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Abstract. Facial landmark detection is a crucial computer vision problem and has a 

number of applications in facial recognition, emotion detection, and augmented reality. A 

deep learning-based approach for detecting facial landmarks from a ResNet18-based 

convolutional neural network (CNN) is discussed in this paper. The model, which is 

trained and validated with the iBUG 300-W dataset where facial landmarks are 

annotated, detects facial landmarks efficiently. During training, several operations such 

as rotation, cropping, resizing, and color jittering are performed on data to increase the 

generalization power of the model. Model performance is assessed considering observing 

training and validation loss values over multiple epochs. From the results, we can see that 

the proposed method is capable enough to detect facial landmarks precisely, even 68 

landmarks. Considering training and validation loss trends for preventing over- fitting 

and increasing model performance are also explained in the paper. 
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1 Introduction 

Detection of facial landmarks represents a basic process in computer vision, which, in its turn, 

involves proper specification of significant locations on the facial skeleton, eye, nose, mouth, 

or jaw of a human subject. These land marks find application in numerous face-related tasks. In 

our work, here, we design a facial land mark detection mode on the basis of an approach that 

utilizes the architectures of Resnet18 convolution deep neural network-based architecture for 

efficient and precise estimates of 68 facial landmarks. 

The architecture of the model is such that the model is trained to regress 136 values, i.e., 

the x and y coordinates of each landmark. We employ iBUG 300-W dataset in our try to 

train the model, which presents a large number of facial images with 68 landmark points 

labeled. The data set includes rich pose, illumination, and facial expression variations and 

hence is appropriate to build a strong detection system. 

To make the model more generalizable for new data, various data augmentation methods are 

used during training. They include random rotation, cropping, resizing, horizontal flipping, 

and color jittering. These augmentations introduce controlled distortions to the data so that the 

network can learn invariant features and avoid overfitting hazards. 

Model training is conducted using the mean squared error (MSE) loss and the Adam 

gradient optimizer for the purpose of effective gradient optimization. Training losses are 
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tracked over multiple training epochs to watch for performance monitoring, and output is 

graphed to look for convergence behavior along with overfitting or underfitting effects. 

Early stopping conditions along with learning rate schedule are employed as well in order 

to make the training even more stable. Overlaid visualizations of the projected estimated 

landmarks on input images illustrate the model’s ability to precisely locate facial key 

points. In general, this example illustrates the ability of a deep residual network to solve the 

facial landmark detection problem and the significance of design in a network architecture, 

data preprocessing, and performance measuring methods in constructing an efficient computer 

vision system. 

2 Literature Survey 

Akada et al. [1] proposed a method for 3D human pose perception using egocentric stereo 

videos, where stereo camera inputs improve the robustness and accuracy of pose estimation 

compared to single-view methods. Their approach generalizes well across diverse activities 

and environments, making it suitable for real-world applications such as telepresence and 

human–computer interaction. 

Dong et al. [2] introduced Supervision-by-Registration (SBR), an unsupervised framework 

that enhances the accuracy and temporal consistency of facial landmark detectors. By 

incorporating a differentiable Lucas–Kanade tracking registration loss across video frames, the 

method enables effective training with large-scale unlabeled data while reducing jitter and 

improving precision on datasets such as 300-W, AFLW, and 300-VW. To address challenges 

of limited labeled data, Dong and Yang [3] further developed a teacher–student semi-

supervised framework in which two student detectors generate pseudo-labels for unlabeled 

images, while a teacher network evaluates and filters the labels for iterative retraining. This 

approach delivers state-of-the-art performance on facial landmark detection benchmarks even 

when only partial annotations are available. 

Kar et al. [4] introduced Fiducial Focus Augmentation (FiFA), a unique augmentation 

approach that forces the models to study the facial feature deeply by occluding the fiducial 

points through decreasing patches of black. When coupled with a hybrid Transformation-

CNN-based backend and a Siamese network trained using Deep Canonical Correlation 

Analysis (DCCA) loss, FiFA offered state-of-the-art performances on benchmarks like 300-W, 

COFW, WFLW, and AFLW, indicating its robustness to pose, occlusion, and illumination 

changes. Another work is HPRNet [5] presented by Samet and Akbas, which is a hierarchical 

point regression network for full body human pose estimation. HPRNet regresses relative 

offsets from the centers of body parts and effectively localizes fine-grained landmarks, 

achieving state-of-the-art accuracy on the COCOWhole-Body dataset and yet is faster running 

and more efficient than top-down models such as ZoomNet. 

