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Abstract. Testing is one of the most important phases of software development, ensuring 

that the system functions efficiently, performs its intended tasks, and remains reliable. As 

the size of the test set grows polynomial (N²), the cost, redundancy and executing time also 

increase. Classical test case reduction techniques (heuristic and greedy approaches) usually 

cannot strike the right balance between the capability to detect errors and code coverage in 

minimizing test cases. In order to tackle this problem, we first construct a PSO-based 

testing case reduction method to intelligently select the optimal test case subset. The PSO 

algorithm considers the test case selection as an optimization problem and uses particles 

to represent candidate subsets. The objective of the fitness function is to maximize the 

defect finding rate, code coverage and minimize execution time. With the update of 

positions with respect to global and individual optima, particles can conduct detailed 

search and decision. Experimental results show that our approach achieves high defect 

detection and coverage by greatly reducing the total number of tests. This renders the 

method particularly well suited to large software testing with less overhead, a more rapid 

execution, and a higher effectiveness. 

Keywords: PSO - Particle Swarm Optimization, Metaheuristic Algorithm, MOPSO - 

Multi Objective Particle Swarm Optimization Test Suite Optimization, Execution Time 

Automated Testing, GA - Genetic algorithm, Fault Detection 1, Code Coverage. 

1 Introduction 

Software testing plays a critical role in ensuring the efficiency, functionality, and reliability of 

software systems [1]. However, as the complexity of software increases, the number of test cases 

grows significantly, leading to redundancy, longer execution time, and higher computational 

overhead. Traditional methods, such as greedy and heuristic approaches, often fail to minimize 

test cases while maintaining adequate code coverage and fault detection effectiveness [2], [3]. 

To overcome these limitations, metaheuristic algorithms such as Particle Swarm Optimization 

(PSO) have been adopted. Inspired by the collective movement of flocks of birds and schools 

of fish, PSO has been successfully applied to minimize and prioritize test cases while improving 

efficiency [4]. The goal is to maximize fault detection and code coverage while reducing 

execution time, making PSO an effective candidate for large-scale regression testing. 

Advanced versions of PSO use tactics such as adaptive test case selection and dynamic 

alterations to speed up the process and select the most relevant test cases [4], [5]. 

These methods perform better in fault detection and code coverage than other classical 
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algorithms such as Genetic Algorithms (GA), Bat Algorithms (BAT), and Grey Wolf 

Optimization (GWO) [6], [7], [8]. Based on these achievements, we further present a new test 

case reduction approach with PSO to choose the optimal subset of test cases, with the motivation 

of conducting testing efficiently, thereby improving software quality and reliability [1], [2]. 

In this approach, test case selection is considered as an optimization problem by PSO, with each 

particle corresponding to a candidate set of test cases. The problem can be described as: Given 

a fixed-size test suite (TS) of a software system, when a test case contributes to code coverage 

(C), fault detection effectiveness (F), and test execution time (T), the objective is to minimize 

redundant test cases while preserving the overall fault detection ability and code coverage. By 

applying PSO, we intend to choose the best subset of test cases which maximizes C and F while 

minimizing T, thus improving efficiency of test case execution without loss of software quality 

[4], [5]. 

The goal is to maximize code coverage and fault detection, while minimizing execution time. 

The particles continually reconsider their positions and solutions to reach the best outcome. 

Based on experimental results, this approach retains high fault detection and code coverage 

while significantly reducing the total number of tests [4]. 

This makes it well-suited for deployment in large-scale software test environments, allowing 

faster runtimes, reduced testing costs, and higher effectiveness. Through interleaving smart 

search strategies and software testing strategies, PSO adaptively optimizes test case selection 

and ensures the appropriate proportion of selective test cases, making testing comprehensive 

and efficient [4], [5]. 

2 Literature Survey 

This section summarizes the particle swarm optimization test literature prioritization. The 

accepted literature shows the type of methodology researchers may have used. Performance of 

test suites can be improved by applying a GA-based automatic test suite optimization method 

