
Predicting Agricultural Success with Machine Learning 

K. Chinnathambi1, Rajyalakshmi Kandimalla2 and Srihari Rayala3 

{ drchinnathambik@veltech.edu.in1, rajyalakshmi12@gmail.com2, rayalasrihari9@gmail.com3 } 

Assistant Professor, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and 

Technology, Avadi, Chennai, Tamil Nadu, India1 

Student, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai, 

Tamil Nadu, India2, 3 

Abstract. This report applies the KNN algorithm, a simple yet effective machine 

learning method, to predict agricultural success. Through historical agricultural data, 

weather information, soil conditions, and other related data, the KNN model forecasts 

crop yields with high precision. This forecast will serve as a guide for farmers and 

industries in the agriculture sector to take data driven decisions to efficiently manage 

resources and increase productivity. For this purpose, we use KNN algorithm, which is a 

very straight forward and effective machine learning algorithm for classification and 

regression studies, to establish a model for crop yield prediction under different 

environmental and agricultural conditions. The research demonstrates the application of 

machine learning mainly K-nearest neighbours in improving agricultural practice and 

ensuring food security. 
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1 Introduction 

Agriculture is the foundation of global food security, and accurate crop yield estimation is 

essential for improving efficiency and resource utilization. Machine learning (ML) methods, 

particularly the K-Nearest Neighbours (KNN) algorithm, have demonstrated strong potential 

in predicting yields by incorporating environmental factors such as weather conditions, soil 

characteristics, and historical records. Previous studies confirm that ML-based approaches can 

support farmers with reliable, data-driven decision-making. 

KNN is a non-parametric, instance-based learning algorithm valued for its simplicity and 

effectiveness. It is frequently applied to large-scale agricultural datasets, where its flexibility 

in handling diverse input variables enables accurate predictions. This study highlights the 

application of KNN in crop yield forecasting, helping farmers select suitable agricultural 

practices and allocate resources efficiently across different climatic regions. Such predictive 

models can transform agricultural systems by promoting sustainable methods and contributing 

to long-term food security. 

The strength of KNN lies in its ability to measure the similarity between new and historical 

data. By considering features such as soil type, rainfall, temperature, and crop characteristics, 

the algorithm generates accurate yield predictions that assist farmers in making key decisions 

about planting, irrigation, and resource distribution. Prior research has also shown that KNN 

and other ML models reduce the risk of crop failures and can be retrained to suit specific 
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regional conditions, offering a degree of adaptability that traditional forecasting methods lack. 

In the context of climate change and a growing global population, predictive modelling in 

agriculture is increasingly vital. Techniques such as KNN not only improve yield prediction 

but also support effective resource management. By maximizing productivity while 

minimizing environmental strain, KNN contributes to building resilient and sustainable 

agricultural systems. 

2 System Architecture 

The proposed crop yield prediction model utilizes datasets in comma-separated value (CSV) 

format obtained from official government sources. These datasets include essential 

agricultural features such as temperature, pH levels, rainfall, and nitrogen levels, all of which 

influence crop growth and yield. Presenting the data in a structured format ensures suitability 

for machine learning analysis and model training. By relying on publicly available datasets, 

the system is based on up-to-date and accurate parameters that reflect actual agricultural 

conditions. 

 

The training dataset forms a critical component of the architecture. It enables the model to 

identify patterns and relationships between input features (e.g., soil quality, weather) and the 

output feature (crop yield). Through this process, the model learns how environmental 

variables affect yield and applies that understanding to unseen data. To achieve reliable 

predictions, data preparation steps such as cleaning, handling missing values, and 

standardizing formats are applied. These procedures remove inconsistencies and noise, 

producing a robust dataset that improves model performance. 

 

Information pre-processing further refines the data for analysis. Standardization ensures that 

all features share the same scale, preventing large-scale variables from dominating the 

learning process. The system is configured to process CSV input efficiently, supporting 

accurate interpretation by the KNN model. After pre-processing, the data is merged and 

normalized, allowing the model to provide reliable yield predictions that support agricultural 

planning and decision-making. 

 

Once prepared, the dataset is integrated with the KNN algorithm. The model identifies the 

closest neighbours from the training data and uses their similarity to predict crop yields for 

new inputs. The architecture is designed to handle large datasets and can be extended to 

incorporate additional features or data sources. The final outcome is a refined predictive model 

that delivers actionable insights for crop management, farming practices, and resource 

utilization. 

