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Abstract. Autoimmune illnesses pose formidable diagnostic and prognostic obstacles due
to the wide range of symptoms they cause and the immune system's tendency to
malfunction, which in turn causes the creation of autoantibodies. Although early diagnosis
and personalized treatment are of the utmost importance, traditional approaches sometimes
lack predictive power. Through the analysis of massive datasets and the creation of
sophisticated diagnostic and prediction tools, machine learning (ML) presents a promising
approach to addressing these challenges. protocols for autoimmune diseases affecting
several organs and systems (e.g., theumatoid arthritis, SLE, lupus erythematosus). (The
autoimmune thyroid disease, gastrointestinal disorders, skin diseases, and type 1 diabetes
mellitus are all examples). The growing promise of machine learning algorithms for issue
predicting, therapeutic response evaluation, and early disease detection is highlighted by
our work. To go a step further, we look at how ongoing research and the addition of more
varied and extensive datasets might improve these models' accuracy and dependability.
This will enable healthcare providers to detect autoimmune diseases at an early stage and
guide the creation of efficient treatment strategies.
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1 Introduction

Autoimmune diseases occur when the immune system attacks the body’s own tissues, producing
autoantibodies and autoreactive immune cells that cause organ damage and diverse clinical
symptoms. Nearly 20% of cases have a hereditary link, and these disorders are generally
classified into systemic conditions, such as systemic lupus erythematosus (SLE), and organ-
specific diseases like autoimmune thyroid disorders. Their complex and heterogeneous nature
makes early diagnosis and personalized treatment difficult, as traditional methods often lack
predictive accuracy. In recent years, artificial intelligence (Al), particularly machine learning
(ML) and deep learning (DL), has shown great promise in addressing these challenges by
analysing large clinical, genetic, and imaging datasets to improve diagnosis, predict disease
progression, and support individualized therapies.
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2 Systemic Lupus Erythematosus (SLE)

The annual incidence of SLE, a chronic autoimmune illness that damages and inflames the
body's own cells and tissues, ranges from 1.5 to 11 cases per 100,000 persons worldwide. It is
more common in women and certain ethnic groups. Immunological biomarkers and other
diagnostic methods for systemic lupus erythematosus have grown in importance over the years.
According to the current categorization criteria, which were revised in 2019 by the European
League Against Rheumatism (EULAR) and the American College of Rheumatology (ACR),
positive antinuclear antibodies (ANA) are one of the clinical signs that must be present. Some
of these conditions include immunological abnormalities including antibodies against
phospholipids and complement proteins as well as specific antibodies associated with systemic
lupus erythematosus (SLE). Other conditions include problems with the constitution, blood,
neurology, psychiatry, skin, bones, and kidneys. These criteria have a specificity of 93.4% and
a sensitivity of 96.1%, making them very useful for diagnosing SLE. Prognostic models that
use machine learning have the ability to foretell the course of a disease and the likelihood of its
possible outcomes, such as the involvement of the kidneys or the incidence of cardiovascular
events. Fig 1 shows Systemic Lupus Erythematosus (SLE) Affected Organs and Symptoms.
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Fig. 1. Systemic Lupus Erythematosus (SLE) Affected Organs and Symptoms.[22]



The ML algorithms have been used therapeutically to evaluate the efficacy of treatment, predict
response to medication, and optimize management strategies. Patients with SLE may be able to
receive more tailored care and fewer “try and see” approaches to treatment through integration
of ML approaches analysing clinical and immunological data to identify patterns that predict
response to a specific medication 17 Future application in the setting of SLE, ML may one day
transform the diagnosis and treatment of this complex autoimmune disease. Better, more
personalized care is within sight because of advances in early detection, forecasting of
prognosis, and optimization of therapy. Immunologic markers (e.g., ANA positivity), in
combination with other clinical symptoms of disease such as hematologic, neuropsychiatric,
and musculoskeletal symptoms, will be used to build the 2019 EULAR/ACR guidelines.

3 Literature Review
Autoimmune Diseases and Clinical Challenges

Autoimmune diseases are characterized by the immune system mistakenly attacking the body’s
own tissues, leading to chronic inflammation and organ damage. Wang et al. (2015) [1] provided
a comprehensive update on the spectrum of autoimmune diseases, highlighting their complex
pathogenesis and the challenges they pose for diagnosis and treatment. Wahren-Herlenius and
Dorner (2013) [2] further explained the immunopathogenic mechanisms underlying systemic
autoimmune conditions, emphasizing the interplay of genetic and environmental factors that
complicate diagnosis and prognosis.

