one for horizontal (x) direction and one for vertical (y)

direction—are applied. The horizontal and vertical gradients, denoted as fx(x,y) and fy(x,y), are

calculated by convolving these kernels with the corresponding pixel values, using the equations

given in (1) and (2).

To efficiently access pixel values for the convolution, a Line Buffer architecture is implemented,

which stores the current and previous rows of pixel data using two FIFO modules, as illustrated

in Fig 4. This buffering mechanism allows the system to retrieve the necessary 3 × 3

neighborhood pixels without delay during image scanning.

𝑓𝑥(𝑥, 𝑦) = (𝑝2 − 𝑝0) + 2(𝑝5 − 𝑝3) + (𝑝8 − 𝑝6) (1)

𝑓𝑦(𝑥, 𝑦) = (𝑝6 − 𝑝0) + 2(𝑝7 − 𝑝1) + (𝑝8 − 𝑝2) (2)

Fig. 3. Sub-window of an image and Sobel operator kernel.

Once pixels are retrieved, the gradient components fx(x,y) and fy(x,y), are computed through

hardware modules designed to perform weighted sums using multipliers and adders, as depicted

in Fig 5 for the horizontal gradient. The vertical gradient calculation uses a similar architecture

with different kernel weights. Both gradient outputs are represented as signed numbers, where

the most significant bit (MSB) indicates the sign of the gradient value, essential for later stages

such as direction calculation and edge thinning.

Fig. 4. Architecture of Line Buffer.

This combination of the Sobel operator and the line buffer design provides an efficient balance

between computational complexity and hardware resource usage, enabling accurate and real-

time gradient computation as a crucial step in the edge detection process.

Fig. 5. Architecture of fx(x, y).

4.3 Low Complexity Gradient Magnitude and Direction Calculation

In image processing, accurately determining the gradient magnitude and direction at each pixel

is critical for effective edge detection. The gradient magnitude represents the strength or

intensity of the edge at a particular pixel location, while the gradient direction provides

information about the orientation of the edge. Conventionally, the gradient magnitude and

direction are computed using well-known mathematical formulas, which involve square root

and arctangent operations. Specifically, the magnitude at pixel coordinates (x, y) is calculated

as the square root of the sum of squares of the horizontal and vertical gradients.

𝑚𝑎𝑔(𝑥, 𝑦) = √𝑓𝑥(𝑥, 𝑦)
2 + 𝑓𝑦(𝑥, 𝑦)

2 (3)

θ(𝑥, 𝑦) = arctan (
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
) (4)

To mitigate these issues, this study adopts a simplified approach for gradient magnitude

calculation that avoids expensive square root operations. Instead of computing the exact

Euclidean magnitude, we approximate the gradient magnitude by summing the absolute values

of the horizontal and vertical gradient components, as suggested in several prior works. This

approximation allows the magnitude calculation expressed as,

𝑚𝑎𝑔(𝑥, 𝑦) = |𝑓𝑥(𝑥, 𝑦)| + |𝑓𝑦(𝑥, 𝑦)| (5)

While the simplification of magnitude calculation is straightforward, determining the gradient

direction is more challenging. Traditional methods often use the Coordinate Rotation Digital

Computer (CORDIC) algorithm to calculate the arctangent function, which is required to find

the gradient orientation. Although the CORDIC algorithm is a hardware-friendly iterative

method for computing trigonometric functions, it requires multiple clock cycles and iterations

to reach the desired accuracy, leading to increased hardware complexity and latency. These

factors make CORDIC less suitable for real-time image processing applications where speed

and resource efficiency are critical.

To overcome the limitations of the CORDIC method, this project implements a novel, shift-

based technique for gradient orientation calculation. Instead of calculating the precise arctangent

value, the orientation space is divided into eight distinct zones, each representing a range of

edge directions distributed evenly across 360 degrees. Fig 6 illustrates these eight orientation

zones, with each zone corresponding to a specific angular sector. This method approximates the

continuous range of gradient directions by categorizing them into discrete intervals,

significantly simplifying the hardware implementation. Fig.7 shows the Architecture of the

gradient magnitude calculation and quadrant flag computation.

Fig. 6. Eight zones of gradient orientation.

