

Optimizing Test Case Reduction Using Particle Swarm

Optimization

R. Manikandan1, T. R. Chandana2, M. Vandana3, C. Sriram Somanath4 and K. Suresh5

{drmanikandanr@mits.ac.in1, trchandana2003@gmail.com2, vandanamajjiga@gmail.com3,

sriram2003@gmail.com4, sureshkotakonda59@gmail.com5}

Associate Professor, Department of CST, Madanapalle Institute of Technology & Science, Angallu,

Andhra Pradesh, India1

Students, Department of CST, Madanapalle Institute of Technology & Science, Angallu, Andhra Pradesh,

India2, 3, 4, 5

Abstract. Testing is one of the most important phases of software development, ensuring

that the system functions efficiently, performs its intended tasks, and remains reliable. As

the size of the test set grows polynomial (N²), the cost, redundancy and executing time also

increase. Classical test case reduction techniques (heuristic and greedy approaches) usually

cannot strike the right balance between the capability to detect errors and code coverage in

minimizing test cases. In order to tackle this problem, we first construct a PSO-based

testing case reduction method to intelligently select the optimal test case subset. The PSO

algorithm considers the test case selection as an optimization problem and uses particles

to represent candidate subsets. The objective of the fitness function is to maximize the

defect finding rate, code coverage and minimize execution time. With the update of

positions with respect to global and individual optima, particles can conduct detailed

search and decision. Experimental results show that our approach achieves high defect

detection and coverage by greatly reducing the total number of tests. This renders the

method particularly well suited to large software testing with less overhead, a more rapid

execution, and a higher effectiveness.

Keywords: PSO - Particle Swarm Optimization, Metaheuristic Algorithm, MOPSO -

Multi Objective Particle Swarm Optimization Test Suite Optimization, Execution Time

Automated Testing, GA - Genetic algorithm, Fault Detection 1, Code Coverage.

1 Introduction

Software testing plays a critical role in ensuring the efficiency, functionality, and reliability of

software systems [1]. However, as the complexity of software increases, the number of test cases

grows significantly, leading to redundancy, longer execution time, and higher computational

overhead. Traditional methods, such as greedy and heuristic approaches, often fail to minimize

test cases while maintaining adequate code coverage and fault detection effectiveness [2], [3].

To overcome these limitations, metaheuristic algorithms such as Particle Swarm Optimization

(PSO) have been adopted. Inspired by the collective movement of flocks of birds and schools

of fish, PSO has been successfully applied to minimize and prioritize test cases while improving

efficiency [4]. The goal is to maximize fault detection and code coverage while reducing

execution time, making PSO an effective candidate for large-scale regression testing.

Advanced versions of PSO use tactics such as adaptive test case selection and dynamic

alterations to speed up the process and select the most relevant test cases [4], [5].

These methods perform better in fault detection and code coverage than other classical

ICITSM-Part II 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2358023

mailto:drmanikandanr@mits.ac.in1
mailto:trchandana2003@gmail.com
mailto:vandanamajjiga@gmail.com3,
mailto:sriram2003@gmail.com4,
mailto:sureshkotakonda59@gmail.com5

algorithms such as Genetic Algorithms (GA), Bat Algorithms (BAT), and Grey Wolf

Optimization (GWO) [6], [7], [8]. Based on these achievements, we further present a new test

case reduction approach with PSO to choose the optimal subset of test cases, with the motivation

of conducting testing efficiently, thereby improving software quality and reliability [1], [2].

In this approach, test case selection is considered as an optimization problem by PSO, with each

particle corresponding to a candidate set of test cases. The problem can be described as: Given

a fixed-size test suite (TS) of a software system, when a test case contributes to code coverage

(C), fault detection effectiveness (F), and test execution time (T), the objective is to minimize

redundant test cases while preserving the overall fault detection ability and code coverage. By

applying PSO, we intend to choose the best subset of test cases which maximizes C and F while

minimizing T, thus improving efficiency of test case execution without loss of software quality

[4], [5].