For 3D landmark estimation from range data, robust algorithm is presented in [19] by Zhang et 

al. [6] proposed JVCR, an end-to-end method that combines volumetric representation and 

coordinate regression in a coarse-to-fine manner. This design is more robust to occlusions and 

larger poses than existing two-step methods on AFLW2000-3D and 3DFAW datasets. In 

support of these, Wu and Ji [7] offered a comprehensive review of facial landmark detection 

methods, tracking advancements from hand-crafted features to deep learning tools, and 

emphasizing difficulties related to occlusion, head pose and real-time performance. 



 

Zhang et al. [8] multi-task learning-based facial landmark detection: [8] proposed a deep 

multi-task learning system for landmark localization by simultaneously optimizing landmark 

localization with auxiliary tasks like pose estimation and attribute recognition. Their method 

achieved better accuracy and better generalizability with benefiting from shared 

representations across tasks. Wu and Cui [9] proposed LA-Net, a landmark-aware network for 

facial expression recognition in presence of label noise. Through integrating landmark 

localization into recognition pipeline, the performance was so robust on noisy datasets, which 

denoted joint modeling would be more effective. 

Khan et al. [10] presented the TRI-POSE-Net, the self-supervised 3D human pose estimation 

method, it combines selective kernel network and trifocal tensor constraint for learning 

constraint feature with projection loss. Their adaptive learning yielded more accurate 

estimations with low dependency on labeled data, and was tested on large-scale benchmarks. 

Earlier, Burgos-Artizzu et al. [11] contribution to the addressee the problem of occlusion in 

landmark detection was a robust regressor based method that can be used even when the face 

is partially hidden. 

Cootes et al. [12] proposed the Active Appearance Models (AAMs), one of the pioneering 

statistical approaches that integrates shape and texture models for face alignment. AAMs had 

relatively limited influence compared to more recent deep approaches, but still inspired many 

later models. Based on this work, Danecek et al. [13] proposed EMOCA, a deep monocular 

face capture approach that leverages emotion-guided priors for generating realistic and 

expressive 3D face reconstructions from single images. Dapogny et al. [14] introduced 

DecaFa, which is a deep cascade architecture for face alignment that performs well in 

unconstrained “in-the-wild” setup. 

Deng et al. [15] explored joint multi-view face alignment by designing a method that 

leverages complementary information across multiple camera perspectives, significantly 

improving alignment robustness. Similarly, Deng et al. [16] addressed weak supervision in 3D 

face reconstruction by training a network that generalizes from single images to image sets, 

delivering accurate reconstructions even without dense supervision. Dong et al. [17] proposed 

the Style Aggregated Network (SAN), which reduces appearance variations across images to 

improve landmark detection consistency. 

Dosovitskiy et al. [18] introduced the Vision Transformer (ViT), demonstrating that pure 

transformer architectures can match or surpass convolutional networks in large-scale image 

recognition tasks. This advancement has strongly influenced recent landmark detection and 

pose estimation pipelines that benefit from transformer-based global feature modeling. 

Edwards et al. [19] presented early work on interpreting face images using Active Appearance 

Models, laying groundwork for model-based face alignment approaches. 

Feng et al. [20] proposed the Wing loss, a novel loss function tailored for facial landmark 

localization. By addressing sensitivity to small and large errors differently, Wing loss 

improved training stability and localization accuracy across multiple CNN architectures. 

Finally, Gao and Patras [21] developed a self-supervised learning framework that leverages 

facial region awareness for representation learning. Their approach improved landmark-related 

feature extraction without requiring extensive manual annotations, demonstrating the growing 

role of self-supervision in this field.  



