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Abstract. With a growing number of complex and sustainability driven supply chains, in 

general, traditional cost decision making does not consider tradeoffs between cost, 

environmental impact, and operational efficiency. An explainable machine learning based 

decision support framework integrating predictive analytics, lifecycle emissions 

estimation and multi objective optimization is proposed that guides selection of supplier, 

transport mode and conducting operational scheduling. It then applies XGBoost models 

for predictions on cost and emissions, NSGA-II with Pareto optimization and SHAP with 

counterfactual analysis to provide interpretable recommendations on the custom generated 

synthetic dataset for real world logistics and production parameters. Results are then 

evaluated comparatively and show a 12% in cost, 32% in emission, 3-day reduction in lead 

time, improvement in reliability and sustainability scores. The inclusion of explainable AI 

for increasing the transparency and trust in this system makes it practically adoptable for 

the real world. This work narrows the gap of data–driven optimization and the sustainable 

and transparent supply chain decision making. 

Keywords: Sustainable Supply Chain; Explainable Artificial Intelligence (XAI); Multi-

objective Optimization; Machine Learning; Lifecycle Emissions Estimation; Decision 

Support Systems 

1 Introduction 

Over the years, the organizations have to reevaluate their decision-making strategies due to the 

growing global emphasis on sustainability and rising complexity of modern supply chains. Most 

traditional supply chain models have been built on the lens of minimizing cost and maximizing 

delivery efficiency [1,2]. In the modern environment of carbon emissions, government 

regulations, and fair sourcing, such models rarely achieve the objective. With the global markets 

becoming greener and more resilient in logistics ecosystem, there is an immediate necessity for 

the intelligence in the transparent and sustainability aware decision support systems [3,4]. 

Artificial Intelligence, particularly Machine Learning (ML), has become a recent advancement 

that holds the ability to improve the supply chain forecasting, risk management, and 

optimization. However, most AI-driven models used in practice today operate as "black boxes," 

offering little interpretability to end-users [5,6]. It limits the trust, regulatory alignment, and 

broader adoption of AI systems in high stakes industrial environments where the opaqueness of 

AI prevents practitioners from making informed risk tradeoffs. In addition, although there are 
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some AI studies on individual supply chain aspects like demand forecasting, route optimization 

and inventory control, not much has been done in terms of holistic supply chain systems that 

take cost, operational efficiency and environmental sustainability into account and also stay 

explainable in their decisions [7-9]. 

In order to fill these gaps, this paper presents an explainable machine learning-based decision 

support framework for sustainable supply chain and operational planning. This proposed system 

is to help in three crucial fields including supplier selection, selection of transport mode and 

production scheduling since cost, lifecycle carbon emissions and lead time are to be minimized. 

Supervised ML models that predict performance metrics are used at the core of the system to 

predict metrics mentioned in the previous section using input parameters. XAI components (e.g. 

SHAP (SHapley Additive exPlanations) and counterfactual analysis) are also incorporated into 

the framework to provide transparency and scenario details to decision makers. To test the 

framework, a full synthetic data set has been developed representing a real-world supply chain 

covering the import of product by a consumer, the transport associated with this, production 

energy inputs, and policy constraints for a representative set of suppliers throughout the supply 

chain. Results from the given experimental conducted in order to demonstrate that the proposed 

methodology can outperform a traditional rule-based baseline approach, this includes a 12% 

cost reduction, 32% emission reduction, and a 3-day reduction lead times, along with improved 

supplier reliability and sustainability scores. Additionally, the explainability features facilitate 

human users’ understanding and trust in the system’s recommendations, necessary for 

deployment in an industrial context. This paper has the following key contributions: 

• A novel end to end decision support framework combining ML predictions with energy 

and life cycle emissions modelling, and multi objective optimization. 

• Implementation of transparency and increase of decision confidence using explainable 

AI techniques (SHAP and counterfactual analysis). 

• Multi-dimensional dataset synthetically generated and simulated supplier, transport, 

and operational logistics with sustainability constraints. 

• It presents a comprehensive comparative evaluation of the quantitative improvements 

of the developed decision models over baseline decision models for all of the 

considered performance metrics. 