The goal is to maximize code coverage and fault detection, while minimizing execution time.

The particles continually reconsider their positions and solutions to reach the best outcome.

Based on experimental results, this approach retains high fault detection and code coverage

while significantly reducing the total number of tests [4].

This makes it well-suited for deployment in large-scale software test environments, allowing

faster runtimes, reduced testing costs, and higher effectiveness. Through interleaving smart

search strategies and software testing strategies, PSO adaptively optimizes test case selection

and ensures the appropriate proportion of selective test cases, making testing comprehensive

and efficient [4], [5].

2 Literature Survey

This section summarizes the particle swarm optimization test literature prioritization. The

accepted literature shows the type of methodology researchers may have used. Performance of

test suites can be improved by applying a GA-based automatic test suite optimization method

[15]. This approach includes the study of multiple selection methods (e.g., rank, roulette wheel,

and tournament) [5]. Experimental results demonstrate that tournament-based selection for test

time and fitness outperforms the others. In test case generation and optimization, soft computing

techniques such as Genetic Algorithms (GA) and Artificial Bee Colony (ABC) algorithms have

been proposed [14]. The purpose of these algorithms is to automate the process of generating

test data and improving test cases to find more faults, thereby increasing the effectiveness and

efficiency of the software testing process. Various test case generation approaches have been

reviewed and compared with reference to test case quality, with code coverage being the main

assessment criterion. For JUnit test suites, several options for code coverage used in test-suite

reduction have been investigated [1]. Statement coverage and method coverage are the primary

strategies considered: method coverage ensures that each method in the code is invoked at least

once, while statement coverage ensures that each statement is executed at least once. Internal

test-case reduction has also been studied, where the technique was implemented in the Python

testing library over Hypothesis properties [17]. Rather than reducing the test case itself, the idea

behind internal test-case reduction is to change the order of the random choices made during

test development. This sidesteps validity problems by ensuring that any smaller test case could

have been generated. Because the optimization resulted in test cases that were simpler or smaller

but still functional, the approach follows the shortlex ordering algorithm. A novel approach

using Multi-objective Particle Swarm Optimization (MOPSO) to prioritize test cases was also

introduced [12]. Compared to previous methods such as random ordering, reverse ordering, and

no ordering, the MOPSO method achieves strong results. It requires less time for

implementation and achieves higher fault detection rates for datasets such as Tree Data

Structure, Joda Time, and Triangle. Furthermore, the MOPSO method improves code coverage,

inclusiveness, and precision with improvement rates ranging from 17% to 86% in inclusiveness

and 33% to 85% in precision. Other greedy-based methods have been used to reduce the size of

test suites while retaining defect detection capability [7], [19].

For test case prioritization (TCP), several ML-based methods have been evaluated to achieve

higher code coverage in software testing [3]. These methods improve regression testing by

performing critical test cases earlier to achieve fault detection and coverage while reducing

execution cost. Machine learning test suite optimization approaches such as classification,

clustering, reinforcement learning, and hybrid strategies have also been proposed [9], [11].

Search-based techniques have been shown to reduce execution time and lead to higher quality

test coverage, particularly in embedded systems, IoT, real-time applications, and mission-

critical software [16]. Multi-objective techniques such as NSGA-II handle conflicting objectives

by maximizing defect detection while minimizing execution cost [11]. The sensitive index (SI)

is used to prioritize test cases related to fault-prone areas, newly added or modified code, or

high failure rates. Other methods such as PCF, TCCF, and TCIF use path coverage, fault

detection impact, and test complexity as reduction criteria [18]. These methods employ case-

based reasoning (CBR) deletion algorithms to eliminate redundant test cases. Mutation-based

fault localization (MBFL) can also be improved by adopting Contribution-Based Test Case

Reduction (CBTCR), which calculates the contribution of each test case using both failing and

successful cases [5]. Empirical analysis demonstrates that CBTCR significantly reduces cost

while preserving accuracy. Fuzzy clustering methods have also been applied for test suite

optimization [10]. In addition, hybrid algorithms such as the Cuckoo Search and Bee Colony

Algorithm (CSBCA) have been designed to optimize test case generation and improve

computational efficiency [13].