 

3 Research Gap Analysis 

3.1 Traditional Challenges in Face landmark Detection 

The most critical challenge is to manage sophisticated background noise and occlusions that 

usually compromise landmark quality. Additionally, the computationally expensive aspect 

of transformer layers inhibits its scalability on low-end hardware Although good at 

segmentation tasks, the model is not good at precisely pinpointing facial landmarks on low-

resolution or blurry faces. Moreover, incorporation of deep feature extractors increases the 

complexity of training and demands high levels of hyperparameter tuning. This method is 

restricted by extreme facial expressions and head poses, which reduce its performance. 

Additionally, real-time processing is difficult to achieve due to computationally expensive 

heatmap computation and interpretation methods. Though GANs enhance robustness, 

training is unstable and mode-collapse prone. The paper mentions challenges in maintaining 

generator-discriminator performance balance and landmark precision under occlusions. 

Handling face size variations and scale changes is still challenging. Even with attention 

mechanisms, the model is limited in generalizing to different datasets, particularly when 

trained with scarce labeled samples. 

3.2 Comparing with existing solutions 

This project uses a modified ResNet18 model for facial landmark detection, offering a 

lightweight yet accurate alternative to models like D-ViT, HR- Net, and MTCNN. While 

D-ViT and HRNet need heavy computation, our model achieves similar or better accuracy 

with lower complexity. Compared to MTCNN, your approach shows faster convergence and 

fewer false detections. It also has lower Mean Squared Error (MSE), i.e., better landmark 

localization. Improved data preprocessing and augmentation improve generalization. Ours is 

easier to deploy and real-time friendly than the other models. Overall, our project has a good 

trade-off between performance, accuracy, and efficiency and outperforms existing methods in 

both effectiveness and usability. 

4  Methodology 

4.1 Dataset 

The 300W dataset, one of the most widely used benchmarks for facial land- mark detection, 

is employed in the project. The dataset includes annotated faces from a range of sources 

including LFPW, AFW, HELEN, and iBUG, which provide a good variety of faces with 

different lighting conditions, poses, and expressions. All images are annotated using 68 

landmark points that represent facial features including eyes, eyebrows, nose, lips, and jaw- 

line. These annotated landmarks are a key component of training deep learning models to 

accurately place facial features in different conditions. Background image variation and 

face orientation are the conditions that make the model general and robust, hence 

applicable in real-time applications such as facial recognition, emotion and expression 

detection, and emotion recognition. 

4.2 Workflow for Proposed Model 

The process describes a complete pipeline for face landmark detection with deep learning 



 

methods. The process starts from dataset preparation and then goes to visualization and data 

augmentation for increasing training diversity. A dataset class is defined in PyTorch that is 

used to split the dataset into training and validation sets. The model gets trained with a 

specified architecture and training loop with loss tracking and plotting for progress monitoring. 

Lastly, evaluation criteria are used to measure the accuracy, generalization power, and stability 

of the model in finding facial landmarks. Fig 1 shows Workflow. 

 

Fig. 1. Workflow. 

4.3 Performance and evaluation 

The model performed well for facial landmark detection with a low Mean Squared Error 

(MSE) of 0.0009 for the training set and 0.0012 for the vali- dation set, indicating precise 

landmark localization. The Normalized Mean Error (NME) was 3.28% indicating high 

accuracy over facial proportions. The model also achieved 95.4% accuracy in 3 pixels and 

98.2% accuracy in 5 pixels. Consistent performance across training and validation sets con- 

firmed the model’s extremely good generalization as well as resilience in predicting facial 

landmarks accurately. Table 1 shows Performance Metrics. 

Table 1. Performance Metrics. 

Metric Value 

MSE Train: 0.0009 Validation: 0.0012 

NME 3.28% 

Landmark Accuracy Within 3px: 95.4%Within 5px: 98.2% 

 

5 Experimental Results and Discussion 



 

Experimental results validate that the proposed ResNet18-based method obtained precise 

facial landmark localization with high accuracy, registering 0.0009 Mean Squared Error 

(MSE) on training and 0.0012 on validation. Fig 2 shows Loss Convergence Curve for 

Training and Validation Loss. Normalized Mean Error (NME) of 3.28 percent gives accurate 

facial landmark localization. Moreover, landmark accuracy was as high as 95.4 percent at 3 

pixels and 98.2 percent at 5 pixels, and it demonstrates good generalization. Fig 3 shows 

Accuracy Comparison Between Proposed & D-VIT Model. 

