

Adaptive Budget-Constrained Execution Framework

for Prioritized Regression Test Suites

S. Sowmyadevi1* and Anna Alphy2

{ss2860@srmist.edu.in1*, annaa@srmist.edu.in2}

Department of CSE, SRMIST, Delhi-NCR Campus, Ghaziabad ,201204, Uttar Pradesh, India1, 2

Abstract. In regression testing, executing all test cases is often impractical due to strict

time and resource limitations. This paper presents an adaptive test execution framework

designed to maximize fault detection within constrained resources. The approach

formulates scheduling as a multi-objective optimization problem, aiming to increase

cumulative fault detection while minimizing execution costs. A Multi-Objective Particle

Swarm Optimization (MOPSO) algorithm dynamically generates optimized execution

sequences, with penalties applied to discourage infeasible solutions. An illustrative

example demonstrates how the framework adapts execution plans based on available

resources. Experimental evaluations on benchmark test suites show that the proposed

approach consistently achieves higher fault detection efficiency compared to greedy and

random scheduling strategies. This work contributes a scalable and resource-aware

solution for enhancing quality assurance in real-world regression testing environments.

Keywords: Regression Testing, Test Case Execution, Time Budgeting, Fault Detection,

Optimization.

1 Introduction

Regression testing plays a critical role in ensuring software reliability by verifying that recent

code changes do not introduce new faults into previously validated functionality. As software

systems grow in size and complexity, their associated test suites also expand, making it

impractical to execute all test cases in every development cycle due to time and resource

limitations.

This challenge is particularly evident in agile and continuous integration (CI) environments,

where rapid feedback is essential, and testing resources are often tightly constrained. Traditional

test case prioritization (TCP) techniques attempt to execute the most critical tests first. However,

many methods assume unlimited resources or rely on static priorities. This often leads to

inefficient fault detection and, in practice, may cause testing operations to exceed budgets or

miss critical faults.

Recent advances in optimization algorithms, particularly swarm intelligence techniques, offer

promising solutions. Multi-Objective Particle Swarm Optimization (MOPSO) has demonstrated

strong potential for balancing competing objectives and efficiently navigating complex search

spaces. However, its application to budget-aware regression test scheduling remains

underexplored. To address this gap, we propose an adaptive execution optimization framework

that formulates prioritized test case scheduling as a bi-objective optimization problem. The

framework aims to schedule the prioritized tests within a strict budget constraint to maximize

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358034

mailto:ss2860@srmist.edu.in1*
mailto:annaa@srmist.edu.in2

fault detection effectiveness.

The key contributions of this study are as follows:

• A formal representation of budget-constrained regression test execution as a bi-

objective optimization problem balancing fault detection and execution cost.

• A novel application of MOPSO to dynamically construct optimized test execution

plans under strict resource constraints.

• A comprehensive evaluation using realistic datasets demonstrating superior

performance over random and greedy approaches.

The remainder of this paper is organized as follows: Section 2 reviews related work, Section 3

presents the proposed MOPSO-based framework, Section 4 describes the experimental setup,

Section 5 discusses results and analysis, and Section 6 concludes with future research directions.

2 Related Work

2.1 Test Case Prioritization Techniques

Test case prioritization (TCP) is a major focus of regression testing research, aiming to increase

fault detection efficiency by reordering test execution. Foundational studies introduced

empirical approaches to test case prioritization, demonstrating their ability to detect faults earlier

in the testing process [1], [11]. Early strategies relied heavily on structural coverage metrics

such as statement and branch coverage [3], [4]. Other work leveraged historical fault data to

guide prioritization, improving effectiveness in systems with extensive version histories [5], [6].

2.2 Cost-Aware and Budget-Constrained Regression Testing

Traditional TCP methods often assume virtually unlimited testing resources, which is unrealistic

in modern continuous integration and delivery environments. To address this, cost-aware TCP

approaches were introduced to optimize fault detection within strict execution budgets [7].