𝐹 = 𝛼(𝐶) + 𝛽(𝐹) − 𝛾(𝑇) (1)

Every particle updates its speed and position according to one global best (gBest) and personal

best (pBest) solutions. The formula to update the velocity is:

𝑢𝑡 + 1 = 𝑤𝑡𝑣𝑡 + 𝑐1𝑟1𝑡(𝑝𝐵 𝑒𝑠𝑡 − 𝑥𝑡) + 𝑐2𝑟2𝑡(𝑔𝐵𝑒𝑠𝑡 − 𝑥𝑡) (2)

The fly technique in the CS phase and the employed bee and spectator bee phases in the BCA

enable the CSBCA to generate and optimize test cases with minimal computational time [13].

The SCTF Algorithm improves the effectiveness of generated test cases with higher fitness and

path coverage when compared with techniques such as Firefly Algorithm (FA), Bee Colony

Algorithm (BCA), Cuckoo Search (CS), and Particle Swarm Optimization (PSO) [4], [6]. To

reduce the cost and time of regression testing, a set of test case reduction approaches for

minimizing the size of regression test suites has been proposed [16]. The strategies are classified

into categories such as fuzzy logic, program slicing, greedy algorithms, hybrid algorithms,

requirement-based methods, coverage-based methods, genetic algorithms, and clustering. All

methods are evaluated based on how effectively they reduce the number of test cases while

retaining defect detection capability [5], [10].

3 Proposed Approach

In this paper, we proposed a particle swarm optimisation (PSO) based test case reduction

approach to achieve an effective and efficient software testing. The rise of complex software

systems makes dynamic test-suite based performance improvement calls for smart optimization

methods that keep fault detection capability and code coverage. Our method takes advantage

of swarm intelligence to capture and retain important test cases, and remove duplicated ones,

in order to obtain an associated minimal test suite with high efficiency. The proposed approach

adheres to a straightforward pipeline. First, model-based testing is carried out and test cases are

generated from (formal) software specifications, finite-state machines (FSMs), or

requirements-based models. Key attributes such as execution time, code coverage ratio and

fault detection rate are covered in the test case scenarios. Preprocessing follows, where the stale

test cases are removed, missing data are filled in and attributes are normalised for fair

comparison. In the post-processing stage, we applied Particle Swarm Optimisation (PSO) to the

test suite. The movement of flocks, such as bird flocking to an optimal position, inspired PSO,

a population-based stochastic optimisation method. In our approach, each particle corresponds

to a candidate sub subset of test cases and the aim is to find the best combination which 1)

decreases the number of errors, and 2) increase code coverage. These test scenarios execution

time, code coverage percentage, and fault detection effectiveness are major aspects. Each

particle’s position is represented by a binary vector, where 1 represents a decision to include a

test case and 0 denotes to exclude it. In PSO the fitness function is contrived in order to balance

a few objectives:

A sigmoid transformation is applied to discrete velocities to obtain binary decisions whether a

test case is included into the final reduced test suite. The iteration strategy of PSO ensures

continuous improvement, so that a part of the test cases is more optimized and with less

execution cost, which could result in the maximum efficiency for testing cases. In our

approach, PSO well balances the reduction of test suite size with the testing efficiency, which

is very suitable for largescale software products and embedded applications where time and

resource are very limited. Our findings provide evidence that PSO-type test case reduction

substantially reduces testing time while at the same time, does not harm code quality. This

methodology provides a flexible, adaptive, and automatic platform to some current issues in

the software testing.