3 Existing System 

Machine learning is already being used in agriculture for crop yield prediction. Models like 

Random Forest, Gradient Boosting, k-Nearest Neighbour (kNN), and deep learning networks 

are trained on historical yield data, soil characteristics, weather records, and satellite imagery 

[1], [2]. 



An example is YieldNet, which applies deep learning to predict maize and soybean yields 

using remote sensing data [3]. Other studies propose hybrid frameworks combining feature 

selection and optimized ML models to enhance predictive accuracy [1], [4]. Recent works also 

demonstrate improvements through meta-features extracted from kNN regressors [4] and 

hybrid CNN–RNN frameworks for capturing spatiotemporal dependencies [5], as well as 

GNN–RNN approaches to exploit geospatial and temporal data [6]. Overall, climate-smart 

agriculture tools combine weather and soil inputs with ML models to forecast yield outcomes 

for farmers [7]. 

Another category is precision agriculture platforms, which rely on IoT sensors, drones, and 

satellite imagery to collect field-level data. This information feeds into ML systems that 

optimize irrigation schedules, fertilizer application, and pest management [2]. A well-known 

example is the IBM Watson Decision Platform for Agriculture, which integrates AI with IoT 

and weather forecasts to deliver insights [8]. Likewise, John Deere’s See & Spray technology 

uses computer vision and ML to detect weeds and spray herbicides only where needed, 

reducing costs and chemical use [9]. 

Machine learning is also central to crop disease and pest detection. Image recognition models, 

often convolutional neural networks (CNNs), are trained on leaf images to identify diseases at 

early stages [5]. The PlantVillage Nuru app is a practical example, allowing farmers to use 

their smartphones to diagnose crop diseases [10]. Open-source TensorFlow-based models are 

also widely adopted for building real-time diagnostic systems [6]. 

A related system is soil and weather analytics, where predictive ML models integrate soil 

nutrient levels, moisture data, and weather forecasts to recommend farming practices. One 

example is the Microsoft AI Sowing App in India, which advises farmers on the best sowing 

times based on predictive weather and soil data. Other platforms, like AgroAPI services, 

provide soil and climate analytics to support farm planning decisions [7]. 

Finally, there are farm management decision support systems, which serve as AI-powered 

dashboards. These platforms integrate multiple data sources—satellite imagery, soil and 

weather records, and market trends—into actionable insights. For example, CropIn Smart 

Farm helps farmers track farm activities and predict risks, while Agrivi uses data analytics and 

ML to support planning, optimize yields, and forecast profitability [7]. The Fig. 1 shows 

System Architecture. 

 

Fig. 1. System Architecture. 



4 System Modules 

4.1 Data Preprocessing 

Data Pre-processing is an important part of raw data preparation before using them in 

machine learning algorithms. First clean the data by removing missing values, which might 

cause by problems in data acquisition or transmission. Missing data points can be removed, or 

the missing values can be imputed using a method like mean, median, or mode imputation. It 

is necessary to erase duplicated entries to eliminate redundant information which may possibly 

bias the results. After cleaning the data, features can be normalized/scaled as needed to get the 

input features on the same scale. This can be especially helpful for algorithms such as K-

Nearest Neighbours (KNN), which are based model the distances between data points, as 

features with larger scales can unduly affect the distance calculations. Fig 2 shows the Data 

Collection. 

 

Fig. 2. Data Collection. 

Intuitively, beyond scaled numerical features, categorical representations, such as type of crop 

or soil condition, need to be transformed to something that can be understood by the model. 

One of these popular approaches is one-hot encoding, which converts categorical features into 

columns of 1s and 0s which can work with many machine learning algorithms. Another 

important part of pre-processing is to treat outliers since they maybe scan the performance of 

the model. Outliers can be identified with statistical tests or graphical plots and may be 

subsequently removed or adjusted accordingly with respect to their contribution to the entire 

data distribution. By prepossessing the data, the model can work with high quality and 

structured data which can allow it to learn patterns from the dataset more effectively. 

 



4.2  Feature Selection 

Feature selection refers to the technique of retaining relevant features and eliminating 

irrelevant or redundant features for the model. For crop yield prediction, this might be finding 

out which features, such as temperature, rainfall, soil pH, and nitrogen content, are most 

important for predicting yield. One of the frequent methods employed for feature selection is 

the analysis of correlation, where features highly correlated with the target variable (crop 

yield) are determined. Those features with low correlation or redundancy are commonly 

eliminated to ease the model and avoid overfitting, and thus computational feasibility and 

generalization have been enhanced. 

