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Abstract. The Canny edge detection algorithm is one of the most widely used methods for 

edge detection due to its superior performance. However, it is a complex and time-

consuming process that also has a high hardware cost. In addition, most existing 

implementations use a fixed pair of high and low threshold values for all input images. 

Such fixed thresholds cannot automatically adapt to changes in the external detection 

environment, resulting in decreased performance. To address these issues, this paper 

proposes an improved Canny algorithm. It employs the Sobel operator and approximation 

methods to calculate the gradient magnitude and direction, thereby replacing complex 

operations and reducing hardware cost. Otsu’s algorithm is introduced to adaptively 

determine the image threshold. Since Otsu’s algorithm involves division operations that 

are slow and inefficient, this paper incorporates optimizations to improve efficiency. An 

optimized pipeline architecture is implemented for the Canny edge detection algorithm on 

an FPGA (Field Programmable Gate Array). The proposed method significantly enhances 

performance compared to the conventional approach, specifically on the FPGA device 

7vx485tffg1157-3. The existing method, which used the conventional Canny algorithm 

with a pipeline architecture, achieved a delay of 6.061 ns (Maximum Frequency: 165.003 

MHz) and consumed 1,908 Slice LUTs. In contrast, the proposed method reduces the delay 

to 3.897 ns (Maximum Frequency: 256.614 MHz) while utilizing only 889 Slice LUTs on 

the same FPGA device. These improvements are attributed to the optimized pipeline 

architecture, which streamlines data flow and computational stages. As a result, the 

proposed design demonstrates notable gains in both speed and resource utilization without 

compromising the accuracy of edge detection. 

Keywords: Image processing, Canny edge detection algorithm, FPGA, Otsu’s algorithm, 

logarithm approximation etc. 

1 Introduction 

Image processing is an essential topic used in medical diagnosis, computer vision, satellite 

picture and video surveillance. Among the various image-processing problems, edge detection 

is considered as one of the most significant processes because to determine object boundaries 

would help separate objects from backgrounds and detect intensity transitions. The Canny Edge 

Detection Algorithm One of the most widely used and successful algorithms is developed by 

John Canny in 1986. It became popular due to its good tradeoff between noise cancelation, 
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localization and edge detection. Nevertheless, the Canny approach is relatively computational 

costly and not well suited for real-time implementation on traditional processors. 

FPGAs have been put into service to ameliorate the limitation. In particular, FPGAs have the 

better power-performance when dealing with real-time image processing due to their ability of 

parallel computation and extreme low latency. However, the complexity of Canny algorithm 

such as square root and arctangent operations turns out to be challenging for its implementation 

on FPGA with limited resources. Moreover, it has fixed high and low thresholds of hysteresis 

that may perform poorly on images taken in different illuminations and contrasts. 

To tackle these problems, we introduce an improved Canny Edge Detection Algorithm aimed 

at the FPGA-based realization using XILINX ISE as its software simulator. The advancements 

which include gradient magnitude and direction computation with both the Sobel operator and 

approximations, reduce computational over-heads. The Sobel filters are used to approximate 

computationally intensive mathematical operations, which lightens the computational load 

while preserving detection quality. Moreover, adaptive thresholding is achieved by using an 

efficient implementation of Otsu’s approach with dynamic thresholds depending on the content 

of the processed image. This one minimizes expensive divisions as well, with benefit to speed 

and resources. 

The proposed system uses the pipelined architecture in order to improve performance by 

allowing the parallel processing of blocks at different stages. This method increases throughput 

and decreases delay, allowing real-time processing of high-resolution images. The architecture 

was implemented and tested on Xilinx Virtex-7 FPGA (device: 7vx485tffg1157-3). The 

previous Canny approach exhibits better delay (3.1865 ns) at expense of a large number of Slice 

LUTs consumption (1324) compared with the classical one, also it needs an enormous area size 

(29162 slices), since we proposed method is more efficient in the sense that outperformed both 

traditional and previous one obtaining best results in terms of power with 3.897 ns of latency 

and consuming only 889 Slice LUTs for 2 steps implementing. These enhancements just prove 

the worth of hardware issues and algorithmic decision. 