4 Methodology

In this paper, we proposed a particle swarm optimisation (PSO) based test case reduction

approach to achieve an effective and efficient software testing. The rise of complex software

systems makes dynamic test-suite based performance improvement calls for smart optimization

methods that keep fault detection capability and code coverage. Our method takes advantage

of swarm intelligence to capture and retain important test cases, and remove duplicated ones,

in order to obtain an associated minimal test suite with high efficiency. The proposed approach

adheres to a straightforward pipeline. First, model-based testing is carried out and test cases are

generated from (formal) software specifications, finite-state machines (FSMs), or

requirements-based models. Key attributes such as execution time, code coverage ratio and

fault detection rate are covered in the test case scenarios. Preprocessing follows, where the stale

test cases are removed, missing data are filled in and attributes are normalised for fair

comparison. In the post-processing stage, we applied Particle Swarm Optimisation (PSO) to the

test suite. The movement of flocks, such as bird flocking to an optimal position, inspired PSO,

a population-based stochastic optimisation method. In our approach, each particle corresponds

to a candidate subset of testcases and the aim is to find the best combination which 1) decreases

the number of errors, and 2) increase code coverage. These test scenarios execution time, code

coverage percentage, and fault detection effectiveness are major aspects. Each particle’s

position is represented by a binary vector, where 1 represents a decision to include a test case

and 0 denotes to exclude it. In PSO the fitness function is contrived in order to balance a few

objectives:

A sigmoid transformation is applied to discrete velocities to obtain binary decisions whether a

test case is included into the final reduced test suite. The iteration strategy of PSO ensures

continuous improvement, so that a part of the test cases is more optimized and with less

execution cost, which could result in the maximum efficiency for testing cases. In our

approach, PSO well balances the reduction of test suite size with the testing efficiency, which

is very suitable for largescale software products and embedded applications where time and

resource are very limited. Our findings provide evidence that PSO-type test case reduction

substantially reduces testing time while at the same time, does not harm code quality. This

methodology provides a flexible, adaptive, and automatic platform to some current issues in

the software testing.

𝑥𝑖 = {1, 0 𝑖𝑓 𝑟𝑎𝑛𝑑() <
1

1+𝑒−𝑣𝑖

𝑂𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (3)

For a predetermined number of iterations or until convergence, this process is repeated. The

global best particle at the conclusion of the optimisation process stands for the ideal subset of

test cases. The final reduced test suite achieves maximum coverage and fault detection while

significantly reducing execution time, making it ideal for large-scale software testing

environments. This project's feature selection procedure focusses on important attributes that

influence the effectiveness of test case reduction, encompassing the percentage of code

coverage, defect priority level, execution time, and detection capabilities. These features are

normalized to ensure comparability, with the goal of maximizing coverage and fault detection

while minimizing execution duration. Fig 1 Shows the Test function for PSO-based Test Case

Reduction.

The accuracy of the Particle Swarm Metrics is used to assess the optimization (PSO) algorithm

such as fault detection rate, which guarantees that the smaller test suite is free of errors, and

reduction rate, which calculates the proportion of test cases removed without sacrificing

coverage. keeps up a high capacity for defect detection. The algorithm consistently achieves a

40-50% reduction in test cases while preserving essential coverage and fault detection rates.

Since the study is focused on automated test case optimization, human subject review is not

directly applicable. However, software engineers and testers validate the reduced test suite to

ensure that critical functionalities are adequately covered and no essential test cases are

omitted. Python Code for Generating a Random Binary Coverage Matrix using NumPy and

Pandas shown in Fig 2.

Fig. 1. Test function for PSO-based Test Case Reduction.

Fig. 2. Python Code for Generating a Random Binary Coverage Matrix using NumPy and Pandas.

We determined the cost of processing the entire source code by each test case using the equation

by utilising the coverage data and the weight factor values. Fig 3 Shows the Coverage Matrix.

𝐶𝑜𝑠𝑡(𝑇𝑖) = ∑𝑘𝑗 = 1[(𝐶(𝑆𝑗) ∗ 𝑊𝐹𝑗)] (4)

Fig. 3. Coverage Matrix.

