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Abstract. Underwater object detection plays a crucial role in marine applications, where 

accurate detection is often prevented by obstacles like poor visibility, image distortion, 

and environmental noise. To address these issues, this study examines the effectiveness of 

the various deep learning models in detecting underwater objects. In this study YOLOv8, 

YOLOv10, YOLOv11, and YOLOv12 models were used. These model’s performance 

on a wide range of underwater images is assessed based on their accuracy (mean average 

precision, or mAP), speed, and capacity to operate in challenging circumstances. Each model 

was trained and tested using the same data to provide a fair comparison. The results 

indicate that the more recent YOLO models, particularly YOLOv11 and YOLOv12, 

achieve high accuracy and speed marks, with an average mean precision of 91.5%. This 

study proves that using the most recent YOLO models can improve underwater object 

detection and support real-time marine applications like underwater exploration and 

autonomous underwater vehicles. 

Keywords: Underwater Object Detection, Deep Learning, YOLOv8, YOLOv10, 

YOLOv11, YOLOv12, mean Average Precision (mAP). 

1 Introduction 

The undersea world is simultaneously one of the most strange and least investigated ecosystems 

on the planet. Automatic underwater object detection and recognition is a very important task 

in marine biology, underwater exploration, autonomous vehicle navigation, ocean preservation, 

οr fisheries management to various regions. As human activity in underwater regions becomes 

increasingly extensive, the need for intelligent systems that are capable of performing real time 

detection and classification of undersea creatures or objects has been greatly encouraged. 

However, training accurate and robust object detectors for underwater images poses a set of 

difficult challenges unlike those in land-based image analysis. 

Underwater images are fundamentally different from the images taken above the surface or 

from the air. Because light is scattered and absorbed by water, such images are usually 

characterized by low contrast, color deviation, noise, blur, and finite visibility. These challenges 

are exacerbated by the dynamic nature of underwater scenes, including the stationary movement 

of underwater organisms, the varying illumination, and the proximity to tagged particles and 

water flow. The Marine life we are supposed to find and identify even if it refers to the same 
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textures and shapes, often overlaps or merges with the substrate so finding them even is a bigger 

challenge to identify them. For that reason, traditional computer vision techniques and even 

univariate convolutional neural networks by themselves consistently fail to work under such 

situations or achieve the same results as perceived by the end-user. 

In recent years, the emergence of deep learning has revolutionized object detection with power-

hungry models, such as the YOLO (You Only Look Once) family, demonstrating remarkable 

accuracy and speed performance in real-time scenario. The advancement of YOLO from its 

predecessors to its current editions (like YOLOv8, YOLOv10, YOLOv11, and YOLOv12) in 

terms of architecture development, optimization techniques and generation power is significant. 

These promotions render YOLO models’ strong candidates in underwater object detection, 

where real-time filtering (at high speeds) is as important as correct predictions. 

In this paper, four generations of YOLO architectures (i.e., YOLOv8, YOLOv10, YOLOv11, 

and YOLOv12) were thoroughly compared according to a well-designed underwater dataset. 

The dataset used (referred to as UWOD) is sourced from and curated and hosted on Kaggle, 

comprising 3,200 labeled images, and displays 3 marine species (Sea Cucumber, Sea Urchin, 

Scallop). The dataset is split into 2,560 training, 128 validation, and 506 test images to enable 

robust training and evaluation. 

The dataset has been pre-processed for usage by deep learning applications, including image 

enhancement techniques that are used to improve contrast and visibility, data augmentation that 

may be used to increase malignancy model robustness, and manual (very careful) proofing to 

ensure labels are accurate. 

All YOLO variant were trained by the same training pipeline and hyper-parameters (when it is 

appropriate) to have fair comparison in terms of relative difference between their performance. 

The results are imposed on the commonly used evaluation metrics of Industrial which are 

provided: Precision-Recall, mAP@50, mAP@50-95. These metrics indicate a thorough 

performance understanding of each model over different IoU thresholds levels of both detection 

accuracy and localization quality. While from the tested models, YOLOv11 and YOLOv12 

achieved the high mAP@50 except that YOLOv10 saw better performances in mAP@50-95, 

i.e., all levels of detection difficulty. 