Further studies have proposed Pareto-optimal solutions to balance fault detection with execution

costs, enabling more practical trade-offs in resource-constrained testing cycles [2].

2.3 Optimization-Based Execution Scheduling

Search-based software engineering approaches have been widely applied to TCP, using

optimization algorithms such as genetic algorithms, simulated annealing, and multi-objective

particle swarm optimization (MOPSO) to efficiently schedule test execution [6]. Comparative

studies demonstrate that multi-objective optimization strategies outperform single-objective

methods, achieving superior fault detection and cost-effectiveness [3], [10].

2.4 Adaptive and Dynamic Scheduling Techniques

Recent research emphasizes adaptive scheduling strategies that incorporate real-time execution

feedback. Techniques based on reinforcement learning have been explored to dynamically

refine prioritization policies over time [2]. Hybrid approaches combining historical data with

adaptive execution models show potential for improving responsiveness in evolving software

systems.

2.5 Datasets and Benchmarking

Defects4J has become a standard dataset for evaluating TCP, offering real-world faults and

supporting reproducible regression testing experiments [8]. Mutation analysis tools like PIT are

widely used to assess test suite effectiveness through simulated faults [9]. In addition, studies

have underscored the importance of rigorous benchmarking practices, including dependency-

aware test selection and mutation-based evaluation, to ensure reproducibility and practical

applicability [10].

3 Proposed Methodology

This section describes the MOPSO-based framework for balancing fault detection and execution

cost under resource constraints).

3.1 Problem Formulation

Let the set of available test cases be given by T = {t1, t2, . . ., tn}. Each test case ti is associated

with a probability of fault detection fi and an execution cost ci. The testing environment restricts

the total execution cost to a defined budget constraint B. Thus, the scheduling task can be

formulated as a multi-objective optimization problem, aiming to maximize overall fault detection

while minimizing execution cost.

Define a binary decision variable xi:

𝑥𝑖 = {
1, 𝑖𝑓 𝑡𝑒𝑠𝑡 𝑐𝑎𝑠𝑒 𝑡_𝑖 𝑖𝑠 𝑠𝑒𝑙𝑒𝑐𝑡𝑒𝑑 𝑓𝑜𝑟 𝑒𝑥𝑒𝑐𝑢𝑡𝑖𝑜𝑛

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (1)

The objectives are formally stated as:

Maximize Fault Detection:

 Maximize 𝐹 = ∑ 𝑓𝑖𝑥𝑖
𝑛
𝑖=1 (2)

Minimize Execution Cost:

 Minimize 𝐶 = ∑ 𝑐𝑖𝑥𝑖 (3)𝑛
𝑖=1

subject to the budget constraint:

 ∑ 𝑐𝑖𝑥𝑖
𝑛
𝑖=1 ≤ 𝐵 (4)

To illustrate the setup, consider a small example where T = {t1, t2, t3, t4, t5}, with their

respective attributes shown in Table 1.

Table 1. Attributes of Test Cases for Illustrative Example.

Test Case Fault Detection Likelihood (fi) Execution Cost (ci)

t1 0.9 5

t2 0.7 3

t3 0.6 2

t4 0.5 4

t5 0.8 6

Assume the available budget is given by B = 10 units. The objective is to choose a sub- set of

the given test cases such that their aggregate execution cost does not exceed 10, while

maximizing the total likelihood of fault detection.

3.2 MOPSO-Based Execution Optimization

To address this bi-objective problem, we employ a Multi-Objective Particle Swarm

Optimization (MOPSO) strategy. Each particle in the swarm represents a potential execution

plan, encoded as a binary vector X = (x1, x2, . . . , xn), where xi = 1 if and only if the test case

ti is selected.