To identify the correct zone for θ (x, y), we adjust θ (x, y) to tanθ(x, y), where each zone

corresponds to a specific range between two angle values. For simplicity, Equation (4) can be

rewritten as follows:

tan θ (𝑥, 𝑦) =
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
 (6)

The value of tanθ(x, y) is given by the Equation (7).

tan θ𝑗 (𝑥, 𝑦) ≤ tan θ (𝑥, 𝑦) < tan θ𝑗+1 (𝑥, 𝑦) (7)

Fig.7. Architecture of the gradient magnitude calculation and quadrant flag computation.

Rewriting the Equation (7) gives us Equation (8)

tan θ𝑗 (𝑥, 𝑦) ≤
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
< tan θ𝑗+1 (𝑥, 𝑦) (8)

The condition derived from Equation (8) is given in Equation (9)

𝑓𝑥(𝑥, 𝑦) ∗ tan θ𝑗 (𝑥, 𝑦) ≤ 𝑓𝑦(𝑥, 𝑦) < 𝑓𝑥(𝑥, 𝑦) ∗ tan θ𝑗+1 (𝑥, 𝑦) (9)

 The value of zone is determined by satisfying the condition specified in Equation (9). Fig 8

illustrates the architecture used to calculate fx(x, y) * tan22.5° and to identify the corresponding

direction of the zone.

Fig. 8. Architecture to find the direction.

4.4 Non-Maximum Suppression

Non-maximum suppression (NMS) is a technique used to thin detected edges by preserving only

the local maxima in the direction of the image gradient. The architecture for NMS is illustrated

in Fig 9. In this process, a selector determines the two neighboring pixels along the gradient

direction relative to the current pixel (which is the center pixel in a 3 × 3 neighborhood), denoted

as pixels a and b. For gradient directions labeled 1 or 8, pixels a and b correspond to positions

g3 and g5; for directions 2 or 3, they are g0 and g8; directions 4 or 5 correspond to g2 and g6;

and directions 6 or 7 correspond to g1 and g7. A comparator then evaluates whether the current

pixel value (g4) is greater than both neighboring pixels a and b to determine if it is a local

maximum. If it is the local maximum, the pixel is retained; otherwise, it is suppressed by setting

its value to zero. To optimize hardware usage, although the pixel intensity g4 can be represented

with up to 10 bits, the value is limited to 8 bits, thereby conserving resources for later stages in

the processing pipeline.

Fig. 9. Architecture of NMS.

4.5 Adaptive Threshold Computation

Adaptive thresholding is a crucial component in the enhanced Canny edge detection approach

proposed. Following the Non-Maximum Suppression (NMS) stage, Otsu’s method is employed

to dynamically determine the optimal threshold values. Since thresholding requires analysis of

the entire image’s data, the NMS output is cached with an SDRAM controller as an interim

step to this decoding. The histogram of the NMS data is calculated so that one can run Otsu’s

algorithm to determine an adaptive threshold value. Once this threshold is achieved, the system

reads the NMS data from the SDRAM and compares it with the determined threshold,

representing the data in binary. Then, hysteresis thresholding is enforced on the edge detection

result. This order makes it possible to support flexible threshold according to an image

property, enhancing the edge detection accuracy and robustness.

4.5.1 32-Bit Logarithmic Arithmetic Unit

The LNS is investigated as an alternative to reduce arithmetic operations and computational

complexity [26–28]. The system is composed of a number of key modules: a 32-bit

CLZ/Leading Zero unit, a BSH, a CGen and a xFPGen. The input number in the Qm. n format

to a fixed Q6. 26 formats by logarithm transfer. The number of leading zeros is encoded in the

CLZ block and exported as a five-bit result which is utilized to obtained both the characteristic

value and the shift amount in the Barrel Shifter. The Barrel Shifter then modifies the mantissa

range for Qm. n to the Q6. 26 formats. Then the fractional part is generated by the FPGen, where

the characteristic part is generated by the CGen. The resulting two parts are then added together

to create the overall output of the log conversion. Fig 10 shows the Architecture of logarithmic

converter.

Fig. 10. Architecture of logarithmic converter.

5 Simulation Results

5.1 Existing System

Fig 11 and fig 12 shows the Schematic Diagram of Existing Canny Edge RTL design.

Fig. 11. Schematic Diagram of Existing Canny Edge RTL design.

Fig. 12. Schematic Diagram of Existing Canny Edge RTL design.

Fig 13 shows the Area Utilization of Existing Canny Edge RTL design.

Fig. 13. Area Utilization of Existing Canny Edge RTL design.

Fig 14 shows the Delay of Existing Canny Edge RTL design.

Fig. 14. Delay of Existing Canny Edge RTL design.