More robust techniques like Recursive Feature Elimination (RFE) and tree-based algorithms 

like Random Forests can also be utilized for this task. These methods order features by 

influence on the predictive power of the model. In prediction of crop yield, feature selection 

plays a role in to make the model capture the most important variables contributing to building 

the model and increasing the accuracy of the model while application. By discarding irrelevant 

factors, the model is more interpretable and generalizes better on unseen data because it does 

not overfit to noise or irrelevant patterns in the dataset. 

4.3  Split Data 

When the data has been processed and features have been selected, the dataset is divided into 

two separate collections: the training set and the test set. This separation enables it to be 

trained on the training set and tested on the test set, in a way that simulates what the 

performance of the model would be like in new, unseen data. Typically, a ratio of 80% data 

used for training and 20% for testing is used (though not necessarily; this may depend on the 

size of the data). The training data are used to train the model to learn (predict) the mapping 

between the input features (e.g., soil conditions and weather) and the target variable (e.g., crop 

yield), while the test data are used to assess the model’s generalization to new data. 

The breaking down of the data helps to prevent model overfit/underfit, because both training 

and validation data are fed into the model. Overfitting happens when a model gets too good on 

the training set, but its performance on new data deteriorates as the model is only memorizing 

the training data rather than learning generalizable pattern. Various performance metrics 

including MAE, RMSE or R-squared can be calculated to test the model on the test set and 

measure how good the model is in predicting crop yields. This step is essential for evaluating 

the practical utility of the model in the agricultural decision-making system. 

4.4 KNN Model Training 

The K-Nearest Neighbours (KNN) algorithm is a well-known and widely used simple 

machine learning technique for both classification and regression problems. The K Nearest 

Neighbours (KNN) algorithm is used for crop yield prediction where it determines the K-

Nearest data in the training set for a given. 

test case and predicted its yield using the average of those neighbours’ yields. In KNN, the 

principle hyperparameter is K which is the number of neighbours used in prediction. A small 



K has the property that the model will be sensitive to noise, but the predictions will be noisier 

One the other hand, with a larger K the predictions will be smoother as the average would be 

computed over more points. Choosing an appropriate value for K is key to striking a balance 

between model complexity and prediction accuracy. 

The KNN approach which is employed in this work, does not impose any a priori assumption 

about true data distribution, it is very flexible. This property makes it appropriate for crop 

yield prediction, where the relationship between yield and environmental condition may not 

be linear. KNN works especially well with multi-dimensional data as it considers multiple 

variables all at once such as rain, temperature, soil pH and so on. Fig 3 & 4 shows the Source 

Code. The trained KNN model could then be used to predict crop yields for new data points 

by measuring the distance between the new data points and the closest neighbouring data 

points in the training set, in a data-driven and highly robust manner to predict crop yields. 

 

Fig. 3. Source Code. 

 

 

 

 



 

 

Fig. 4. Source Code. 

4.5 Prediction 

Once you have trained the KNN model, you can then make predictions with it on new, unseen 

data points (x_test) such as those from the test set. Prediction is performed by measuring 

distances of the test instance from training instances and predicting the crop yield by the 

average yield obtained from K nearest neighbours. The performance of the model can be 

evaluated by computing several evaluation metrics like Mean Absolute Error (MAE), Root 

Mean Squared Error (RMSE) and R-squared, which reflects the accuracy and stability of 

predictions. Fig 5 shows the Prediction Graph. These metrics can be used to compare between 

models and to help develop an understanding of how well the model is generalizing to new 

data. 

 

Fig. 5. Prediction Graph. 

The final objective of the application of the KNN model for the prediction of crop yield is the 

supply of accurate forecasting to the farmers, which can support them in making decisions 

with regard to crop management, irrigation, and harvesting. Farmers can make maximum use 

of the available resources and mitigate crop failure through forecasting crop yield utilizing 



relevant historical and environmental data. With continued testing and some tuning over time, 

the model can become more accurate and provide useful insights into crop performance under 

different situations. Being able to make an accurate prediction is of crucial importance for 

farmers in order to take data-informed decisions and hence adopt sustainable agriculture. 