[15]. This approach includes the study of multiple selection methods (e.g., rank, roulette wheel, 

and tournament) [5]. Experimental results demonstrate that tournament-based selection for test 

time and fitness outperforms the others. In test case generation and optimization, soft computing 

techniques such as Genetic Algorithms (GA) and Artificial Bee Colony (ABC) algorithms have 

been proposed [14]. The purpose of these algorithms is to automate the process of generating 

test data and improving test cases to find more faults, thereby increasing the effectiveness and 

efficiency of the software testing process. Various test case generation approaches have been 

reviewed and compared with reference to test case quality, with code coverage being the main 

assessment criterion. For JUnit test suites, several options for code coverage used in test-suite 

reduction have been investigated [1]. Statement coverage and method coverage are the primary 

strategies considered: method coverage ensures that each method in the code is invoked at least 

once, while statement coverage ensures that each statement is executed at least once. Internal 

test-case reduction has also been studied, where the technique was implemented in the Python 

testing library over Hypothesis properties [17]. Rather than reducing the test case itself, the idea 

behind internal test-case reduction is to change the order of the random choices made during 

test development. This sidesteps validity problems by ensuring that any smaller test case could 

have been generated. Because the optimization resulted in test cases that were simpler or smaller 

but still functional, the approach follows the shortlex ordering algorithm. A novel approach 

using Multi-objective Particle Swarm Optimization (MOPSO) to prioritize test cases was also 



 

introduced [12]. Compared to previous methods such as random ordering, reverse ordering, and 

no ordering, the MOPSO method achieves strong results. It requires less time for 

implementation and achieves higher fault detection rates for datasets such as Tree Data 

Structure, Joda Time, and Triangle. Furthermore, the MOPSO method improves code coverage, 

inclusiveness, and precision with improvement rates ranging from 17% to 86% in inclusiveness 

and 33% to 85% in precision. Other greedy-based methods have been used to reduce the size of 

test suites while retaining defect detection capability [7], [19]. 

For test case prioritization (TCP), several ML-based methods have been evaluated to achieve 

higher code coverage in software testing [3]. These methods improve regression testing by 

performing critical test cases earlier to achieve fault detection and coverage while reducing 

execution cost. Machine learning test suite optimization approaches such as classification, 

clustering, reinforcement learning, and hybrid strategies have also been proposed [9], [11]. 

Search-based techniques have been shown to reduce execution time and lead to higher quality 

test coverage, particularly in embedded systems, IoT, real-time applications, and mission-

critical software [16]. Multi-objective techniques such as NSGA-II handle conflicting objectives 

by maximizing defect detection while minimizing execution cost [11]. The sensitive index (SI) 

is used to prioritize test cases related to fault-prone areas, newly added or modified code, or 

high failure rates. Other methods such as PCF, TCCF, and TCIF use path coverage, fault 

detection impact, and test complexity as reduction criteria [18]. These methods employ case-

based reasoning (CBR) deletion algorithms to eliminate redundant test cases. Mutation-based 

fault localization (MBFL) can also be improved by adopting Contribution-Based Test Case 

Reduction (CBTCR), which calculates the contribution of each test case using both failing and 

successful cases [5]. Empirical analysis demonstrates that CBTCR significantly reduces cost 

while preserving accuracy. Fuzzy clustering methods have also been applied for test suite 

optimization [10]. In addition, hybrid algorithms such as the Cuckoo Search and Bee Colony 

Algorithm (CSBCA) have been designed to optimize test case generation and improve 

computational efficiency [13]. 

𝐹 =  𝛼(𝐶) + 𝛽(𝐹) − 𝛾(𝑇)                                                                                                      (1) 

Every particle updates its speed and position according to one global best (gBest) and personal 

best (pBest) solutions. The formula to update the velocity is: 

𝑢𝑡 + 1 = 𝑤𝑡𝑣𝑡 + 𝑐1𝑟1𝑡(𝑝𝐵 𝑒𝑠𝑡 − 𝑥𝑡) + 𝑐2𝑟2𝑡(𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑡)                                             (2) 

The fly technique in the CS phase and the employed bee and spectator bee phases in the BCA 

enable the CSBCA to generate and optimize test cases with minimal computational time [13]. 

The SCTF Algorithm improves the effectiveness of generated test cases with higher fitness and 

path coverage when compared with techniques such as Firefly Algorithm (FA), Bee Colony 

Algorithm (BCA), Cuckoo Search (CS), and Particle Swarm Optimization (PSO) [4], [6]. To 

reduce the cost and time of regression testing, a set of test case reduction approaches for 

minimizing the size of regression test suites has been proposed [16]. The strategies are classified 

into categories such as fuzzy logic, program slicing, greedy algorithms, hybrid algorithms, 

requirement-based methods, coverage-based methods, genetic algorithms, and clustering. All 

methods are evaluated based on how effectively they reduce the number of test cases while 

retaining defect detection capability [5], [10]. 