An FPGA-based parallel algorithm architecture is proposed as a computation acceleration and 

reconfigurable platform, which can achieve speedup more than twice the conventional solutions, 

and possesses reconfiguration facility, low-power property, and inter-image consistence. 

Applications that can be benefited from this system range from autonomous navigation, online 

surveillance, medicine image and embedded vision systems. The pipeline learning architecture 

and adaptive thersholding improve the robustness for different lighting, whereas approximations 

ease the hardware complexity with marginal accuracy penalizations. Since it is IP based, it can 

be easily implemented into more comprehensive image processing systems and expanded for 

future architectures. 

The contributions of this paper can be summarized as follows: 

• An approximation procedure which enables estimating both gradients magnitude and 

orientation. 

• An adaptive threshold calculation of Otsu algorithm. 



• A 32-bit logarithmic arithmetic unit for reducing the complexity of the Otsu 

thresholding technique. 

The paper is arranged as follows: 

In Section 2, a brief review of related works is provided, Section 3 discusses the existing 

methods, Section 4 states the proposed method, Section 5 presents and compares the simulation 

results for existing and proposed methods, and Section 6 concludes the paper. 

2 Literature Review 

2.1 Edge Detection Techniques 

Kashyap et al. [15] also developed an edge detection method based on Sobel operator with 

median filter to enhance the noise robustness of images. Their result further recommands the 

merit of preprocessing using for performance boost on noisy environment [1]. Similarly, 

Mohammad et al. (2021), the Sobel edge detection method was tested with MATLAB and 

demonstrated how image features affect the sharpness of edges and efficiency of detection [2]. 

Elham et al. (2013) also applied the design study to Sobel edge detection, dealing with algorithm 

behavior on detecting image matching boundaries [4]. Meanwhile, Gonzalez et al. (2015) 

presented an extensive background for digital image processing, including classical edge 

detection models that would later act as the basis of FPGA implementations [8]. 

2.2 FPGA-Based Implementations of Edge Detection 

Khidhir and Abdullah (2022) proposed an FPGA-based Sobel filter architecture with enhanced 

processing speed in comparison to the software approach used, with a conclusion that based on 

real-time image applications, FPGA is appropriate platform [3]. Anusha et al. (2012) then 

applied Sobel edge detection on FPGA, and demonstrated that hardware parallelism can support 

high-speed image processing [6]. 

In Abbasi and Abbasi (2007), an optimal FPGA architecture for the Sobel operator was proposed 

to keep resources highly utilized while producing correct results [7]. Xiangxi et al. (2018) 

expanded Sobel-based FPGA implementation to eight directions so that the accuracy and 

robustness of edge detection is improved in complicated images [9]. 

Brown et al. (2012) In his work, he introduces an in-depth study of the FPGAs and their 

architecture and their reconfigurability as they can be adapted to digital signal processing 

applications such as image edge detection [5]. 

2.3 Image Processing Fundamentals 

In the textbook they authored, Gonzalez and Woods (2020) discussed fundamental concepts of 

digital image processing such as filtering, enhancing and edge detection, which are used in the 

theory design of FPGA [11]. 



Furthermore, the University of Tartu’s Introduction to Image Processing is a pedagogical tool 

for basic methods (like filters and edge enhancement), as they provide theory and practical 

examples [10]. 

2.4 FPGA Tools and Hardware Platforms 

The Xilinx resources [12] provide practical context for implementing image processing 

algorithms. The official Xilinx documentation explains FPGA devices and their applications, 

while the Digilent Zybo Z-10 [13] board information gives insight into hardware platforms often 

used for prototyping such designs. 