Advances in Immunotherapy and Cellular Approaches

Recent years have seen novel treatment approaches alongside computational advancements.
Schett, Mackensen, and Mougiakakos (2023) [3] discussed the potential of CAR T-cell therapy
as a revolutionary intervention in autoimmune diseases, indicating a shift toward targeted
cellular immunotherapies. These biological advances complement computational tools by
providing new clinical data streams for machine learning (ML) models.

The Role of Artificial Intelligence in Broader Medical Contexts

Machine learning and deep learning have been widely explored in diverse medical domains.
Ghavidel and Pazos (2025) [4] systematically reviewed ML applications for breast cancer
prediction, emphasizing challenges such as class imbalance and model interpretability—issues
also relevant to autoimmune disease modeling. Similarly, Wieneke and Voigt (2023) [5]
demonstrated how Al principles have been applied in cardiovascular medicine, offering insights
into diagnostic and therapeutic strategies translatable to autoimmune contexts. Handelman et al.
(2018) [8] projected the transformative role of Al in predictive healthcare through their
“eDoctor” perspective, underscoring the capacity of ML to augment clinical reasoning.

Machine Learning in Systemic Lupus Erythematosus (SLE)
SLE has been a primary focus for ML research given its heterogeneous manifestations. Barber

et al. (2021) [10] described the global epidemiology of SLE, which motivates the need for
computational tools to handle complex datasets. Zhou et al. (2022) [11] conducted a systematic



review and meta-analysis, concluding that ML-based diagnostic tools improve accuracy in
distinguishing SLE from other conditions. Munguia-Realpozo et al. (2023) [12] evaluated
reporting standards in ML prediction models for SLE and highlighted the importance of
adhering to frameworks such as TRIPOD (Collins et al., 2015) [13] to ensure reproducibility
and clinical applicability.

On the biomarker discovery side, Huang et al. (2009) [14] applied proteomics and decision tree
models to differentiate SLE patients, while Li et al. (2022) [15] combined proteomics with
single-cell RNA sequencing to identify diagnostic and exacerbation biomarkers. Clinical data
integration has also been studied extensively: Turner et al. (2017) [16] used natural language
processing methods for lupus phenotyping, Jorge et al. (2019) [17] validated ML algorithms for
patient identification in electronic health records, and Barnado et al. (2022) [18] extended ML
applications to maternal outcomes in SLE. Murray et al. (2019) [19] further improved disease
detection through flexible labeling methods, showing the adaptability of ML to noisy datasets.

Other Autoimmune Diseases and ML Applications

Research has extended beyond SLE to other autoimmune conditions. Danieli et al. (2022, 2023)
[6][7] used ML to predict responses to immunoglobulin therapy and to evaluate treatment
outcomes in inflammatory myopathies, demonstrating the potential for precision medicine.
Chung et al. (2021) [20] explored ML approaches for the genomic prediction of rheumatoid
arthritis (RA) and SLE, highlighting the shared computational frameworks across diseases. Rao
and Raghuram (2020) [9] and Ghasemi et al. (2017) [21] provided essential clinical perspectives
on SLE and multiple sclerosis (MS), respectively, offering disease-specific knowledge that
enriches the computational modeling landscape.

Emerging Directions and Future Prospects

The integration of clinical, proteomic, genomic, and imaging data represents a significant
opportunity for ML in autoimmune diseases. Li et al. (2022) [15] and Chung et al. (2021) [20]
demonstrated that multi-omics approaches improve diagnostic accuracy and disease prediction.
Looking forward, these methods may evolve into fully personalized medicine frameworks,
where ML models not only diagnose but also optimize treatment strategies in real time.

Table 1. ML Studies on SLE Diagnosis.
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4 Highlights

Several important predictors of hospitalization in SLE patients have been identified. These
levels included C3 levels, anti-dsDNA levels, blood cell counts, inflammatory indices, and

albumin.

e Machine Learning Risk Prediction: A number of machine learning models have been
taken to predict potential risks for SLE patients, including thyroid disorder,

cardiovascular disease, etc, and pregnant outcomes.



e ML ABOUT RESPONSE TO THERAPY: The use of machine learning (ML) models
to predict therapeutic response in patients with SLE may lead to patient-tailored
medicine.