The main expense in the implementation of the PSO is computational resources, as it analyses

big data to propose optimal groups of test cases. Additional costs could be software licenses for

libraries such as Python, NumPy and Pandas and the amount of time it takes a developer to

develop and tune the algorithm. As the project is implemented with open-source tools, the cost

is very low, which makes the approach effective and inexpensive. The research methodology is

experimental in nature, collecting data from software projects with different levels of

complexity. The aggregated data is preceded by a pre-processing step which normalizes feature

values and eliminates redundant information. Multiparticle optimization algorithm is used to

select an optimal subset of test cases, and performance measures such as execution time and

fault detection rate are used to measure the success of the reduced suite. We compare the results

against baseline methods such as greedy algorithms and the genetic algorithms, and prove the

algorithm is both efficient and accurate. Data set conformed by test cases with different

characteristics (features and execution times) is used in this study, ensuring the selected subset

minimal and representative. The process encompasses normalisation of dataset as well as

particles representing random subsets of the test instances are initialisation steps. The PSO

formulates are used by the particles to update the positions and velocities, and the fitness for

each particle is evaluated based on the code coverage, fault detection, and execution time. This

is repeated until the algorithm converges or up to the allowed maximum number of iterations.

Last best global particle is the optimal selected set of test cases that ensure maximal coverage

and fault detection while minimizing both execution time and run-time overhead. With a

complete solution carefully designed to ensure efficiency and effectiveness, the reduced test

suite is applicable to large-scale software testing scenarios.

5 Statement of Limitation

The objective of this research is to use Particle Swarm Optimization (PSO) to solve the

optimization problem of test case reduction, where fault detection and code coverage [8] are

still high. The study substantially minimizes the time and computational cost of regression

testing through the selection of a near-optimized set of test cases. The proposed methodology

guarantees that the chosen test cases exercise important functionalities and interactions,

contributing to an increased efficiency in the testing process. Furthermore, it shows that meta-

heuristic algorithms such as PSO could outperform traditional techniques like greedy algorithms

and the genetic algorithms in relation to speed and scalability. Moreover, the reduced test suite

is analyzed for various metrics i.e., reduction rate, fault detection execution time and fault

coverage. The results reveal that the PSO algorithm is suitable for large-scale systems since it

drastically cuts down the number of test cases while maintaining the same quality and

confidence in the testing process. It is important to point out that generation of new test cases

and discovery of previously undetected errors is not, however, the primary aims of this study.

It is not in the business of creating new test cases; its purpose is rather to reduce the size of a

given test suite. Besides, the method disregards test case dependencies, which may be important

if we have test cases that are not independent and where the execution order can influence the

outcome. Another drawback is that the performance of the algorithm may also be affected by

the input dataset quality and diversity. If the dataset does not exhibit enough variance, then the

algorithm may not get you the best results. Furthermore, PSO is a randomized algorithm, and

results obtained for different runs might differ, especially for a large dataset. While this

unpredictability can be mitigated by tuning hyperparameters such as social coefficient,

cognitive coefficient, and inertia weight, the consistency might also be affected. SA, ACO and

GA are also some of optimization techniques used for test case reduction. Genetic Algorithms

(GA) on the other hand work well in complex search spaces and often provide diverse solutions,

however they may be resource intensive and time consuming when compared to PSO. Ant

Colony Optimization (ACO) is appropriate for path optimizers but could be less effective when

we deal with binary selection problems as test case reduction. Simulated Annealing (SA) is one

alternative method for global optimization that is less complex than GAs, but its performance

can be subject to the selection of cooling schedules and temperature parameters. There are

however alternatives but PSO is selected for this study because of its simplicity, efficiency and

faster convergence, especially for binary selection problems. In summary, the present work

effectively employs PSO to reduce the size of test suites under the condition that good code

coverage and defect detection rate can still be maintained. Yet, it also does not construct new

test cases or consider the dependencies between test cases, and its effectiveness depends on the

dataset and algorithm parameters. Despite other alternatives such as GA, ACO, and SA

provide distinct contribution, PSO still has its advantage as a practical and effective strategy to

large-scale test case reduction because of its faster convergence and less computational cost.