In the remainder of this paper, Section II considers relevant literature on the use of AI in supply 

chains and in XAI. In Section III, the proposed methodology for data modeling and machine 

learning architecture, optimization includes details of dataset creation and experimental setup 

with implementation details. Section IV presents the results and analysis with a thorough 

comparative analysis, and the discussion and implications in Section V. Section VI concludes 

the paper and discusses future work directions. 

2 Related Work 

Artificial intelligence (AI) and machine learning (ML) positively affect the supply chain and 

operation by integrating the AI and ML tools to improve forecasting, optimize logistics, and aid 

in supplier decision making. In numerous studies, ML models have been applied for demand 

prediction (time-series forecasting with LSTM networks, ARIMA models, etc.), ensemble-

based regression, and so on. The use of algorithms like k-means clustering, Support Vector 

Machine (SVM), and random forest classifiers have been used in the area of inventory and 

procurement for the segmentation of suppliers as well as procurement risk assessment. AI based 



solutions also have benefited the transportation optimization. Vehicle routing problems (VRP) 

are solved and delivery delays are diminished using techniques like PsO or Genetic Algorithm 

(GA) and Ant Colony Optimization (ACC). At the same time, environmental sustainability has 

been included in research translating through carbon-aware logistics models that intend to 

minimize fuel consumption and emissions. However, such models usually depend on static 

parameters or on narrow scopes, optimizing either cost or emissions, on their way rarely doing 

both, and often without any option to adapt or learn online [10-14]. 

Another set of literature on sustainable supply chain strategy include green manufacturing, 

carbon tax models, life cycle analysis (LCA), etc. However, these approaches are not flexible 

enough in letting us to drive the design toward a specific set of long term environmental goals, 

while lacking intelligent decision automation (few can predict how cars or other things will 

respond to new rules and act accordingly), and long term predictive capability. Some hybrid 

models that blend sustainability with AI exist, but they are usually domain specific and only 

deal with the one specific domain of warehousing, production or logistics severally, without 

being integrated into an end-to-end operational decision framework [15-16]. 

At the same time, Explainable Artificial Intelligence (XAI) has risen as an important field, 

especially in high stake areas like healthcare and finance. Techniques such as SHAP (SHapley 

Additive explanations) and LIME provide insights into feature importance and model 

behaviour, addressing the "black-box" problem in ML. While this exciting use of AI shows 

promise, it is still in its infancy in supply chain contexts, and most of the current supply chain 

AI models are still opaque and difficult to be interpreted by decision makers [17-18]. Some key 

limitations remain: 

• In most existing empirical studies, only single objective (e.g., cost or time) is optimized 

while comprehensive cost – carbon emissions – lead time trade-offs are ignored. 

• Often existing models are not explainable, and therefore cannot be validated, not 

trusted, nor can they be deployed in [regulated and mission-critical] supply chains. 

• Integrated frameworks are lacking across the supplier selection, transport mode 

decision and production (or service) scheduling activities when sustainability metrics 

are considered. 

• Very few systems use a feedback mechanism for the evolution of decision strategies 

with time over user input or in change of the data environment. 

Research Gap and Proposed Framework 

This paper presents a new, an end-to-end explainable machine learning based decision support 

system to fill these gaps. Unlike the previous work, the proposed framework combines: 

• Supervised ML models to predict cost, emissions, and lead time. 

• An integrated environmental impact estimator spanning across the supplier (transport 

and operational) layers; 

• NSGA-II is used for multi objective optimization to balance cost, emissions and time. 

• XAI tools such as SHAP and counterfactual reasoning for transparent, justifiable 

recommendations. 

The comprehensiveness, interpretability, and scalability of this system enable it to be a complete 

and semantic approach to deploy sustainable supply chain strategies in real life where advanced 

technologies are implementable but responsible decisions are yet to be made. 



3 Methodology  

As an innovative and explainable machine learning framework, the proposed architecture is 

aimed at assisting sustainable supply chain and operational decision making. As such, it is 

composed of five interdependent layers, each of which fulfills a distinct task in the intelligent 

decision system. With respect to data acquisition and preprocessing, impact prediction using 

machine learning, multi objective optimization, explainability modules, and a user interactive 

feedback module is also part of these. The key innovation of the framework consists of an 

integrated real-world operational constraints and sustainability objectives transparent and 

adaptive decision pipeline. 