4.1 Rheumatoid Arthritis (RA) -Diagnosis Rheumatoid arthritis (RA)

Impact of Rheumatoid Arthritis (RA) on Diagnosis The immune system of the body reacts
abnormally in an inflammatory disorder termed as rheumatoid arthritis (RA) that is responsible
for damaging joints and other parts of the body. Both genetic, immunologic, and environmental
factors impact the development of RA, but remain poorly defined. Artificial intelligence (Al)
may be used to improve doctors’ ability to diagnose RA and determine individuals at risk for
developing the disease. An early diagnosis is imperative in preventing permanent joint damage.
The study by Arleevskaya et al. (2016) [23]. explains that rheumatoid arthritis (RA) may arise
when chronic or repeated infections by microorganisms and viruses provoke abnormal immune
responses, triggering autoimmunity in genetically susceptible individuals. Fig 2 shows Viral
Infection and Autoimmunity Process.
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Fig. 2. Viral Infection and Autoimmunity Process [23].

A few studies applied machine learning (ML) strategies to anticipate the development of the
disease and to diagnose early RA. The same was found when they found important markers in
RA patients. (2016). The application of ML to identify cytokines as early predictors has also
been reported in several studies. Additionally, CNN-based approaches have demonstrated the
potential for classification of RA in image analysis based on clinical data and x-ray images.
More research is necessary to improve and tailor these Al-driven diagnostic tools, as there
remain barriers to the implementation of these models across diverse populations, despite recent
advances.



5 Key Findings

e ML models (e.g., random forest and support vector machines) have been enhancing
the early detection of RA, based on an analysis of clinical, genomic, and proteomic

data.

e The search for new biomarkers is influenced by the low positive predictive value of
the current biomarkers (CRP and ACPAs) despite being very useful.
e RA lodgement of algorithm framework based on clinical and histological
information now has started using artificial intelligence frameworks such as in

convolutional neural network (CNNs).

There is a small body of literature that will be discussed in the following table 2 and that
highlights the state-of-the-art of relevant ML-related research around the diagnosis of RA. It
covers it all from what the study set out to achieve, where the data came from, the count of
patients, ML models, and key findings.

Table 2. Summary of Machine Learning-Based RA Diagnosis Studies.
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6 Key Insights

Machine learning models which are used for early diagnosis of RA, prediction of disease
progression, and identification of biomarkers include, Random Forest (RF), Support Vector
Machine (SVM), and Convolutional Neural Networks (CNN).

The role of new biomarkers for diagnosing RA appears to be better than that of the conventional
methods in a number of researches. In actual settings, the accuracy is high (up to 94%) by
using both clinical and EHR-related data for RA diagnosis.



Autoimmune thyroid disorders:

The use of machine learning (ML) as a powerful tool in autoimmune thyroid diseases such as
Graves' disease and Hashimoto's thyroiditis has advanced the development of diagnosis,
prognosis and treatment prediction. Fig 3 shows Immunopathogenic Mechanisms Underlying
Systemic Lupus Erythematosus.
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Fig. 3. Immunopathogenic Mechanisms Underlying Systemic Lupus Erythematosus.[2]
7 Graves' Ophthalmopathy

e The problem of prejudice. By combining laser-induced breakdown spectroscopy (LIBS)
with k-nearest neighbour and generalised regression neural network models, a 2021
study details the successful identification of Graves' ophthalmopathy with an accuracy
of above 95%.

e Different research from 2021 used Al to forecast how well glucocorticoid treatment
would work for individuals suffering from active Graves' ophthalmopathy. Multivariate
logistic regression was used to evaluate ocular morphological changes in order to tailor
therapy.

e Biomarkers: Artificial intelligence (AI) prompted researchers to examine DNA
methylation for possible indicators of Graves' ophthalmopathy. Study participants'
immune cell infiltration patterns were associated with illness, and SI00A11 and NKD2
were shown to be diagnostic indicators.



8 Prediction Model

Using Al-based scoring models like SMSGOP and SMGOP, the course of Graves'
ophthalmopathy may be predicted. The fact that these assessments are grounded in
clinical data makes them valuable for therapeutic decision-making.

XGBoost primarily utilizes TSI and LDL levels to determine the responsiveness of
persons with thyroid eye illness to steroid therapy.