6 Experimental Results

Its test suite size grows exponentially with program complexity, which leads to higher

execution time and a bigger expenditure of computational cost. We propose a Particle Swarm

Optimisation (PSO) based test case reduction technique to address this provisioning problem.

Even then, its ability to detect faults is kept high, it is intelligent, it chooses an optimal subset

of both test cases and coverage. In contrast to the classical reduction tools, such as greedy or

heuristic-based algorithms, PSO is more adaptive and effective for test case prioritization and

reduction, so it is suitable for large scale and embedded systems. The approach starts with test

case attribute extraction (i.e., raw performance time, fault detection effectiveness, and code

coverage of the test cases) and pre-processing by normalizing to obtain comparable values.

PSO is applied to optimise test cases selection, by treating the test suite as a search field, where

each particle represents A candidate solution (i.e., a set of test instances). A swarm of particles

that is used to represent candidate test case selections is initialized by the algorithm, and is

evolved iteratively by the algorithm based on a fitness function. The analysis of reduced test

cases led to some interesting observations of their utility. As shown in Fig 4, the distribution of

code coverage indicates that the minimized set maintains a high statement coverage across the

test suite. In addition, Fig 5 and 6 depict fault detection effectiveness with the reduced cases

that fault detection is still consistent and reliable after reduction, and the effectiveness is the

same for reduced test suites.

Fig. 4. Code Coverage Distribution of Reduced Test Cases.

Fig. 5. Fault Detection Distribution of Reduced Test Cases.

Fig. 6. Fault Detection Distribution of Reduced Test Cases.

The selected test cases provide the best possible test efficiency to the degree that the fitness

function is constructed to maximize code coverage and, fault detection effectiveness in

replicate execute time reduction. Particles update their positions at each iteration based on the

gbest and their personal best solutions (pbest). The velocity of each particle is updated by a

formula involving three significant factors: inertia weight (w), social learning factor (c2), and

cognitive learning factor (c1). Whereas the social and cognitive factors guide the search for the

best answer, the inertia component helps on keeping previous momentum. Fig 7 Shows the

Reduced Test Cases

Fig. 7. Reduced Test Cases.

Eventually the swarm tunes to an optimum set of test cases that provide optimum coverage and

fault detection with minimum number of test cases as iterations proceed. for an effective and

reliable suite of test cases in execution, the Ultimate Reduced test suite is the one selected by

the particle in the swarm that has the best performance. This PSO based approach significantly

enhances testing efficiency by eliminating the unwanted test cases, reducing the testing

execution time and ensuring the effectiveness of test suite in detecting faults. PSO, as opposed

to heuristic arbitrary-decision approaches, provides us with dynamic, adaptive, and scalable

optimization procedure for further improving upon test-case selection, which is highly suited

for practical software testing cases, where embedded systems and large-scale regression testing

stand out. Using swarm intelligence, the approach provides a well-considered compromise of

efficiency and quality of the produced software, leading to more efficient and cheaper testing

cycles.

References

[1] L. Zhang, D. Marinov, L. Zhang, and S. Khurshid, "An Empirical Study of JUnit Test-Suite

Reduction," IEEE International Conference on Software Maintenance, pp. 540- 543, 2011.

[2] D. Marijan, A. Gotlieb, and S. Sen, "Test Case Prioritization for Continuous Regression Testing:

An Industrial Case Study," IEEE International Conference on Software Maintenance, pp. 540-

543, 2013.

[3] M. N. Zafar, W. Afzal, E. P. Enoiu, Z. Haider, and I. Singh, "Optimizing Model-based Generated

Tests: leveraging Machine Learning for Test Reduction," IEEE International Conference on

Software Testing, Verification and Validation Workshops, pp. 44-54, 2024.