First, the layer involves collecting data of various sources including supplier data (cost, 

emissions, lead time), transport data (carbon emissions, modes, delays), and manufacturing 

energy usage as well as regulatory policy data. All the data is processed through an integration 

and preprocessing module that cleans the data, aligns it temporally, and normalizes it. All input 

features are left consistent, scalable, and ready for modeling with it. Certain feature engineering 

techniques are also used to create meaningful indicators such as emissions per unit of product 

or cost per unit of time. 

The second layer, which figures the key performance indicators from various supply chain and 

operational alternatives, is a suite of machine learning models. Training of separate models to 

predict supplier performance, transport related emissions, and production level energy 

consumption is proposed. The models of these algorithms could be XGBOt, LightGBM or deep 

learning-based regression algorithms depending upon the type and quantity of data. Such 

models are aggregated by a dedicated lifecycle emission estimator to yield the total 

environmental impact of any given supply chain configuration. 

From these predictions, the third layer optimizes the Mult objective problem of minimizing cost, 

carbon emissions and lead time. Rather than optimizing such a single goal, the system works on 

advanced algorithms, e.g. NSGA-II, to produce a Pareto front of optimal solutions representing 

the trade-offs. It enables decision makers to pick options not only by cost and time but also by 

sustainability goals. Furthermore, a scenario generator is integrated to dynamically explore a 

solution space with alternative solutions simulated with a scenario generator. 

The fourth layer of the system, tools for explainability, are included to ensure interpretability 

and trust. Finally, the framework uses SHAP (SHapley Additive exPlanations) to illustrate how 

each of the input features affects the output prediction of the machine learning models. In 

parallel, a counterfactual analysis module generates “what-if” scenarios — showing, for 

example, how changing a supplier or transportation mode could reduce emissions or costs. The 

user is given these insights via an interactive decision dashboard that visualizes tradeoffs 

amongst these key performance indicators as well the reasoning for each of the 

recommendations provided. 

It has an adaptive feedback mechanism. This loop gathers user feedback on accepted or rejected 

recommendations, and as a result, over time retrain and fine tune predictive models via users’ 

interaction with the views generated. Active learning techniques mean that system evolves over 

its life and becomes closer aligned with the organization specific operational goals, regulatory 

requirements, or sustainability targets. Fig 1 gives the proposed system architecture. 



 

Fig. 1. Proposed Architecture. 

3.1 Data Layer and Preprocessing 

This layer ingests and harmonizes diverse data sources including supplier information 𝒟s, 

transportation metrics 𝒟t, operational energy usage 𝒟o, and regulatory constraints 𝒟r. The 

unified dataset 𝒟 is processed through steps such as: 

Feature Engineering: Generating derived attributes like emissions per unit ( ei =
CO2

 unit 
 ), cost per 

lead time, and energy intensity. 

Normalization: Applying Min-Max scaling to ensure all features are within the range [0,1] for 

uniform model input: 

x′ =
x−min(x)

max(x)−min(x)
        (1) 

Temporal Alignment: Aligning time-series data to synchronize scheduling, demand fluctuations, 

and emissions across the supply chain. 

3.2 ML-Based Impact Estimation Layer 

This layer includes a collection of supervised ML models trained to predict the following: 

Supplier Performance Prediction: ŷs = fs(𝒳s) 

Transport Emission Estimation: êt = ft(𝒳t) 

Operational Energy Usage: êo = fo(𝒳o) 

Where: 

fs, ft, fo are predictive models (e.g., XGBoost, LightGBM), 

𝒳s, 𝒳t, 𝒳o are feature vectors for suppliers, transport, and operations respectively. 

The outputs are integrated by a Lifecycle Emission Estimator: 

Êlifecycle = ês + êt + êo        (2) 

This gives a unified prediction of environmental impact across the entire supply chain decision 

path. 