9 Prognostic Insights

Using full blood count and biochemical data, a study from 2021 utilized machine
learning to predict when Graves' disease and thyrotoxicosis will manifest. Serum
creatinine and cholesterol levels were shown to be key prognostic markers.

Differential Diagnosis: The causes of thyrotoxicosis were identified using ML, more
especially random forest, which allowed for faster diagnosis and therapy choices.

10 Other Applications

Thyrotoxic Atrial Fibrillation (TAF): The causes of thyrotoxicosis were identified using
ML, more especially random forest, which allowed for faster diagnosis and therapy
choices.

Post-Therapy Hypothyroidism: Early management for Graves' illness might be
facilitated in 2022 thanks to ML models that predicted hypothyroidism after radioiodine
treatment.

ML offers important predictive tools in autoimmune thyroid disorders, improves
diagnostic precision, and personalises therapy. Table 3 shows Application of ML for
Graves’ disease.

Table 3. Application of ML for Graves’ disease.
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11 Cutaneous Autoimmune Disorders

White spots on the skin caused by the loss of melanocytes is known as Vitiligo, and it is
a common autoimmune skin condition. About 1% to 2% of the population is impacted
by it, and it has a major impact on patients' mental health.

Artificial intelligence applications for vitiligo seek to evaluate the severity of the
condition, find biomarkers, and provide new methods of therapy.

A hybrid Al model that detects and quantifies the severity of vitiligo lesions was
produced by Chinese research using deep learning. With a sensitivity of 92.91%, YOLO
v3 was able to identify lesions in two sets of 3,982 images. Dermatologists and the
model reached a consensus when assessing size disparities and pigmentation. Fig 4
shows Psoriasis Pathogenesis Mechanism.

Rock Creek Pharmaceuticals’ Exhibit 99.1 presents the company’s strategic focus on
anti-inflammatory drug development and its preclinical and clinical data supporting the
mechanism of action [24].

The document also emphasizes the company’s expectations, assumptions, and risks
associated with its development plans via “forward-looking statements
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Fig. 4. Psoriasis Pathogenesis Mechanism. [24]

12 Alopecia

Alopecia areata, an autoimmune disease that doesn’t scar the skin, strikes some 2 percent of the
population, making hair fall out in clumps. Serious mental health issues, like anxiety and



depression, could also result. Al was used in alopecia research mainly for early assessment,
severity estimation and therapeutic planning.

A computer imaging technique was applied to the measurement of alopecia severity and
obtained 91% accuracy when classifying subjects with artificial neural networks. A new method
as an alternative for self-diagnosis of scalp conditions was proposed and measures the
progression of hair loss by understanding acquired variables, namely the thickness and follicle
count of hairs with a microscope and smartphone. In another study, a classification system
separating hair samples from healthy and alopecia subjects achieved 91.4 % accuracy using the
support vector machines. Additionally, through bioinformatic analysis, biomarkers for
predicting conversion to severe forms (total alopecia) were determined based on gene
expression data in scalp biopsies, and a biomarker model according to the results of machine
learning was constructed.

13 Conclusion

Artificial intelligence and machine learning (ML) are proving to be very beneficial in the
diagnosis and treatment of autoimmune diseases, including systemic and organ-specific
conditions like vitiligo and alopecia. With the help of Al, we can discover diseases earlier,
anticipate how they will develop, evaluate how well a medication is working, and create more
personalised treatment plans.

Despite the potential benefits of machine learning for precision medicine and improved patient
outcomes in the management of autoimmune disorders, several issues remain. Data analysis
including clinical, genetic, and imaging studies is where this becomes really apparent.

Early diagnosis and prognosis have both been greatly improved by ML. Imaging, laboratory,
and hospital-related hazards and treatment outcomes While Al has not yet been widely used to
treat organ-specific autoimmune illnesses, it has shown promise in improving diagnostic
accuracy and guiding therapeutic options. Making artificial pancreas devices and anticipating
when hypoglycaemia can happen are two examples of how artificial intelligence is being used
to diabetes.

Al is revolutionising the field of gastroenterology by making it easier to diagnose and treat
conditions including inflammatory bowel disease (IBD), coeliac disease, and gastric cancer.
another example of the revolutionary capability of Al in healthcare, by analysing lesions to
ascertain their severity and monitor the progression of diseases.
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