 

3 Proposed Approach 

In this paper, we proposed a particle swarm optimisation (PSO) based test case reduction 

approach to achieve an effective and efficient software testing. The rise of complex software 

systems makes dynamic test-suite based performance improvement calls for smart optimization 

methods that keep fault detection capability and code coverage. Our method takes advantage 

of swarm intelligence to capture and retain important test cases, and remove duplicated ones, 

in order to obtain an associated minimal test suite with high efficiency. The proposed approach 

adheres to a straightforward pipeline. First, model-based testing is carried out and test cases are 

generated from (formal) software specifications, finite-state machines (FSMs), or 

requirements-based models. Key attributes such as execution time, code coverage ratio and 

fault detection rate are covered in the test case scenarios. Preprocessing follows, where the stale 

test cases are removed, missing data are filled in and attributes are normalised for fair 

comparison. In the post-processing stage, we applied Particle Swarm Optimisation (PSO) to the 

test suite. The movement of flocks, such as bird flocking to an optimal position, inspired PSO, 

a population-based stochastic optimisation method. In our approach, each particle corresponds 

to a candidate sub subset of test cases and the aim is to find the best combination which 1) 

decreases the number of errors, and 2) increase code coverage. These test scenarios execution 

time, code coverage percentage, and fault detection effectiveness are major aspects. Each 

particle’s position is represented by a binary vector, where 1 represents a decision to include a 

test case and 0 denotes to exclude it. In PSO the fitness function is contrived in order to balance 

a few objectives: 

A sigmoid transformation is applied to discrete velocities to obtain binary decisions whether a 

test case is included into the final reduced test suite. The iteration strategy of PSO ensures 

continuous improvement, so that a part of the test cases is more optimized and with less 

execution cost, which could result in the maximum efficiency for testing cases. In our 

approach, PSO well balances the reduction of test suite size with the testing efficiency, which 

is very suitable for largescale software products and embedded applications where time and 

resource are very limited. Our findings provide evidence that PSO-type test case reduction 

substantially reduces testing time while at the same time, does not harm code quality. This 

methodology provides a flexible, adaptive, and automatic platform to some current issues in 

the software testing. 

4 Methodology 

In this paper, we proposed a particle swarm optimisation (PSO) based test case reduction 

approach to achieve an effective and efficient software testing. The rise of complex software 

systems makes dynamic test-suite based performance improvement calls for smart optimization 

methods that keep fault detection capability and code coverage. Our method takes advantage 

of swarm intelligence to capture and retain important test cases, and remove duplicated ones, 

in order to obtain an associated minimal test suite with high efficiency. The proposed approach 

adheres to a straightforward pipeline. First, model-based testing is carried out and test cases are 

generated from (formal) software specifications, finite-state machines (FSMs), or 

requirements-based models. Key attributes such as execution time, code coverage ratio and 

fault detection rate are covered in the test case scenarios. Preprocessing follows, where the stale 

test cases are removed, missing data are filled in and attributes are normalised for fair 



 

comparison. In the post-processing stage, we applied Particle Swarm Optimisation (PSO) to the 

test suite. The movement of flocks, such as bird flocking to an optimal position, inspired PSO, 

a population-based stochastic optimisation method. In our approach, each particle corresponds 

to a candidate subset of testcases and the aim is to find the best combination which 1) decreases 

the number of errors, and 2) increase code coverage. These test scenarios execution time, code 

coverage percentage, and fault detection effectiveness are major aspects. Each particle’s 

position is represented by a binary vector, where 1 represents a decision to include a test case 

and 0 denotes to exclude it. In PSO the fitness function is contrived in order to balance a few 

objectives: 

A sigmoid transformation is applied to discrete velocities to obtain binary decisions whether a 

test case is included into the final reduced test suite. The iteration strategy of PSO ensures 

continuous improvement, so that a part of the test cases is more optimized and with less 

execution cost, which could result in the maximum efficiency for testing cases. In our 

approach, PSO well balances the reduction of test suite size with the testing efficiency, which 

is very suitable for largescale software products and embedded applications where time and 

resource are very limited. Our findings provide evidence that PSO-type test case reduction 

substantially reduces testing time while at the same time, does not harm code quality. This 

methodology provides a flexible, adaptive, and automatic platform to some current issues in 

the software testing. 

𝑥𝑖 = {1, 0 𝑖𝑓 𝑟𝑎𝑛𝑑() <
1

1+𝑒−𝑣𝑖

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

                                                                                            (3) 

For a predetermined number of iterations or until convergence, this process is repeated. The 

global best particle at the conclusion of the optimisation process stands for the ideal subset of 

test cases. The final reduced test suite achieves maximum coverage and fault detection while 

significantly reducing execution time, making it ideal for large-scale software testing 

environments. This project's feature selection procedure focusses on important attributes that 

influence the effectiveness of test case reduction, encompassing the percentage of code 

coverage, defect priority level, execution time, and detection capabilities. These features are 

normalized to ensure comparability, with the goal of maximizing coverage and fault detection 

while minimizing execution duration. Fig 1 Shows the Test function for PSO-based Test Case 

Reduction. 