3.3 Multi-Objective Optimization Engine 

This is the core decision-making module that balances multiple conflicting objectives: 

Objective Function: 

min
x∈𝒳

 [C(x), E(x), T(x)]        (3) 

Where: 

C(x) : Total cost, 

• E(x) : Total emissions (from ML models), 

• T(x) : Total lead time. 

A Pareto front is computed using NSGA-II or similar evolutionary algorithms to identify non-

dominated solutions: 

𝒫 = {x ∈ 𝒳 ∣ ∄x′ ∈ 𝒳, f(x′) ≺ f(x)}      (4) 

The optimizer also feeds a scenario generation module that creates alternative feasible solutions 

for analysis and comparison. 

3.4 Explainability and Interactive Interface 

To ensure transparency, we embed Explainable AI (XAI) modules: SHAP Analysis: Quantifies 

the contribution of each input feature xi to the model's output: 

f(x) = ϕ0 + ∑  n
i=1 ϕi        (5) 

where ϕi is the SHAP value for feature xi. 

3.5 Feedback and Learning Loop 

User feedback from accepted/rejected recommendations is used to improve model performance 

via active learning. The feedback vector fb is integrated to update training datasets and re-tune 

models periodically: 

𝒟new = 𝒟old ∪ {(xi, yi, fb)}       (6) 

The reason why the proposed architecture is so novel is that it integrates predictive machine 

learning and sustainability focused optimization in a truly holistic manner that also tries to be 

user oriented in terms of explainability. In contrast to the traditional decision support systems, 

that merely consider only cost minimization, the considered framework at the same time takes 

into account both environmental impact and lead time. The system achieves this by developing 

transparent, interpretable recommendations that make the system not only handle good quality 

recommendations but also encourage adoption of more sustainable practices in multi echelon, 

data intensive supply chains. 

Algorithm 1: Sustainable Supply Chain Decision Support with Explainable ML 

Inputs: 

    𝒟_s ← Supplier data (cost, emissions, lead time, etc.) 

    𝒟_t ← Transport data (modes, CO₂/km, delay risk, etc.) 



    𝒟_o ← Operations data (energy usage, production time) 

    𝒟_r ← Regulatory data (emission limits, carbon tax) 

    𝒟_h ← Historical data (previous decisions and outcomes) 

    α, β, γ ← Weights for cost, emissions, and lead time in the objective function 

 

Outputs: 

    𝑥*   ← Optimal supply chain decision path 

    𝒫    ← Pareto front of alternatives 

    𝒮    ← SHAP explanations and counterfactual insights 

 

Procedure: 

 

1:  𝒟 ← Preprocess(𝒟_s, 𝒟_t, 𝒟_o, 𝒟_r, 𝒟_h) 

2:  𝒳 ← FeatureEngineering(𝒟) 

3:  Normalize all features in 𝒳 to [0, 1] range 

 

// Step 1: ML-based Predictions 

4:  ȳ_s ← f_s(𝒳_s)    // Supplier performance prediction 

5:  ȳ_t ← f_t(𝒳_t)    // Transport emission prediction 

6:  ȳ_o ← f_o(𝒳_o)    // Operational energy prediction 

7:  Ê_total ← ȳ_s + ȳ_t + ȳ_o   // Lifecycle emissions estimation 

 

// Step 2: Multi-objective Optimization 

8:  Define objective functions: 

       C(x): Total cost 

       E(x): Estimated emissions (Ê_total) 

       T(x): Total lead time 

 

9:  Optimize: 

       min  F(x) = [α · C(x), β · E(x), γ · T(x)] 

       subject to: x ∈ 𝒳_feasible 

 

10: 𝒫 ← NSGA-II(F(x))   // Compute Pareto optimal solutions 

11: x* ← SelectBest(𝒫, user_preferences) 

 

// Step 3: Explainability and Interface 

12: ϕ ← SHAP_Explain(f, x*)     // Feature contributions 

13: x_cf ← GenerateCounterfactual(x*)   // What-if scenarios 

14: 𝒮 ← {ϕ, x_cf} 

 

// Step 4: Feedback Loop (optional) 

15: if feedback from planner is available then 

16:     𝒟 ← UpdateData(𝒟, feedback) 

17:     Retrain(f_s, f_t, f_o) on new 𝒟 

18: end if 

 

Return x*, 𝒫, 𝒮 

 



3.6 Implementation 

The Python programming language (v3.10) within Anaconda distribution is implemented as 

such, giving a robust and flexible environment for scientific packages, for virtual environments, 

and for reproducible workflows implementation of the proposed explainable machine learning 

framework for sustainable supply chain and operations decision-making. The system is 

developed as a modular system that absorbs data ingestion, preprocessing, machine learning 

modelling, optimisation and explainability, and integrated within an interactive user interface. 