3 Existing Method 

As we know, the Canny edge detection algorithm is a standard method for edge detection, 

introduced by Canny, designed to compute the optimal edge detection by locating step edges in 

the presence of white Gaussian noise. We describe in Fig 1 for an input 𝑀 × 𝑀 size image for 

n-bit pixel depth, the algorithm makes several crucial steps. Firstly, the horizontal (Gx) and 

vertical (Gy) gradients, for each pixel, are computed by the convolution be applied gradient 

masks. Then, the gradient magnitude (G) and direction (θG) which describe the strength and 

orientation of the edge are obtained from these gradient components. The algorithm then 

performs Non-Maximum Suppression (NMS) to the thin edges by suppressing non-maximal 

points on the gradient direction, which are candidate edges. Then thresholding is applied by 

thresholding gradient magnitudes to high and low threshold values calculated from the gradient 

histogram of the image to make significant edge pixels. In the end, hysteresis thresholding 

connects edge segments by validating pixels that are between those thresholds, suppressing 

additional responses made by noises or lightening transitions. Although this approach works 

well in edge detection and noise elimination, it is computationally demanding especially for 

real time processing. 

 

Fig. 1. Block diagram of the canny edge detection algorithm. 



4 Proposed Method 

4.1 Improved Canny Edge Detection Algorithm 

Thresholding to specify edges in hardware: In the hardware- based Canny’s edge detection, the 

thresholding procedure holds an important role and basically, thresholding methods are 

categorized into two classes: fixed and adaptive. Hard thresholding drastically reduces the 

system design and hardware; however, it is less adaptable. It usually has to be recalibrated after 

each change of occular movements or specific aspect of external environmental features as 

object properties or lighting condition changes, and is not real timely appropriate. Such a 

limitation can be resolved if adaptive threshold is used since the algorithm will be able to 

automatically adapt to the changes in environmental conditions by itself. 

In this work three modifications are proposed to make the Canny edge detector more hardware 

friendly. First, we incorporate Otsu's method for adaptive threshold selection so that the 

algorithm can automatically find the best threshold value for the image being processed. Then, 

a simplified computation for gradient magnitude/direction is employed to reduce the use of 

complex mathematical operations (e.g., square root, trigonometric functions) for lower 

hardware complexity. Third, we utilize logarithmic approximation to derive a simpler 

formulation of Otsu’s thresholding step, which often requires expensive divisions. These 

improvements collectively help to refactor the algorithm for real-time processing on FPGA 

platforms. Fig 2 shows the block diagram of the enhanced Canny edge detection flow. Each of 

these changes is described in further detail in the subsequent sections. 

 

Fig. 2. Architecture of improved canny edge detection. 

4.2 Gradient Computation Based on The Sobel Operator  

In this project, the Sobel operator is chosen as the gradient mask for its combined ability to 

perform differentiation and smoothing, which helps reduce noise while emphasizing edge 



regions. This operator assigns higher weights to pixels near edges, improving the detection of 

important intensity changes. The gradient is computed using a 3 × 3-pixel window, as shown in 

Fig 3, where two Sobel kernels—one for horizontal (x) direction and one for vertical (y) 

direction—are applied. The horizontal and vertical gradients, denoted as fx(x,y) and fy(x,y), are 

calculated by convolving these kernels with the corresponding pixel values, using the equations 

given in (1) and (2). 

To efficiently access pixel values for the convolution, a Line Buffer architecture is implemented, 

which stores the current and previous rows of pixel data using two FIFO modules, as illustrated 

in Fig 4. This buffering mechanism allows the system to retrieve the necessary 3 × 3 

neighborhood pixels without delay during image scanning. 

𝑓𝑥(𝑥, 𝑦) = (𝑝2 − 𝑝0) + 2(𝑝5 − 𝑝3) + (𝑝8 − 𝑝6)                                                                      (1) 
 

𝑓𝑦(𝑥, 𝑦) = (𝑝6 − 𝑝0) + 2(𝑝7 − 𝑝1) + (𝑝8 − 𝑝2)                                                                      (2) 

 

 

Fig. 3. Sub-window of an image and Sobel operator kernel. 