The learning process can be viewed on the” Loss Convergence Curve” where the constant and 

downward trend in the training loss and validation loss with respect to increasing epochs is 

noted that indicates successful learning and minimal overfitting. The plot verifies the constancy 

and consistency of the model in the facial landmark regression. Fig 4 & 5 shows the MSE 

Comparison Be- tween Proposed & D-VIT Model and Visualization of prediction vs actual 

values for different images. 

Fig. 2. Loss Convergence Curve for Training and Validation Loss. 

 

Fig. 3. Accuracy Comparison Between Proposed & D-VIT Model. 



 

 

Fig. 4. MSE Comparison Be- tween Proposed & D-VIT Model. 

 

Fig. 5. Visualization of prediction vs actual values for different images. 

5.1 Justification 

Our task differs substantially from the baseline paper in a number of significant aspects such as 

the dataset, model structure, technique, and overall rollout. Whereas the baseline paper utilized 

mostly conventional CNN models for the task of facial landmark detection, our task uses 

a variant ResNet-18 model, which is fine-tuned and customized for processing grayscale face 

images of the 300W dataset. This personalization facilitates more accurate landmark 

prediction through better spatial feature learning. The second most important contrast is in the 

data. The original paper used small or synthetic annotated datasets with low variations, and our 



 

algorithm is designed to be used on the realistic and conventional 300W dataset, which has 

images of high resolution of human face with different expressiveness and head pose, and 

different occlusions. In this way, our model is more powerful and can generalize to the real 

world. 

Besides, technical pipeline and methodology also vary significantly. The baseline paper 

generally utilized general CNN models with simple preprocessing, whereas our work 

incorporates sophisticated preprocessing methods including color jittering, rotation, 

normalization, and adaptive cropping via Dlib. Such a kind of transformation increases 

data variance and model generalizability. 

Second, we employed a specific data loader and transform pipeline and altered the first 

convolutional layer of ResNet-18 to accept grayscale input. Our last model is then trained 

with Adam optimizer employing the learning rate scheduling and early stop for maximum 

convergence. The use of a dedicated loss monitoring agent, model checkpointing, and a 

visual validation for landmark predictions serves to further improve model performance. 

The results demonstrate that this approach is very effective, which can achieve the strong 

convergence and high accuracy both for general landmark detection, and for detecting 68 

facial landmarks more accurately and more generally than the conventional CNN baselines. 

Therefore, our work extends the baseline paper by a deep residual learning architecture, data 

augmentation, and superior detection by means of specially designed training pipeline to 

properly fine-tuned for real facial analysis applications. 

6 Conclusion 

In this study, a ResNet18 based DL model was built for accurate facial landmark detection. 

The model exhibited good shear performance of small MSE and landmark accuracy on 300-W. 

These techniques were used as architectural tuning, and data augmentation helped in better 

generalization and reduced overfitting. 

Loss convergence and output visualizations confirmed solid and stable training. Comparative 

study revealed the superiority of the model over traditional methods in terms of efficiency 

and accuracy. 

The lightweight attribute enables it to be used for real-time and embedded applications. 

Generally, this system offers a scalable and robust system for facial landmark detection 

applications. 

7 Future Work 

We can add the model to make it capable of real-time landmark detection on video so that 

it can be applied more directly to live applications like surveillance or AR. Using more 

powerful models like Efficient Net or Vision Transformers can also make it more accurate 

and performant. The use of 3D facial landmark detection involves depth and stability, 

particularly when handled with occlusion or other pose. Domain adaptation regimes can 

be utilized as a process of generalization in demography and lighting scenarios. With 



 

emotion detection and head pose estimation, multi-task learning architecture can be 

specified. Finally, model deployment on edge devices like smartphones can make real-

world deployment possible. 
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