3.6.1 Environment and Tools 

The implementation was carried out using the Anaconda distribution, which provides a 

consolidated environment for scientific computing and package management. The following 

libraries and tools were utilizedas shown in table 1: 

Table 1. Environment and Tools. 

Module Description 

Data Preprocessing pandas, numpy for cleaning, normalization, and feature engineering 

Machine Learning xgboost, lightgbm, scikit-learn for prediction models 

Optimization Engine pymoo for multi-objective optimization using NSGA-II 

Explainability Tools shap for feature importance, DiCE for counterfactual explanations 

User Interface streamlit for an interactive decision dashboard 

Development Platform Python 3.10, Anaconda, Jupyter Notebook 

 

This setup ensured modularity, reproducibility, and ease of experimentation across multiple 

decision scenarios. 

3.6.2 Synthetic Dataset Design 

Due to the unavailability of public datasets that span supplier data, transportation emissions, 

operational energy use, and policy constraints simultaneously, a comprehensive synthetic 

dataset was developed. This dataset replicates real-world supply chain behavior while allowing 

controlled experimentation on sustainability-related objectives. The dataset includes the 

following components: 

• Supplier Data: Contains supplier ID, cost per unit, CO₂ emissions per unit, lead time, 

and reliability score. 

• Transport Data: Includes transport mode, cost per km, CO₂ emissions per km, and 

delay probability. 

• Operations Data: Captures production energy usage per batch, production time, and 

energy source type. 

• Regulatory Data: Defines carbon tax, emissions caps, and sustainability score targets. 

• Historical Data (optional): Logs past decisions and KPIs for model fine-tuning and 

active learning. 

All datasets are available in CSV format and were constructed with logical relationships among 

features to simulate realistic trade-offs. Table 2 gives the dataset description. 



Table 2. Dataset Details. 

File Name Description 

suppliers.csv Supplier characteristics and emission profiles 

transport.csv Emission and cost profiles for transport modes 

operations.csv Machine-level energy and production parameters 

regulations.csv Carbon tax and sustainability policies 

 

3.6.3 Rationale for Synthetic Dataset 

Using a synthetic dataset is essential in this context due to the multidimensional and sensitive 

nature of real supply chain data. Public datasets are often: 

• Proprietary and restricted due to confidentiality, 

• Lacking comprehensive sustainability or operational details, 

• Fragmented across domains (e.g., emissions and logistics data are not integrated). 

Creating a synthetic dataset allows control over data quality, completeness, and relationships 

among variables, enabling a robust evaluation of the proposed machine learning and 

optimization pipeline as shown in Fig 2. 

 

Fig. 2. Optimization Pipeline. 

We present a modular implementation of a python supply chain decision support system entirely 

based on a well-structured synthetic dataset. The framework supports both technical 

optimization and strategic decision making based on transparent and explainable insights. 

4 Results and Analysis 

The last section discusses the visual results obtained from the proposed system on synthetic data 

over supplier, transportation and operational parameters. We demonstrate that the framework is 

an effective optimization of the trade off and an interpretable AI decision support. The key 

findings are explained below in the form of figures. 

Fig 3 conveys the trade-offs that a supplier faces between cost and emissions. On the other hand, 

supplier S2, that has the lowest carbon footprint, i.e. 1.5 kg CO₂ per unit, has a slight higher cost 



at $5.00. On the other hand, S1 has the lowest cost at $4.50 but emits 2.1 kg CO₂/unit, providing 

a typical sustainability vs cost conflict. 

 

Fig. 3. Supplier Cost vs Emission. 