By conducting an in-depth analysis of the performance of each YOLO variant, this research 

provides invaluable statistics on the efficiency of state-of-the-art deep learning models for 

underwater object detection. Results of the contribution will foster research and development 

and overall work development of the marine scientists engaged in developing real-time 

intelligent systems in underwater space. Moreover, to this comparison emphasizes the influence 

of architectural evolution of the YOLO framework, and demonstrates the great potential of deep 

learning in the solution of real-world problems in challenging visual conditions such as 

underwater. 

 

 



2 Literature Review 

Recently, underwater object detection and classification has received quite a bit of attention 

because it has many potential applications in marine surveillance, archaeology and 

environmental monitoring that draw interest of the researchers. Performance in underwater 

vision tasks has improved dramatically with the use of deep learning advancements, in particular 

CNNs and real-time models such as YOLO. Unlocking the potential of R-CNNs for object 

detection in aquatic environments: addressing image bias, with RetinaRPN, and probabilistic 

inference and adapting boosting 0250 reweighting to capture uncertaintyWe improve detection 

confidence on ambiguous items across heterogeneous source data sets, via detecting 

AWS_CAPTURES using a set of acquired and generated underwater annotations. Besides, 

Enhanced YOLOv7-Tiny model [2] is proposed for advanced feature extraction for better 

accuracy and speed, which can be a better solution for the real time underwater. 

A YOLOv8 segmentation-based pipeline [3] employs image enhancement, pixel-wise masking, 

and sharpened bounding boxes to cater for noise, distortion, and low visibility, to enhance 

detection in complex underwater environments. CEH-YOLO [4] is a lightweight YOLOv8-

based model that combines the modules of deformable attention, multiscale fusion and 

composite detection box proposal for the efficient detection of small and blurred underwater 

objects. DB-UODN [5] introduces a dual-branch feature extraction network on the basis of 

ECDB and DSPAC SPC modules, which can improve the robustness and accuracy of multi-

scale targets in complex underwater conditions. CEH YOLO [6] further enhances quality using 

multiscale pooling and deformable at2 tention to obtain high accuracy and real-time 

performance with no extra computational burden. 

A work [7] compared the four YOLOv3 variants, and demonstrated YOLOv3-SPP 

outperformed all the variants in accuracy, and YOLOv3-Tiny-PRN possessed the fastest 

processing speed, which verified YOLOv3 becomes an effective solution under turbid, low ILL 

conditions. A new enhancement method was used [8] to make clearer and more stable images 

for underwater biological observation and locate targets with better efficiency. 

The YOLOv7-AC [9] combines ACmix, ResNet ACmix, GAM, K-means clustering to 

improve the feature extraction and detection accuracy, and achieves the best performance on 

URPC and Brackish datasets. A survey paper [10] investigates traditional and deep learning 

UOD methods, and introduces the potential APPLICATIONS OF UOD UOD has many 

practical applications for solving real-world problems. 

 issues such as degraded images and class imbalance and presents diagnostics like Diagnosis 

and TIDE to assess models. An enhanced EfficientDet-based method [11] with BiSkFPN and 

adversarial learning enhances detection performance of noise underwater images. Also hinges 

explainability to GradCAM and compares YOLO variants on Brackish dataset. 

Finally, a deep learning-based coral detection scheme in [12] employs YOLO for reef 

monitoring, which can result in less manpower in coral data collection ecology with high 

detection performance. DeepSeaNet enhances detection in the presence of noise in an 

underwater environment with EfficientDet and various YOLO variants [13-14] with the block 

module to enhance this for improved visibility performance. UTDF-YOLOv5 integrates 

attention to YOLOv5 for real-time detection [15]. 



3 Methodology 

In order to enhance the performance of underwater object detection, in this paper we deploy a 

structured approach using image enhancement and deep learning for detection. Some pre-

processing such as contrast enhancement, colour correction and sharpness enhancement are 

performed to compensate the degraded underwater image. After the enhancement, the cutting-

edge YOLO models are used to train and test the UWOD dataset to achieve an interactive marine 

object detection and identification procedure. 

Dataset details: In this work, underwater object detection models were trained and tested on 

the UWOD dataset from Kaggle. The dataset contains overall 3,200 labeled images of various 

underwater settings. It is comprised of 3 classes, namely scallop, sea urchin, and sea cucumber. 