Particles are assessed using a fitness function that simultaneously considers both objectives,

incorporating penalties for any violations of the budget constraint:

Fitness(𝑋) = α (1 −
𝐹

𝐹max

) + β (
𝐶

𝐵
) + γ × Penalty (5)

where α and β are weighting factors, Fmax denotes the maximum possible cumulative fault

detection, and the penalty term is defined as:

Penalty = max (0,
𝐶 − 𝐵

𝐵
) (6)

During initialization, the particles are created randomly, producing different combinations of

test cases. For example, one particle might represent {t1, t3} with a total cost of 7 and a fault

detection sum of 1.5, while another could represent {t2, t3, t4} with a total cost of 9 and a fault

detection sum of 1.8. Particles that violate the budget constraint are penalized and are gradually

steered toward feasible solutions with higher fault detection effectiveness.

During swarm evolution, the velocities and positions of the particles are updated according to

MOPSO rules, while a Pareto-optimal archive is maintained to store the best non-dominated

solutions. This process supports dynamic adaptation of the execution schedule based on the

available resources.

The process begins with prioritized test cases and budget information, proceeds through swarm

initialization and evolution, evaluates fitness under budget constraints, and finally out- puts an

optimized test execution plan to maximize fault detection within the available resources.

4 Experimental Setup

The proposed framework for testing with a given limited budget was assessed for its

effectiveness using actual programs within the Defects4J dataset [23]. The Chart, Lang, and

Math projects were selected, representing a range of different sizes and complexities. Each

project provides multiple faulty versions along with developer-written test suites, enabling a

realistic evaluation of regression testing strategies. To estimate the fault detection likelihood of

individual test cases, mutation analysis was performed using the PIT tool [24].

Experiments were conducted on a system equipped with an Intel Core i7 processor running at 3.6

GHz, 32 GB of RAM, and Ubuntu 22.04 LTS. The implementation was developed using Python

3.11 and scientific computing libraries such as NumPy and SciPy. These system specifications

ensured that the MOPSO optimization and test execution simulations could proceed efficiently

without artificial bottlenecks. Fig 1 presents the overall flow of the proposed optimization

framework.

Fig. 1. Workflow of Test Case Optimization using Particle Swarm Algorithm.

Flow Diagram of the Proposed MOPSO-Based Execution Optimization Performance evaluation

primarily relied on the Average Percentage of Faults Detected under budget constraints (APFDc)

[25], which captures the rate of fault detection relative to re- source consumption. Higher

APFDc values reflect more effective early fault detection under tight budget conditions.

Additionally, the total number of faults detected within varying budget thresholds (ranging from

30% to 70% of the total execution cost) was recorded to assess the practical effectiveness of

different scheduling strategies.

The parameters of the MOPSO framework were determined through preliminary tuning. The

swarm size was set to 30, with a maximum of 100 iterations. The inertia weight was fixed at

0.7, and both the cognitive and social learning factors were assigned values of 1.5. A mutation

probability of 0.1 was introduced to maintain diversity among particles. Budget constraints were

enforced using penalty functions incorporated into the fitness evaluations. Each experimental

configuration was independently executed 30 times to accommodate stochastic variations, and

the results presented represent averaged values across these repetitions.

5 Results and Discussion

This section reports the experimental results obtained by applying the proposed MOPSO-based

adaptive test case execution framework. Comparative analysis was conducted against two base-

line approaches: random scheduling and greedy fault-to-cost ratio scheduling. The evaluation

examines both the effectiveness of fault detection and the efficiency of resource usage under

varying budget constraints.

Table 2 summarizes the number of faults detected and the APFDc scores achieved by each

method across different budget levels. The budget was adjusted between 30% and 70% of the

total available execution cost to represent varying degrees of resource availability.

Table 2. Comparison of Faults Detected and APFDc Across Methods at Different Budget Levels.