As shown in Fig. 4, sea transport is found to become the most sustainable and cost effective way 

of transport with CO₂/km of 0.1 Kg and cost/km of $0.30, whereas the air transport remains the 

most expensive ($1.20/km) and from the environmental point of view it is the most polluting 

way of transport (1.8 Kg CO₂/km), although its speed is essentially higher. 

 

Fig. 4. Transport Mode Cost vs Emissions. 

As seen in Fig 5, emissions of supplier lead time are plotted as a function of cost, with color 

indicating cost. The most efficient is S2, which takes just 4 days lead time and 1.5 kg CO₂. S3, 

though slightly cheaper than S2, incurs the highest emissions (2.8 kg CO₂) and the longest delay 

(10 days). 



 

Fig. 5. Lead Time vs Emission (Supplier Trade-off). 

The NSGA-II optimization has a Pareto front plotted in Fig 6 between cost and emissions. 

Decreasing cost from $5.00 to $4.20 increases emissions from 1.6 to 2.8 kg CO2, which verifies 

that in general lower the cost means higher the emissions only if it is balanced by optimization. 

 

Fig. 6. Pareto Front: Cost vs Emissions (Optimized Scenarios). 

Fig 7 shows production emissions in terms of energy source. Renewable energy allows us to 

reduce batch emissions all the way down to 1.2kg CO₂ (grid powered production being 3.5kg 

CO₂). This shows the importance of energy sourcing in sustainability operation. 



 

Fig. 7. Production Emissions by Energy Source. 

Delay risks for the various transport modes are shown in Fig 8. The highest delay probability is 

shown in air transport, (20%), while the least delay is seen in the sea transport (5%). These 

findings for doing so suggest they are preferable for less urgent emission sensitive deliveries. 

 

Fig. 8. Transport Delay Risk Across Modes. 

Five KPIs are compared between baseline and optimized scenario in Fig 9. The improved setup, 

compared to the nominal, exhibits cost, emissions, and lead-time lowering ($5.00 → $4.40), 

emissions (2.8 → 1.9 kg CO₂) and lead time (8 → 5 days) and increases reliability (0.90 → 

0.95) and sustainability score (70 → 88). 



 

Fig. 9. KPI Radar Chart: Baseline vs Optimized. 

Predictions of the model can be explained by SHAP values in the Fig 10. The most influential 

decision factor was cost (35%), followed by cost of transport mode (25%) and lead time (20%). 

The interpretability of this scheme allows stakeholders to see and trust the AI system's 

recommendation. 

 

Fig. 10. SHAP Feature Importance for Emission Prediction. 

Fig 11 demonstrates a counterfactual comparison. By adjusting the supplier and transport mode, 

the emissions drop from 2.8 kg to 1.7 kg CO₂ and cost from $5.00 to $4.60 proving that favoring 

modest configuration changes can have favorable results. 

 



 

Fig. 11. Counterfactual Impact Comparison: Emissions and Cost. 

Comparative Analysis: Baseline vs Proposed Method 

A comparative analysis (Table 3) was made with respect to a baseline model based on 

conventional decision-making, without using optimization or explainability. The proposed 

system includes components of multi objective optimization, ML predictions and explainable 

AI, whereas the baseline simulates the way industries make typical decision by cost heuristics 

and fixed rules. It brings an improvement across multiple key performance indicators (KPIs). In 

terms of cost, the proposed system lowered the total unit cost from $5.00 to $4.40 (saving $0.60 

per unit) without a negation of delivery timeliness or reliability. The environmental impact of 

the system was exhibited when the carbon emissions dropped notably from 2.8 kg CO₂ per unit 

in the baseline to 1.9 kg CO₂. Besides, the average lead time was reduced from 8 to 5 days which 

enhanced operational efficiency. Moreover, the optimization resulted in a higher supplier 

reliability of 0.95 compared to 0.90 in the selection. In terms of the sustainability score, this is 

a combined score of carbon compliance, energy source quality and supply chain ethics, it 

increased significantly from 70 to 88. Finally, delay probability was reduced from 20% to 5% 

by means of intelligent transport mode selection, also contributing to a reduction in risk. Finally, 

the most strategic advantage is that the proposed method allows for explainability in the form 

of SHAP values and provides the option of counterfactual recommendations, something that the 

baseline model did not provide at all. 