Once pixels are retrieved, the gradient components fx(x,y) and fy(x,y), are computed through 

hardware modules designed to perform weighted sums using multipliers and adders, as depicted 

in Fig 5 for the horizontal gradient. The vertical gradient calculation uses a similar architecture 

with different kernel weights. Both gradient outputs are represented as signed numbers, where 

the most significant bit (MSB) indicates the sign of the gradient value, essential for later stages 

such as direction calculation and edge thinning. 

 

Fig. 4. Architecture of Line Buffer. 



This combination of the Sobel operator and the line buffer design provides an efficient balance 

between computational complexity and hardware resource usage, enabling accurate and real-

time gradient computation as a crucial step in the edge detection process. 

 

Fig. 5. Architecture of fx(x, y). 

4.3 Low Complexity Gradient Magnitude and Direction Calculation  

In image processing, accurately determining the gradient magnitude and direction at each pixel 

is critical for effective edge detection. The gradient magnitude represents the strength or 

intensity of the edge at a particular pixel location, while the gradient direction provides 

information about the orientation of the edge. Conventionally, the gradient magnitude and 

direction are computed using well-known mathematical formulas, which involve square root 

and arctangent operations. Specifically, the magnitude at pixel coordinates (x, y) is calculated 

as the square root of the sum of squares of the horizontal and vertical gradients. 

𝑚𝑎𝑔(𝑥, 𝑦) = √𝑓𝑥(𝑥, 𝑦)
2 + 𝑓𝑦(𝑥, 𝑦)

2                                                                                       (3) 

θ(𝑥, 𝑦) = arctan (
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
)                                                                                                         (4) 

To mitigate these issues, this study adopts a simplified approach for gradient magnitude 

calculation that avoids expensive square root operations. Instead of computing the exact 

Euclidean magnitude, we approximate the gradient magnitude by summing the absolute values 

of the horizontal and vertical gradient components, as suggested in several prior works. This 

approximation allows the magnitude calculation expressed as, 

𝑚𝑎𝑔(𝑥, 𝑦) = |𝑓𝑥(𝑥, 𝑦)| + |𝑓𝑦(𝑥, 𝑦)|                                                                                       (5)        

While the simplification of magnitude calculation is straightforward, determining the gradient 

direction is more challenging. Traditional methods often use the Coordinate Rotation Digital 

Computer (CORDIC) algorithm to calculate the arctangent function, which is required to find 

the gradient orientation. Although the CORDIC algorithm is a hardware-friendly iterative 

method for computing trigonometric functions, it requires multiple clock cycles and iterations 

to reach the desired accuracy, leading to increased hardware complexity and latency. These 

factors make CORDIC less suitable for real-time image processing applications where speed 

and resource efficiency are critical. 



To overcome the limitations of the CORDIC method, this project implements a novel, shift-

based technique for gradient orientation calculation. Instead of calculating the precise arctangent 

value, the orientation space is divided into eight distinct zones, each representing a range of 

edge directions distributed evenly across 360 degrees. Fig 6 illustrates these eight orientation 

zones, with each zone corresponding to a specific angular sector. This method approximates the 

continuous range of gradient directions by categorizing them into discrete intervals, 

significantly simplifying the hardware implementation. Fig.7 shows the Architecture of the 

gradient magnitude calculation and quadrant flag computation. 

 

Fig. 6. Eight zones of gradient orientation. 

To identify the correct zone for θ (x, y), we adjust θ (x, y) to tanθ(x, y), where each zone 

corresponds to a specific range between two angle values. For simplicity, Equation (4) can be 

rewritten as follows: 

tan θ (𝑥, 𝑦) =
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
                                                                                                                         (6) 

The value of tanθ(x, y) is given by the Equation (7). 

tan θ𝑗 (𝑥, 𝑦) ≤ tan θ (𝑥, 𝑦) < tan θ𝑗+1 (𝑥, 𝑦)                                                                                 (7) 

 

Fig.7. Architecture of the gradient magnitude calculation and quadrant flag computation. 