The data is divided into 2,560 for training, 128 for validation, and 506 for testing, a setup 

suitable for model training and evaluation as in Fig. 1. Each of the images are bounded, and 

therefore serves as valid data for object detection algorithms. With its high quality and diversity, 

this dataset is suitable to be used as a benchmark for the development of deep learning model 

on underwater object detection. 

Fig. 1.  Block diagram of the proposed method. 

 

 



Data Preprocessing: Water lost and the characteristics of defects in underwater images are 

mainly caused by light scatters and absorbers in the water body, resulting in contrast weak, 

responsive low and so on. To mitigate these drawbacks, we have developed a pre-processing 

pipeline of contrast enhancing, colour correcting, and sharpness improving. Such strange facing 

approaches enhance the overall quality of the dataset and result in better object detection 

results. 

The underlying principle of the image enhancement is to transform original image (RGB) to 

LAB color space. This further provides the ability to use Contrast Limited Adaptive Histogram 

Equalization (CLAHE) on the L-channel to increase local contrast while maintaining the natural 

color equilibrium in the image. Then, the image undergoes further sharpening using PIL’s 

sharpness enhancer. The change is described by means of the following mathematical relation: 

I′′(x, y) = I′(𝑋, 𝑌) + 𝛽(I′(𝑋, 𝑌) − 𝑏𝑙𝑢𝑟(I′)(𝑥, 𝑦))                                                                  (1) 

where blur(I′) denotes the Gaussian-blurred version of I′, and β is the sharpness factor. 

Next, contrast adjustment is applied using the transformation 

𝐼(𝑋, 𝑌) = µ +  γ (I′(𝑋, 𝑌) − µ)                                                                                                (2) 

here µ is the mean pixel intensity of the image and γ is the contrast factor (set to 1.0).to 

ensure uniformity and boost model performance, the entire enhancement pipeline is 

systematically applied to each image in the training, validation, and testing datasets, thereby 

maintaining consistency and improving object detection accuracy across all data splits. 

   

  

              (a) Raw Image                                           (b)Preprocessed Image 

Fig. 2. Comparison of Raw and Preprocessed Images. 



Fig. 2 shows that the improvement of underwater visuals through preprocessing. Fig. 2(a) 

shows the original scene as it is shown, characterized by low contrast, a strong greenish tint, 

and reduced visibility. On the right, the enhanced image reflects the application of techniques 

like LAB color space transformation, CLAHE for better contrast, and sharpness adjustment, 

resulting in clearer visuals with improved object distinction and feature visibility. These 

enhancements make the image more suitable for object detection tasks. 

Models used: The underwater object detection framework inte- grates multiple deep 

learning models, specifically tai- lored for the challenges of underwater imaging such as 

poor visibility, low contrast, and color distortion. The architecture incorporates the 

YOLO (You Only Look Once) family of models YOLOv8, YOLOv10, YOLOv11, and 

YOLOv12 each bringing enhancements in speed and accuracy for               real-time 

object detection. YOLOv8 serves as the baseline model, featuring an optimized 

backbone and neck for efficient feature extraction from underwater images. It employs a 

CSPDarknet backbone with SPP and PAN layers, offering a balance between model 

complexity and detection precision. 

YOLOv10 makes other improvements based on the previously described spatial pyramid 

pooling and anchor-free detection, which tend to be more suitable to detect objects of different 

scales (like sea cucumber, scallop and sea urchin). YOLOv11 and YOLOv12 further enhance 

these functionalities to include an attention mechanism, a feature fusion based on transformers 

and improved decoders to improve the localization and classification of marine organisms in 

the presence of noise in underwater scenarios. We use a same pre-processing pipeline of 

contrast adjustment, sharpness enhancement and color correction for each model to be trained 

or validated on improved underwater datasets. 

The framework provides strong robustness of object detection in various underwater scenes by 

using these latest YOLO versions. Results compare detection accuracy and efficiency yield 

better results with newer versions of YOLO demonstrating their applicability to underwater 

with complex scenarios and subtle variations of objects. 