5 Results and Discussion 

The K-nearest neighbours (KNN) model was applied to predict crop yield after considering 

environmental factors like temperature, rainfall, soil pH, and nitrogen content. A finely pre-

processed dataset was used to train the model and its performance was then evaluated with 

the RMSE metric. RMSE measures the magnitude of the error (average error) but a lower 

score indicated better prediction accuracy. A RMSE value of 3.5 for instance, means the 

model, on average, is being off by 3.5 units from realizing the yield. This measure makes it 

possible to control the performance of the model and the places it needs to be enhanced. 

One of the most import factors affecting the performance of KNN models is the choice of the 

value of hyperparameter K, which indicates the number of nearest neighbours to be used for 

prediction. If the value of K is small, then the model can lead to overfitting, becoming overly 

sensitive to noise in the training data and does not generalize well on new, unseen data. Or 

conversely, if K is too large, it may cause underfitting where the model is too simple and does 

not capture important patterns in the data. In order to obtain the optimal behaviour, one must 

choose a good K (through experimentation or methods like cross-validation etc). Cross-

validation allows to select the K that minimizes the RMSE and verify that model generalizes 

well to different sets of data. Fig 6 shows the Output. 

 

 

Fig. 6. Output. 



The non- parametric nature of KNN makes it a particularly at- tractive candidate in crop yield 

prediction. In contrast to parametric models, which require a priori assumptions on the 

functional relationship between the input features and the target value, KNN makes no 

assumption regarding the underlying data distribution. This flexibility enables KNN to adjust 

to different data patterns and makes it applicable in complex agricultural situations where the 

relationship between environmental factors and crop yield can be nonlinear. However, even 

though KNN is flexible, it may pose some problems, in particular when dealing with large 

amounts of data, like the need to compute distances between the test point and all training 

points in at the prediction step. The computational burden scales with dataset size and larger 

datasets can result in longer prediction times and higher memory requirements. 

KNN algorithm is also sensitive to feature scaling. So, as KNN computes the distance 

between data points, since larger numerical values tend to overshadow the effect of small 

scaled features, scaling is done so that the effect of each feature can be equally considered. 

The data should then be standardized or normalized before modelling. Without scaling, the 

KNN model may weigh some features too much, it could affect the predictions. Feature scale 

methods, including Min-Max scaling or Z-score normalization, can be used to align all 

variables to same scale such that all features contribute the same in calculations of distance 

and improves the performance of the model. 

In summary, the KNN model has potential to predict crop yield using environmental features, 

but the model is affected by several main factors: \(K\), feature scaling and computation costs. 

With the correct choice of K value and handle issues related to feature scaling properly, you 

now have a great model i.e. KNN model for agriculture yield prediction. Such an efficiency 

may deteriorate as the dataset gets larger, calling for an efficient data processing as well as an 

adoption of more scalable algorithms for large agricultural datasets. Future work may 

consider more complex models or additional data sources like satellite images or real-time 

sensor measurements to further improve the accuracy of crop yield predictions. 

6 Conclusion 

This work demonstrates the effectiveness of the K-Nearest Neighbours (KNN) algorithm in 

predicting crop yield using environmental variables such as temperature, rainfall, soil pH, and 

nitrogen levels. The model, evaluated with Root Mean Squared Error (RMSE), shows reliable 

performance, though its accuracy is highly dependent on the choice of the hyperparameter  

𝐾 

K. Fine-tuning  

𝐾 

K through cross-validation is essential to ensure good generalization and to avoid both 

overfitting and underfitting. 

Despite its advantages, KNN has limitations when applied to large datasets, as distance 

calculations for all training samples increase computational time and resource requirements. 



These challenges are particularly significant in real-time applications, where rapid predictions 

are critical for agricultural decision-making. Furthermore, since KNN relies on distance 

measures, appropriate feature scaling is necessary to prevent certain variables from 

dominating the model and to ensure balanced, unbiased predictions. 

In summary, KNN offers strong potential for crop yield prediction, provided that key 

considerations such as hyperparameter selection, feature scaling, and computational efficiency 

are carefully addressed. Future research may incorporate additional data sources, including 

satellite imagery and sensor-based inputs, to enhance prediction accuracy. Exploring advanced 

machine learning approaches, such as ensemble models and deep learning techniques, could 

further improve scalability and robustness, supporting more accurate and sustainable 

agricultural forecasting. 
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