Fig 15 shows the Power consumption of Existing Canny Edge RTL design.

Fig. 15. Power consumption of Existing Canny Edge RTL design.

Fig 16 shows the Output Wave form for Existing Canny Edge RTL design

Fig. 16. Output Wave form for Existing Canny Edge RTL design.

5.2 Proposed Method

Fig 17 and fig 18 shows the Schematic Diagram of Proposed Canny Edge RTL design.

Fig. 17. Schematic Diagram of Proposed Canny Edge RTL design.

Fig. 18. Schematic Diagram of Proposed Canny Edge RTL design.

Fig 19 shows the Area Utilization of Proposed Canny Edge RTL design.

Fig. 19. Area Utilization of Proposed Canny Edge RTL design.

Fig 20 shows the Delay of Proposed Canny Edge RTL design.

Fig. 20. Delay of Proposed Canny Edge RTL design.

Fig 21 shows the Power consumption of Proposed Canny Edge RTL design.

Fig. 21. Power consumption of Proposed Canny Edge RTL design.

Fig 22 shows the Output Wave form for Proposed Canny Edge RTL design.

Fig. 22. Output Wave form for Proposed Canny Edge RTL design.

5.3 Results of Discussions

Table 1. Results Comparison.

S. No Parameter Existing Method Proposed Method

1 Area in LUT’s 1854 889

2. Delay (in ns) 3.741 3.897

3.
Max. Frequency (in

MHz)
288.085 256.614

4
Power Delay Product

(PDP) (in W/sec)
1063.790 1081.846

5. Power (in Milli Watts) 284.36 277.61

The table 1 above presents a comparative evaluation of device performance for various designs

following synthesis on the Xilinx Vertex7 – 7vx485tfgg1157 FPGA board.

The proposed architectures were developed using Verilog HDL and simulated with grayscale

images of varying dimensions, employing a fixed threshold value for testing purposes.

Fig. 23. Corresponding edge images by hardware and software package implementation.

Fig 23 illustrates an 8-bit input image alongside the resulting edge-detected outputs produced

by software implementations. A threshold intensity of 27 was consistently applied in both

methods. The design functions at a clock frequency of 100 MHz, and Table 1 provides a

comparison of execution times across different architectures. According to synthesis results, the

design utilized 889 logic cells and covered an area of approximately 1951.288 μm².

Additionally, it consumed about 277.61 mW of power, with a propagation delay measured at

9.599 ns. Fig. 24 shows the Performance of Existing and Proposed methods.

5.4 Performance Comparison

Fig. 24. Performance of Existing and Proposed methods.

Area
in …

Dela
y (…

Max
.…

Pow
er…

Pow
er…

Existing Method
(Canny Edge
Detection)

1854 6.061288.0851063.79284.36

Proposed

010002000

Performance
comparision of Existing
and Proposed Method

6 Conclusion

This study presents an in-depth implementation of the Canny Edge Detection Algorithm on an

FPGA using a pipeline architecture. Comparative analysis shows that the proposed design

substantially lowers the delay, achieving a minimum clock period of 3.897ns (corresponding to

a maximum frequency of 256.614MHz) while using only 889 Slice LUTs on the FPGA model

7vx485tffg1157-3. This represents a significant enhancement compared to the earlier design,

which experienced a delay of 6.061ns (maximum frequency of 165.003MHz) and consumed

1908 Slice LUTs on the same device. These improvements in timing performance and resource

efficiency highlight the effectiveness of the optimized pipeline architecture, making it well-

suited for real-time edge detection tasks on FPGA platforms. The findings clearly demonstrate

that the refined pipeline structure is key to accelerating edge detection without compromising

hardware utilization.

7 Future Scope

Future research may aim at further optimizing the Canny Edge Detection Algorithm to better

align with FPGA hardware capabilities. This could involve fine-tuning specific stages of edge

detection or exploring alternative algorithms that have the potential to deliver even greater

performance enhancements.