Rewriting the Equation (7) gives us Equation (8) 



tan θ𝑗 (𝑥, 𝑦) ≤
𝑓𝑦(𝑥,𝑦)

𝑓𝑥(𝑥,𝑦)
< tan θ𝑗+1 (𝑥, 𝑦)                                                                                         (8) 

The condition derived from Equation (8) is given in Equation (9) 

𝑓𝑥(𝑥, 𝑦) ∗ tan θ𝑗 (𝑥, 𝑦) ≤ 𝑓𝑦(𝑥, 𝑦) < 𝑓𝑥(𝑥, 𝑦) ∗ tan θ𝑗+1 (𝑥, 𝑦)                                                   (9) 

 The value of zone is determined by satisfying the condition specified in Equation (9). Fig 8 

illustrates the architecture used to calculate fx(x, y) * tan22.5° and to identify the corresponding 

direction of the zone. 

 

Fig. 8. Architecture to find the direction. 

4.4 Non-Maximum Suppression  

Non-maximum suppression (NMS) is a technique used to thin detected edges by preserving only 

the local maxima in the direction of the image gradient. The architecture for NMS is illustrated 

in Fig 9. In this process, a selector determines the two neighboring pixels along the gradient 

direction relative to the current pixel (which is the center pixel in a 3 × 3 neighborhood), denoted 

as pixels a and b. For gradient directions labeled 1 or 8, pixels a and b correspond to positions 

g3 and g5; for directions 2 or 3, they are g0 and g8; directions 4 or 5 correspond to g2 and g6; 

and directions 6 or 7 correspond to g1 and g7. A comparator then evaluates whether the current 

pixel value (g4) is greater than both neighboring pixels a and b to determine if it is a local 

maximum. If it is the local maximum, the pixel is retained; otherwise, it is suppressed by setting 

its value to zero. To optimize hardware usage, although the pixel intensity g4 can be represented 



with up to 10 bits, the value is limited to 8 bits, thereby conserving resources for later stages in 

the processing pipeline. 

 

Fig. 9. Architecture of NMS. 

4.5 Adaptive Threshold Computation 

Adaptive thresholding is a crucial component in the enhanced Canny edge detection approach 

proposed. Following the Non-Maximum Suppression (NMS) stage, Otsu’s method is employed 

to dynamically determine the optimal threshold values. Since thresholding requires analysis of 

the entire image’s data, the NMS output is cached with an SDRAM controller as an interim 

step to this decoding. The histogram of the NMS data is calculated so that one can run Otsu’s 

algorithm to determine an adaptive threshold value. Once this threshold is achieved, the system 

reads the NMS data from the SDRAM and compares it with the determined threshold, 

representing the data in binary. Then, hysteresis thresholding is enforced on the edge detection 

result. This order makes it possible to support flexible threshold according to an image 

property, enhancing the edge detection accuracy and robustness. 

4.5.1 32-Bit Logarithmic Arithmetic Unit 

The LNS is investigated as an alternative to reduce arithmetic operations and computational 

complexity [26–28]. The system is composed of a number of key modules: a 32-bit 

CLZ/Leading Zero unit, a BSH, a CGen and a xFPGen. The input number in the Qm. n format 

to a fixed Q6. 26 formats by logarithm transfer. The number of leading zeros is encoded in the 

CLZ block and exported as a five-bit result which is utilized to obtained both the characteristic 

value and the shift amount in the Barrel Shifter. The Barrel Shifter then modifies the mantissa 

range for Qm. n to the Q6. 26 formats. Then the fractional part is generated by the FPGen, where 

the characteristic part is generated by the CGen. The resulting two parts are then added together 

to create the overall output of the log conversion. Fig 10 shows the Architecture of logarithmic 

converter. 



 

Fig. 10. Architecture of logarithmic converter. 

5 Simulation Results 

5.1 Existing System 

Fig 11 and fig 12 shows the Schematic Diagram of Existing Canny Edge RTL design.  

 

Fig. 11. Schematic Diagram of Existing Canny Edge RTL design. 



 

Fig. 12. Schematic Diagram of Existing Canny Edge RTL design. 

Fig 13 shows the Area Utilization of Existing Canny Edge RTL design. 

 

Fig. 13. Area Utilization of Existing Canny Edge RTL design. 