2*Budget Level Random Greedy Proposed (MOPSO)

Faults APFDc Faults APFDc Faults APFDc

30% 9 0.54 11 0.63 13 0.71

50% 15 0.61 18 0.72 21 0.80

70% 22 0.68 26 0.79 29 0.86

The outcomes clearly show that the proposed MOPSO-based optimization consistently out-

performs both random and greedy scheduling methods across all budget levels. Under a

restricted budget constraint of 30%, the MOPSO strategy detects 13 faults with an APFDc of

0.71, whereas random scheduling detects only 9 faults with an APFDc of 0.54. As the available

budget increases, this performance gap remains, demonstrating the robustness and adaptability

of the proposed approach in maximizing fault detection under resource-constrained conditions.

The trends for fault detection across the three methods at different budget levels are il-

lustrated in Fig 2. It can be observed that the number of faults detected by the proposed

MOPSO-based method consistently exceeds those detected by both random and greedy

strategies. This advantage becomes even more significant as the available budget grows,

highlighting the effectiveness of swarm-based adaptive scheduling in budget-constrained

environments.

Fig. 2. Faults Detected vs Budget Level.

A closer examination of early fault detection effectiveness, as measured by APFDc, is presented

in Fig 3. The APFDc scores achieved by the MOPSO-based approach are consistently higher

across all budget levels, reflecting its capability to prioritize fault-prone test cases early in the

execution process even under tight resource constraints. The steepness of the curve for the

proposed method indicates a faster rate of fault detection, which is particularly advantageous

for regression testing cycles operating under stringent time or resource limitations.

Fig. 3. APFDc Comparison Across Budget Levels.

In addition to examining the number of detected faults and the early fault-detection rates, we

also measured the resource efficiency by the number of faults detected per budget spent. This is

shown in Fig 4. As can be seen, the MOPSO-based approach always enjoys better fault

detection efficiency compared to the competing ones at all budget levels. This also corroborates

that the proposed method can not only raise the absolute number of detected failures, but it can

also make fault detection as an economically attractive testing process, which makes it

applicable to real-world CI environments requiring resource awareness.

Fig. 4. Fault Detection Efficiency vs Budget Level.

In general, the experimental results verify the benefits of multi-objective optimization in

adaptive test execution scheduling. The proposed policy has consistently shown good ability to

maximize fault detection at a fixed budget better than traditional policies for a diverse set of

projects and test suites. These results validate the framework as a practically feasible mechanism

for inclusion in contemporary agile and DevOps test pipelines, at which balancing testing

efficacy and resource efficiency is essential.

6 Conclusion and Future Work

It is suggested to test the design using an up to date budget constraint procedure (BC: the special

version of a multi-objective swarm particle initialization technique MOSPT). Through casting

the test scheduling as a bi-objective optimization problem, the framework manages to well-tune

inspection efficacy with execution efficiency under tight resource limitations. It constructs

optimized sequences of execution dynamically, using available resources to maximize the fault

detection early.

Experimental results from real datasets showed that the MOPSO-based scheme outperforms the

classical random and greedy scheduling in various cases. Under different budget levels, the

proposed technique obtained a larger number of faults detected, higher APFDc scores, and better

cost effectiveness, as evidenced by in-depth comparative analyses as well as visualizations. The

results confirm that the implementation of swarm intelligence in budget-aware regression

testing workflows is viable and applicable, notably in the context of agile and DevOps

industries.

While the results are very encouraging, a number of avenues for future work are left open. First,

the existing approach uses a static budget, while introducing dynamic modification of the budget

based on feedback obtained from the real execution environment can potentially improve

adaptability. Second, the incorporation of more advanced learning mechanisms (e.g.,

reinforcement learning) for scheduling would be beneficial to guide particle evolution. Third,

the evaluation on larger industrial-scale projects and integration of more diverse cost models

such as energy cost and cloud resource utilizations could make the approach more realistic.

On the whole, the key contribution of this work lies in advancing intelligent and resource-

efficient RT, through which software developers and industry can maintain rigorous quality

assurance (QA) practices even when faced with tight operational tolerances.