4 Model Architecture 

The YOLO (You Only Look Once) framework’s fundamental ideas are merged into the 

recommended architecture for underwater object detection, which views object detection 

as a single regression problem, as opposed to a region proposal and classification 

combination. By predicting bounding box coordinates and class probabilities 

simultaneously and processing the entire image in a single forward pass, this single-stage 

detector ensures real-time performance. 

Overall Architecture: The architecture consists of three main components: the 

backbone, neck, and head as shown in Fig. 3. 

Backbone: The backbone extracts features from the input underwater image by utilizing 

both high level semantic cues and low-level textures. These features are then transferred 



through several attention modules, which are essential in underwater environments where 

visual quality is often degraded due to turbidity, color distortion, and scattering.  

  

Fig.3. YOLOv8 Architecture adapted from Ganesan et.al. 

Neck: The neck produces multi-scale feature fusion by merging convolution, 

concatenation, down sampling, and up sampling. A hierarchical attention developed 

structure enhances contextual understanding by focusing on important regions in both 

spatial and channel dimensions. 

Head: The head is responsible for the classification and regression tasks, generating the 

final predictions, including object classes and bounding boxes. 

Grid-Based Object Detection: The input image is resized to 448 × 448 pixels and divided 

into a grid of size  S × S,  typically  7 × 7  Each grid cell is responsible for detecting objects 

whose center lies inside the grid cell. Each grid cell predicts B bounding boxes, each 

containing the following five components: 

• Center coordinates (X, Y)  relative to the grid cell. 

• Width and height (W, H)  normalized to the image dimensions, Confidence 

score C. 

The confidence score C is computed as: 

 𝐶 = 𝑃𝑜𝑏𝑗𝑒𝑐𝑡
× 𝐼𝑜𝑈𝑝𝑟𝑒𝑑,𝑡𝑟𝑢𝑡ℎ                                                                                                    (3) 



Where Pobject   is the probability of an object being present in the grid cell, and 

IoUpred,truth is the Intersection over Union between the predicted and ground truth 

bounding boxes? 

Each grid cell also predicts class probabilities for C object categories, resulting in 5B +
C  output values. For instance, if B = 2 and C = 20 , each grid cell generates 30 values.  

Bounding Box Normalization: The bounding box parameters are normalized for 

consistency. Let (X, Y)  be the object’s absolute         center, and (W, H) be its width and 

height. If the upperleft corner of the corresponding grid cell is       (Xa, Ya)  the 

normalized coordinates are as 

𝑥 =
𝑋−𝑋𝑎

𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
 𝑎𝑛𝑑  𝑦 =

𝑌−𝑌𝑎

𝐶𝑒𝑙𝑙 𝑠𝑖𝑧𝑒
                                                                                                                  (4) 

𝛥𝑊 =
𝑊

448
  𝑎𝑛𝑑  𝛥𝐻 =

𝐻

448
                                                                                                      (5) 

Even though w and h are relative to the full image size, this normalization ensures that x 

and y stay within the [0, 1] range. After predictions are made, Non-Maximum        

Suppression (NMS) removes unnecessary overlapping boxes by retaining only the most 

confident box. Bounding boxes with an IoU greater than 0.5 are suppressed to ensure each 

object is detected only once. 

5 Results and Discussion 

In this study, four distinct YOLO-based models YOLOv8, YOLOv10, YOLOv11, and 

YOLOv12 were used to detect Underwater objects. The UWOD dataset was used to train and 

evaluate the models. Each image was preprocessed utilising Colour Space Transformation, 

contrast adjustment, and sharpness enhancement techniques to improve feature representation 

and reduce visual degradation of underwater images. 

Fig 4 shows the results of detection of YOLOv8 and YOLOv10, while Fig. 5 shows the results 

of detection of YOLOv11 and YOLOv12.It can be observed that YOLOv8 (Fig 4(a)) detects 

most of the objects but with slightly decreased confidence scores. YOLOv10 Fig.4(b)  builds 

upon this by generating more precise bounding boxes and confidence levels. YOLOv11 Fig.5(a) 

refines the predictions further, showing cleaner object localization and less overlap of 

boxes.YOLOv12  Fig.5(b) performs the most accurate detections, with consistently high 

confidence scores and clearly defined object borders. 