Fig 14 shows the Delay of Existing Canny Edge RTL design. 

 

Fig. 14. Delay of Existing Canny Edge RTL design. 

Fig 15 shows the Power consumption of Existing Canny Edge RTL design. 



 

Fig. 15. Power consumption of Existing Canny Edge RTL design. 

Fig 16 shows the Output Wave form for Existing Canny Edge RTL design 

 

Fig. 16. Output Wave form for Existing Canny Edge RTL design. 

5.2 Proposed Method 

Fig 17 and fig 18 shows the Schematic Diagram of Proposed Canny Edge RTL design. 

 

Fig. 17. Schematic Diagram of Proposed Canny Edge RTL design. 



 

Fig. 18. Schematic Diagram of Proposed Canny Edge RTL design. 

Fig 19 shows the Area Utilization of Proposed Canny Edge RTL design. 

 

Fig. 19. Area Utilization of Proposed Canny Edge RTL design. 

Fig 20 shows the Delay of Proposed Canny Edge RTL design. 

 

Fig. 20. Delay of Proposed Canny Edge RTL design. 

Fig 21 shows the Power consumption of Proposed Canny Edge RTL design. 



 

Fig. 21. Power consumption of Proposed Canny Edge RTL design. 

Fig 22 shows the Output Wave form for Proposed Canny Edge RTL design. 

 

Fig. 22. Output Wave form for Proposed Canny Edge RTL design. 

5.3 Results of Discussions 

Table 1. Results Comparison. 

S. No Parameter Existing Method Proposed Method 

1 Area in LUT’s 1854 889 

2. Delay (in ns) 3.741 3.897 

3. 
Max. Frequency (in 

MHz) 
288.085 256.614 

4 
Power Delay Product 

(PDP) (in W/sec) 
1063.790 1081.846 

5. Power (in Milli Watts) 284.36 277.61 

 



The table 1 above presents a comparative evaluation of device performance for various designs 

following synthesis on the Xilinx Vertex7 – 7vx485tfgg1157 FPGA board. 

The proposed architectures were developed using Verilog HDL and simulated with grayscale 

images of varying dimensions, employing a fixed threshold value for testing purposes. 

 

Fig. 23. Corresponding edge images by hardware and software package implementation. 

Fig 23 illustrates an 8-bit input image alongside the resulting edge-detected outputs produced 

by software implementations. A threshold intensity of 27 was consistently applied in both 

methods. The design functions at a clock frequency of 100 MHz, and Table 1 provides a 

comparison of execution times across different architectures. According to synthesis results, the 

design utilized 889 logic cells and covered an area of approximately 1951.288 μm². 

Additionally, it consumed about 277.61 mW of power, with a propagation delay measured at 

9.599 ns. Fig. 24 shows the Performance of Existing and Proposed methods. 

5.4 Performance Comparison  

 

Fig. 24. Performance of Existing and Proposed methods. 
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6 Conclusion 

This study presents an in-depth implementation of the Canny Edge Detection Algorithm on an 

FPGA using a pipeline architecture. Comparative analysis shows that the proposed design 

substantially lowers the delay, achieving a minimum clock period of 3.897ns (corresponding to 

a maximum frequency of 256.614MHz) while using only 889 Slice LUTs on the FPGA model 

7vx485tffg1157-3. This represents a significant enhancement compared to the earlier design, 

which experienced a delay of 6.061ns (maximum frequency of 165.003MHz) and consumed 

1908 Slice LUTs on the same device. These improvements in timing performance and resource 

efficiency highlight the effectiveness of the optimized pipeline architecture, making it well-

suited for real-time edge detection tasks on FPGA platforms. The findings clearly demonstrate 

that the refined pipeline structure is key to accelerating edge detection without compromising 

hardware utilization. 

7 Future Scope 

Future research may aim at further optimizing the Canny Edge Detection Algorithm to better 

align with FPGA hardware capabilities. This could involve fine-tuning specific stages of edge 

detection or exploring alternative algorithms that have the potential to deliver even greater 

performance enhancements. 
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