References

[1] G. Rothermel, R. H. Untch, Chengyun Chu and M. J. Harrold, "Test case prioritization: an

empirical study," Proceedings IEEE International Conference on Software Maintenance - 1999

(ICSM'99). 'Software Maintenance for Business Change' (Cat. No.99CB36360), Oxford, UK,

1999, pp. 179-188, doi: 10.1109/ICSM.1999.792604.

[2] Yoo, S., & Harman, M. (2012). Regression testing minimization, selection and prioritization: A

survey. Software Testing, Verification & Reliability, 22(2), 67–120.
https://dl.acm.org/doi/abs/10.1002/stv.430

[3] Elbaum, S., Rothermel, G., & Penix, J. (2014). Techniques for improving regression testing in

continuous integration development environments. In Proceedings of the 22nd ACM SIGSOFT

International Symposium on Foundations of Software Engineering (FSE 2014) (pp. 235–245).

Association for Computing Machinery. https://doi.org/10.1145/2635868.2635910

[4] Chen, T. Y., Kuo, F.-C., Merkel, R. G., & Tse, T. H. (2010). Adaptive random testing: The ART

of test case diversity. Journal of Systems and Software, 83(1), 60–66.

https://doi.org/10.1016/j.jss.2009.02.022

[5] Graves, T. L., Harrold, M. J., Kim, J., Porters, A., & Rothermel, G. (1998). An empirical study of

regression test selection techniques. In Proceedings of the 20th International Conference on

Software Engineering (pp. 188–197). IEEE. https://doi.org/10.1109/ICSE.1998.671115

[6] Li, Z., Harman, M., & Hierons, R. M. (2007). Search algorithms for regression test case

prioritization. IEEE Transactions on Software Engineering, 33(4), 225–237.

https://doi.org/10.1109/TSE.2007.38

[7] Zhang, L., Hou, S.-S., Guo, C., Xie, T., & Mei, H. (2009). Time-aware test-case prioritization using

integer linear programming. In Proceedings of the Eighteenth International Symposium on

Software Testing and Analysis (pp. 213–224). Association for Computing Machinery.

https://doi.org/10.1145/1572272.1572297

[8] Just, R., Jalali, D., & Ernst, M. D. (2014). Defects4J: A database of existing faults to enable

controlled testing studies for Java programs. In Proceedings of the 2014 International Symposium

on Software Testing and Analysis (pp. 437–440). Association for Computing Machinery.

https://doi.org/10.1145/2610384.2628055

[9] Coles, H., Laurent, T., Henard, C., Papadakis, M., & Ventresque, A. (2016). PIT: A practical

mutation testing tool for Java (demo). In Proceedings of the 25th International Symposium on

Software Testing and Analysis (pp. 449–452). Association for Computing Machinery.

https://doi.org/10.1145/2931037.2948707

[10] Gligoric, M., Eloussi, L., & Marinov, D. (2015). Practical regression test selection with dynamic

file dependencies. In Proceedings of the 2015 International Symposium on Software Testing and

Analysis (pp. 211–222). Association for Computing Machinery.

https://doi.org/10.1145/2771783.2771784

[11] Rothermel, G., Untch, R. H., Chu, C., & Harrold, M. J. (2001). Prioritizing test cases for

regression testing. IEEE Transactions on Software Engineering, 27(10), 929–948.

https://doi.org/10.1109/32.962562

https://dl.acm.org/doi/abs/10.1002/stv.430
https://doi.org/10.1145/2635868.2635910?utm_source=chatgpt.com
https://doi.org/10.1016/j.jss.2009.02.022?utm_source=chatgpt.com
https://doi.org/10.1145/1572272.1572297?utm_source=chatgpt.com
https://doi.org/10.1145/2610384.2628055?utm_source=chatgpt.com
https://doi.org/10.1145/2931037.2948707?utm_source=chatgpt.com
https://doi.org/10.1145/2771783.2771784?utm_source=chatgpt.com