[4] A. Bajaj, A. Abraham, S. Ratnoo, and L. A. Gabralla, "Test Case Prioritization, Selection, and

Reduction Using Improved Quantum-Behaved Particle Swarm Optimization," Sensors, vol. 22,

pp. 4374, Jun. 2022.

[5] H. Wang, K. Yang, X. Zhao, Y. Cui, and W. Wang, "Contribution-based Test Case Reduction

Strategy for Mutation-based Fault Localization," Proceedings of the International Conference

on Software Engineering and Knowledge Engineering (SEKE), pp. 1-10, 2023.

[6] B. S. Ahmed, “Test case minimization approach using fault detection and combinatorial

optimization techniques for configuration-aware structural testing,” Eng. Sci. Technol. Int. J.,

vol. 19, no. 2, pp. 737–753, 2016. DOI: 10.1016/j.jestch.2015.11.006.

[7] S. Kumar and P. Ranjan, "ACO based test case prioritization for fault detection in maintenance

phase," International Journal of Applied Engineering Research, vol. 12, no. 16, pp. 5578-5586,

2017.

[8] S. Kumar and P. Ranjan, "A Comprehensive Analysis for Software Fault Detection and

Prediction using Computational Intelligence Techniques," International Journal of

Computational Intelligence Research, vol. 13, no. 1, pp. 65- 78, 2017.

[9] M. Waqar, Imran, M. A. Zaman, M. Muzammal, and J. Kim, "Test Suite Prioritization Based

on Optimization Approach Using Reinforcement Learning," Applied Sciences, vol. 12, pp.

6772, Jul. 2022.

[10] G. Kumar and P. K. Bhatia, "Software testing optimization through test suite reduction using

fuzzy clustering," CSIT, vol. 1, no. 3, pp. 253-260, Sep. 2013.

[11] K. Garg and S. Shekhar, "Test case prioritization based on fault sensitivity analysis using ranked

NSGA-2," Int. J. Inf. Technol., vol. 16, no. 5, pp. 28752881, Jun. 2024.

[12] A. Samad, H. B. Mahdin, R. Kazmi, R. Ibrahim, and Z. Baharum, "Multiobjective Test Case

Prioritization Using Test Case Effectiveness: Multicriteria Scoring Method," Scientific

Programming, vol. 2021, pp. 113, Jun. 2021.

[13] L. P. Lakshminarayana and T. V. SureshKumar, "Automatic Generation and Optimization of

Test case using Hybrid Cuckoo Search and Bee Colony Algorithm," J. Intell. Syst., vol. 30, pp.

59-72, Jan. 2021.

[14] B. Swathi and H. Tiwari, "Test Case Generation Process using Soft Computing Techniques,"

Int. J. Innov. Technol. Explor. Eng., vol. 9, no. 1, pp. 48244831, Nov. 2019.

[15] Chetan J. Shingadiya and Nitesh M. Sureja, "Genetic Algorithm for Test Suite Optimization:

An Experimental Investigation of Different Selection Methods," Turkish Journal of Computer

and Mathematics Education, vol. 12, no. 3, pp. 3778-3787, Apr. 2021.

[16] S. Roongruangsuwan and J. Daengdej, "Test Case Reduction Methods by Using CBR," in

Proceedings of the EMDT 2010, pp. 1-10, 2010.

[17] D. R. MacIver and A. F. Donaldson, "Test-Case Reduction via Test-Case Generation: Insights

from the Hypothesis Reducer," in Proceedings of the 34th European Conference on Object-

Oriented Programming (ECOOP 2020), pp. 13:1-13:27, Jul. 2020.

[18] K. Smith, Y.-K. Chang, G. Seferi, and Q. Tauseef, “Test case prioritization using transfer

learning in continuous integration environments,” in 2023 IEEE/ACM International Conference

on Automation of Software Test (AST), pp. 191–200, 2023.

[19] L. Wang, X. Zhang, H. Su, and J. Zhu, “A comprehensive survey of continual learning: Theory,

method and application,” IEEE Transactions on Pattern Analysis and Machine Intelligence,

2024.