References

[1] Kashyap, Y., Vyas, A., Raghuwanshi, R., & Sharma, R. (2015). Edge detection using Sobel

method with median filter. International Journal of Modern Trends in Engineering and

Research, 2(5), 372–378. Retrieved from https://scispace.com/pdf/edge-detection-using-sobel-

method-with-median-filter-468qtersj7.pdf

[2] Mohammad, E. J., JawadKadhim, M., Hamad, W. I., & Helyel, S. Y. (2014). Study Sobel edge

detection effect on the image edges using MATLAB. International Journal of Innovative

Research in Science, Engineering and Technology, 3(3). Retrieved from

https://www.ijirset.com/upload/2014/march/68_Study.pdf

[3] Jadhav, G., Yadav Jada, S., Triveni, R., & Khan, S. I. (2021, July). FPGA based edge detection

using Sobel filter. International Journal for Research in Applied Science & Engineering

Technology (IJRASET), 9(VII), 145–147. https://doi.org/10.22214/ijraset.2021.36276

[4] Elham, J. M., Ahmed, J. M., Zainab, J. M., et al. (2013). Design study Sobel edge detection.

International Journal of Application or Innovation in Engineering & Management (IJAIEM),

2(12), 248–253. Retrieved from https://studylib.net/doc/13268361/international-journal-of-

application-or-innovation-in-

[5] Brown, S. D., Francis, R. J., Rose, J., & Vranesic, Z. G. (2012). Field-programmable gate

arrays. Springer. https://doi.org/10.1007/978-1-4615-3572-0

[6] Anusha, G., JayaChandra Prasad, T., & SatyaNarayana, D. (2012). Implementation of Sobel

edge detection on FPGA. International Journal of Computer Trends and Technology, 3(3).

Retrieved from https://www.ijcttjournal.org/Volume3/issue-3/IJCTT-V3I3P127.pdf

[7] Abbasi, T. A., & Abbasi, M. U. (2007). A proposed FPGA-based architecture for Sobel edge

detection operator. Journal of Active and Passive Electronic Devices, 2, 271–277. Retrieved

fromhttps://www.researchgate.net/publication/254846702_A_Proposed_FPGA_Based_Archite

cture_for_Sobel_Edge_Detection_Operator

[8] Gonzalez, R. C., Woods, R. E., & Eddins, S. L. (2020). Digital image processing using

MATLAB. MathWorks. Retrieved from https://www.mathworks.com/academia/books/digital-

image-processing-using-matlab-gonzalez.html

https://scispace.com/pdf/edge-detection-using-sobel-method-with-median-filter-468qtersj7.pdf
https://scispace.com/pdf/edge-detection-using-sobel-method-with-median-filter-468qtersj7.pdf
https://www.ijirset.com/upload/2014/march/68_Study.pdf?utm_source=chatgpt.com
https://doi.org/10.22214/ijraset.2021.36276
https://studylib.net/doc/13268361/international-journal-of-application-or-innovation-in-
https://studylib.net/doc/13268361/international-journal-of-application-or-innovation-in-
https://doi.org/10.1007/978-1-4615-3572-0
https://www.ijcttjournal.org/Volume3/issue-3/IJCTT-V3I3P127.pdf
https://www.researchgate.net/publication/254846702_A_Proposed_FPGA_Based_Architecture_for_Sobel_Edge_Detection_Operator
https://www.researchgate.net/publication/254846702_A_Proposed_FPGA_Based_Architecture_for_Sobel_Edge_Detection_Operator
https://www.mathworks.com/academia/books/digital-image-processing-using-matlab-gonzalez.html
https://www.mathworks.com/academia/books/digital-image-processing-using-matlab-gonzalez.html

[9] Z. Xiangxi, Z. Yonghui, Z. Shuaiyan and Z. Jian, "FPGA implementation of edge detection for

Sobel operator in eight directions," 2018 IEEE Asia Pacific Conference on Circuits and Systems

(APCCAS), Chengdu, China, 2018, pp. 520-523, doi: 10.1109/APCCAS.2018.8605703.

[10] University of Tartu. Introduction to image processing (Textbook 1). Retrieved from

https://sisu.ut.ee/imageprocessing/1-2/

[11] Gonzalez, R. C., & Woods, R. E. (2018). Digital image processing (4 e.). Pearson. Retrieved

from https://www.mathworks.com/academia/books/digital-image-processing-gonzalez.html

[12] “Xilinx Products” https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-

fpga.html

[13] DigilentZybo Z-10 Product Information” https://www.xilinx.com/products/boards-and-kits/1-

pukimv.html.

https://sisu.ut.ee/imageprocessing/1-2/
https://www.mathworks.com/academia/books/digital-image-processing-gonzalez.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/silicon-devices/fpga/what-is-an-fpga.html
https://www.xilinx.com/products/boards-and-kits/1-pukimv.html
https://www.xilinx.com/products/boards-and-kits/1-pukimv.html