Table 3. Comparative Analysis – Baseline vs Proposed Methodology. 

KPI 
Baseline 

Model 
Proposed Method Improvement 

Total Cost ($) 5.00 4.40 $0.60 cost reduction 

Total Emissions (kg 

CO₂) 
2.80 1.90 0.90 kg CO₂ reduction 

Average Lead Time 

(days) 
8 5 3 days shorter 

Supplier Reliability 0.90 0.95 +0.05 reliability 

Sustainability Score 70 88 +18 sustainability score 



Delay Probability High (20%) Low (5%) 
Reduced from 20% to 

5% 

Decision 

Explainability 
Not Available 

SHAP + 

Counterfactuals 

Model transparency 

included 

 

This analysis proves the performance benefits of the proposed system over the comprehensive 

operational cost as well as efficiency and enabling sustainability and interpretability in supply 

chain decisions making. 

5 Discussion 

This study presents results illustrating the great advantage achieved by adding machine learning, 

multi objective optimization and explainable AI into sustainable supply chain and operations 

management. The proposed framework resolves the key cost, lead time and emissions trade-offs 

by integrating a predictive modelling with a Pareto based optimization engine. In addition, in 

the comparative analysis with a baseline model the practical value of the methodology is 

reinforced through realizing the measurable improvement of the performance in several KPIs. 

The system delivered a $0.60 unit cost reduction accompanied with 0.90 kg CO₂ emissions 

reduction and 3 days average lead time reduction. The improvements demonstrated here 

highlight how the framework can arrange more informed, and less biased and more sustainable 

decisions without compromising on economic efficiency. In addition, the increase in supplier 

reliability and sustainability score implies that the model naturally prefers more resilient and 

green designs to solve the problem when optimization is directed by the forecasts. 

The highlight of this approach is having explainability with tools like SHAP and counterfactual 

reasoning on each recommendation. One of great benefits of such transparent models is that it 

engenders trust by allowing decision makers to see the logic behind model outputs—something 

black box models lack. However, the system is also equipped with a feedback loop embedded 

in the system that places it in a position for long term adaptation as the model can change over 

time as new data and new user preferences develop. From a subject matter standpoint, the results 

support the use of synthetic data as a means in simulating, in a reduced form, aspects of complex, 

multi-layered decision making that typically arises in supply chain contexts. Although the 

dataset is synthetic, therefore it is not possible to demonstrate real world variabilities, but there 

is a robust dataset to test the algorithmic behaviour. The intent of this study was to describe a 

framework for this investigation, and future work will employ this framework on real industrial 

data and study dynamic and real-time optimization of adaptive supply chains. The proposed 

methodology adds to the quality of decision-making by having an interpretability, awareness of 

risk and alignment with sustainability goals, in addition to quantitative optimising of decisions. 

It paves the way to the next generation of intelligent, giving, and perceptible supply chain 

systems. 

6 Conclusion 

This paper proposes a novel, explainable machine learning based framework for sustainable 

supply chain and operational decision making. The proposed system combines predictive 

modelling, lifecycle emissions estimation, and multi objective optimization, providing a holistic 

approach to cost, environmental impact, and operational efficiency trade-offs. What this 

framework does differently is it includes SHAP based interpretability (transparent justifications 



for all recommendations) and counterfactual scenario analysis (scenario analysis) for decision 

makers to understand not only optimized solution, but also reasoning behind it. We provide 

extensive experimental evaluations from a custom synthetic dataset, showing that the proposed 

methodology beats, and greatly so, a conventional baseline approach. The key improvements 

from this work are a 12 % reduction in cost, 32 % reduction in CO₂ emissions, 3-day reduction 

in lead time, among others, and improvements in supplier reliability and sustainability scores. 

In addition, explainability tools integrated in modern supply chains help build trust and usability 

and comply with more transparency decision-making standards as well. Those are the keys to 

creating the business foundation for creating scalable, intelligent, and responsible supply chain 

systems. It facilitates data driven optimization to be achieved together with actionable human 

centric insights, so that organisations can reach their economic and environmental aspirations. 
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