The accuracy of the Particle Swarm Metrics is used to assess the optimization (PSO) algorithm 

such as fault detection rate, which guarantees that the smaller test suite is free of errors, and 

reduction rate, which calculates the proportion of test cases removed without sacrificing 

coverage. keeps up a high capacity for defect detection. The algorithm consistently achieves a 

40-50% reduction in test cases while preserving essential coverage and fault detection rates. 

Since the study is focused on automated test case optimization, human subject review is not 

directly applicable. However, software engineers and testers validate the reduced test suite to 

ensure that critical functionalities are adequately covered and no essential test cases are 

omitted. Python Code for Generating a Random Binary Coverage Matrix using NumPy and 

Pandas shown in Fig 2. 

 



 

 

Fig. 1. Test function for PSO-based Test Case Reduction. 

 

Fig. 2. Python Code for Generating a Random Binary Coverage Matrix using NumPy and Pandas. 

We determined the cost of processing the entire source code by each test case using the equation 

by utilising the coverage data and the weight factor values. Fig 3 Shows the Coverage Matrix. 

𝐶𝑜𝑠𝑡(𝑇𝑖)  =  ∑𝑘𝑗 = 1[(𝐶(𝑆𝑗)  ∗  𝑊𝐹𝑗)]                                                                                        (4) 



 

 

Fig. 3. Coverage Matrix. 

The main expense in the implementation of the PSO is computational resources, as it analyses 

big data to propose optimal groups of test cases. Additional costs could be software licenses for 

libraries such as Python, NumPy and Pandas and the amount of time it takes a developer to 

develop and tune the algorithm. As the project is implemented with open-source tools, the cost 

is very low, which makes the approach effective and inexpensive. The research methodology is 

experimental in nature, collecting data from software projects with different levels of 

complexity. The aggregated data is preceded by a pre-processing step which normalizes feature 

values and eliminates redundant information. Multiparticle optimization algorithm is used to 

select an optimal subset of test cases, and performance measures such as execution time and 

fault detection rate are used to measure the success of the reduced suite. We compare the results 

against baseline methods such as greedy algorithms and the genetic algorithms, and prove the 

algorithm is both efficient and accurate. Data set conformed by test cases with different 

characteristics (features and execution times) is used in this study, ensuring the selected subset 

minimal and representative. The process encompasses normalisation of dataset as well as 

particles representing random subsets of the test instances are initialisation steps. The PSO 

formulates are used by the particles to update the positions and velocities, and the fitness for 

each particle is evaluated based on the code coverage, fault detection, and execution time. This 

is repeated until the algorithm converges or up to the allowed maximum number of iterations. 

Last best global particle is the optimal selected set of test cases that ensure maximal coverage 

and fault detection while minimizing both execution time and run-time overhead. With a 

complete solution carefully designed to ensure efficiency and effectiveness, the reduced test 

suite is applicable to large-scale software testing scenarios. 

5 Statement of Limitation 

The objective of this research is to use Particle Swarm Optimization (PSO) to solve the 

optimization problem of test case reduction, where fault detection and code coverage [8] are 

still high. The study substantially minimizes the time and computational cost of regression 



 

testing through the selection of a near-optimized set of test cases. The proposed methodology 

guarantees that the chosen test cases exercise important functionalities and interactions, 

contributing to an increased efficiency in the testing process. Furthermore, it shows that meta-

heuristic algorithms such as PSO could outperform traditional techniques like greedy algorithms 

and the genetic algorithms in relation to speed and scalability. Moreover, the reduced test suite 

is analyzed for various metrics i.e., reduction rate, fault detection execution time and fault 

coverage. The results reveal that the PSO algorithm is suitable for large-scale systems since it 

drastically cuts down the number of test cases while maintaining the same quality and 

confidence in the testing process. It is important to point out that generation of new test cases 

and discovery of previously undetected errors is not, however, the primary aims of this study. 