Fig.6(a) and Fig.6(b) shows the performance of the YOLOv8 and YOLOv10 models and found 

around 90% of accuracy.Similarly Fig.7(a) and Fig.7(b) represents the performance of YOLOv11 

and YOLOv12 models.From this results we can observe that YOLOv11 and YOLOv12 models 

are getting of higher accuracy around 91% .Among all YOLOv12 model gave the best 

performance with higher accuracy.This means YOLOv12 was able to learn well from the data 

and make correct predictions without overfitting or underfitting. 



Table 1 shows that YOLOv11 and YOLOv12 achieved the highest mAP@50 (0.915) and 

precision (0.886) among all YOLO variants. YOLOv8 demonstrated notable speed and 

lightweight deployment, making it suitable for real-time applications despite a slight drop in 

accuracy. YOLOv12 also   recorded the highest recall (0.880), effectively balancing true positive 

detection and minimizing false negatives. YOLOv10 delivered competitive performance, 

particularly in detecting small or partially obscured underwater objects due to its efficient feature 

aggregation design. 

Table 2 displays the class-wise mAP@50 accuracy of all models for three types of underwater 

objects:  scallop, sea cucumber, and sea urchin. While all YOLO variants performed well on 

larger and more visually different objects like Sea Urchin and Scallop, YOLOv11 had the highest 

accuracy (0.964 for Sea Urchin and 0.939 for Scallop). However, Sea Cucumber exhibited a 

relatively lower identification accuracy due to its size, shape, and higher visual similarity to the 

background. 

 

Overall, the experimental findings demonstrate that the combination of effective image 

preprocessing and complex YOLO structures greatly enhances underwater item recognition. Out 

of all the models, YOLOv11 and YOLOv12 offered the best trade-off between precision, recall, 

and mAP, whereas YOLOv8 performed exceptionally well in scenarios requiring rapid and 

lightweight inference. Therefore, the specific requirements of the application whether it be 

ecological monitoring or real-time underwater surveillance should dictate the model selection. 

 

 

 

 

 

 

 

 

 

 

                (a) Result of YOLOv8                             (b)Result of YOLOv10 

 

 
 Fig. 4. Comparison of Detection Results from YOLOv8 and YOLOv10. 



 

                           (a) Result of YOLOv11                         (b) Result of  YOLOv12 

Fig. 5.  Comparison of Detection Results from YOLOv11 and YOLOv12. 

  

                    (a) YOLOv8 Accuracy vs Epochs         (b) YOLOv10 Accuracy  Epochs                                                         

Fig. 6.  Training performance and accuracy of YOLOv8 and YOLOv10. 

 

 

 

 



(a) YOLOv11 Accuracy vs Epochs                  (b) YOLOv12 Accuracy vs Epochs                                                       

 

Fig. 7. Training performance and accuracy of YOLOv11 and YOLOv12. 

 

Table. 1. Performance Comparison of YOLO Variants on Underwater Dataset. 

 

Metric 
YOLOv

8 

YOLOv

10 

YOLO

v11 

YOLO

v12 

Precision(

B) 
0.873 0.845 0.886 0.866 

Recall (B) 0.867 0.845 0.845 0.880 

mAP@50(

B) 
0.906 0.906 0.915 0.915 

mAP@50-

95 (B) 
0.551 0.562 0.562 0.560 

 

 

 

 

 

 

 

 

 

 



Table. 2.  Class-wise mAP@50 Accuracy for YOLO Variants. 

 

Class 
YOLOv

8 

YOLOv

10 

YOLO

v11 

YOLOv1

2 

Sea 

Cucumber 
0.839 0.843 0.843 0.843 

Sea Urchin 0.954 0.956 0.964 0.957 

Scallop 0.927 0.921 0.939 0.946 

 

6 Conclusions 

In this study we have done a comparative analysis using various deep learning models like 

YOLOv8, YOLOv10, YOLO v11, YOLOv12 for underwater object detection under challenging 

situations including poor visibity and noisy environments. By using annotated datasets and 

implementing preprocessing techniques segmentation and also morphological operations the 

proposed model achieved a better performance for different versions of YOLO for real time 

underwater applications and also it can be further used for the advancements in marine 

monitoring. 
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