It is not in the business of creating new test cases; its purpose is rather to reduce the size of a 

given test suite. Besides, the method disregards test case dependencies, which may be important 

if we have test cases that are not independent and where the execution order can influence the 

outcome. Another drawback is that the performance of the algorithm may also be affected by 

the input dataset quality and diversity. If the dataset does not exhibit enough variance, then the 

algorithm may not get you the best results. Furthermore, PSO is a randomized algorithm, and 

results obtained for different runs might differ, especially for a large dataset. While this 

unpredictability can be mitigated by tuning hyperparameters such as social coefficient, 

cognitive coefficient, and inertia weight, the consistency might also be affected. SA, ACO and 

GA are also some of optimization techniques used for test case reduction. Genetic Algorithms 

(GA) on the other hand work well in complex search spaces and often provide diverse solutions, 

however they may be resource intensive and time consuming when compared to PSO. Ant 

Colony Optimization (ACO) is appropriate for path optimizers but could be less effective when 

we deal with binary selection problems as test case reduction. Simulated Annealing (SA) is one 

alternative method for global optimization that is less complex than GAs, but its performance 

can be subject to the selection of cooling schedules and temperature parameters. There are 

however alternatives but PSO is selected for this study because of its simplicity, efficiency and 

faster convergence, especially for binary selection problems. In summary, the present work 

effectively employs PSO to reduce the size of test suites under the condition that good code 

coverage and defect detection rate can still be maintained. Yet, it also does not construct new 

test cases or consider the dependencies between test cases, and its effectiveness depends on the 

dataset and algorithm parameters. Despite other alternatives such as GA, ACO, and SA 

provide distinct contribution, PSO still has its advantage as a practical and effective strategy to 

large-scale test case reduction because of its faster convergence and less computational cost. 

6 Experimental Results 

Its test suite size grows exponentially with program complexity, which leads to higher 

execution time and a bigger expenditure of computational cost. We propose a Particle Swarm 

Optimisation (PSO) based test case reduction technique to address this provisioning problem. 

Even then, its ability to detect faults is kept high, it is intelligent, it chooses an optimal subset 

of both test cases and coverage. In contrast to the classical reduction tools, such as greedy or 

heuristic-based algorithms, PSO is more adaptive and effective for test case prioritization and 

reduction, so it is suitable for large scale and embedded systems. The approach starts with test 

case attribute extraction (i.e., raw performance time, fault detection effectiveness, and code 

coverage of the test cases) and pre-processing by normalizing to obtain comparable values. 

PSO is applied to optimise test cases selection, by treating the test suite as a search field, where 

each particle represents A candidate solution (i.e., a set of test instances). A swarm of particles 



 

that is used to represent candidate test case selections is initialized by the algorithm, and is 

evolved iteratively by the algorithm based on a fitness function. The analysis of reduced test 

cases led to some interesting observations of their utility. As shown in Fig 4, the distribution of 

code coverage indicates that the minimized set maintains a high statement coverage across the 

test suite. In addition, Fig 5 and 6 depict fault detection effectiveness with the reduced cases 

that fault detection is still consistent and reliable after reduction, and the effectiveness is the 

same for reduced test suites. 

 

Fig. 4. Code Coverage Distribution of Reduced Test Cases. 

 

Fig. 5.  Fault Detection Distribution of Reduced Test Cases. 



 

 

Fig. 6. Fault Detection Distribution of Reduced Test Cases. 

The selected test cases provide the best possible test efficiency to the degree that the fitness 

function is constructed to maximize code coverage and, fault detection effectiveness in 

replicate execute time reduction. Particles update their positions at each iteration based on the 

gbest and their personal best solutions (pbest). The velocity of each particle is updated by a 

formula involving three significant factors: inertia weight (w), social learning factor (c2), and 

cognitive learning factor (c1). Whereas the social and cognitive factors guide the search for the 

best answer, the inertia component helps on keeping previous momentum. Fig 7 Shows the 

Reduced Test Cases 

 

Fig. 7. Reduced Test Cases. 



 

Eventually the swarm tunes to an optimum set of test cases that provide optimum coverage and 

fault detection with minimum number of test cases as iterations proceed. for an effective and 

reliable suite of test cases in execution, the Ultimate Reduced test suite is the one selected by 

the particle in the swarm that has the best performance. This PSO based approach significantly 

enhances testing efficiency by eliminating the unwanted test cases, reducing the testing 

execution time and ensuring the effectiveness of test suite in detecting faults. PSO, as opposed 

to heuristic arbitrary-decision approaches, provides us with dynamic, adaptive, and scalable 

optimization procedure for further improving upon test-case selection, which is highly suited 

for practical software testing cases, where embedded systems and large-scale regression testing 

stand out. Using swarm intelligence, the approach provides a well-considered compromise of 

efficiency and quality of the produced software, leading to more efficient and cheaper testing 

cycles. 
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