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Abstract. This study explores a non-invasive, continuous blood glucose monitoring 

system, addressing the urgent need for accessible diabetes management solutions. 

Traditional glucose monitors are often invasive and unsuitable for continuous use, 

whereas the system presented here leverages electrical impedance spectroscopy (EIS) to 

estimate glucose levels through bio-impedance data collected by ECG electrodes. Using 

an IC AD5933 impedance converter, this data is processed by a Raspberry Pi, which 

employs machine learning algorithms to predict glucose levels. Additionally, a DS18B20 

temperature sensor adjusts impedance readings for temperature variations and DHT11 

temperature sensor for ambient temperature, enhancing accuracy. The system displays 

results on an LCD screen for real-time monitoring, offering a practical and user- friendly 

alternative for continuous diabetes care. This approach underscores the potential of 

wearable EIS-based glucose monitors as innovative, non-invasive solutions for diabetes 

management. 

Keywords: Non-invasive glucose monitoring, Electrical Impedance Spectroscopy (EIS), 
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1 Introduction 

Diabetes is a widespread condition impacting millions in INDIA. and around the world, with 

rising prevalence underscoring the need for effective management through regular blood 

glucose monitoring. However, conventional finger-stick methods are often uncomfortable 

and impractical for frequent use, leading to a growing interest in non-invasive glucose 

monitoring solutions. In recent years, a variety of non- invasive sensors have been developed, 

including enzyme- based models that require body fluids to detect glucose levels [1]. 

Several approaches, like those using sweat or tears for glucose detection, have been explored, 

though some, such as a contact lens glucose sensor, have faced challenges in reliably linking 

readings to blood glucose levels. Other methods, such as reverse iontophoresis, which draws 

glucose to the skin surface, have shown potential but face issues such as delayed readings and 

skin irritation, limiting their usability. Optical and electrochemical sensors also hold promise 

but may fall short in terms of sensitivity or precision. Another promising method is electrical 

impedance spectroscopy (EIS), which detects glucose by measuring the body’s impedance, an 
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attribute influenced by tissue properties and composition [2]. By analyzing impedance 

responses across different frequencies, EIS can provide valuable information for glucose 

estimation. This paper explores the foundational principles of EIS-based glucose monitoring, 

recent advances in sensor technology, the key parameters for blood glucose estimation, and the 

development of wearable devices that integrate EIS with other techniques for continuous, non- 

invasive glucose monitoring. 

 

Fig. 1. Statistics of the people suffering with diabetes. 

The image illustrates the significant expansion projected in the digital diabetes management 

market from 2018 to 2030. Starting with relatively modest values, the market reached $ 6.5 

billion by 2021. Following this, the market is expected to grow substantially, with a compound 

annual growth rate (CAGR) of about 22.4% between 2022 and 2030. This sharp rise reflects the 

increasing adoption of digital tools and technologies in diabetes care, such as continuous 

glucose monitors, mobile applications, wearable devices, and cloud-based management 

platforms as shown in Fig.1. 

This growth is fueled by a combination of factors, including the rising global prevalence of 

diabetes, greater aware- ness of diabetes self-management, and the convenience and accuracy 

offered by digital solutions. These tools allow for real-time glucose monitoring, better data 

tracking, and personalized insights, which can improve patient outcomes and reduce healthcare 

costs. By 2030, the market is expected to peak at $39.9 billion, showcasing the rapid 

advancement and critical role of digital health in managing chronic conditions like diabetes 

[3]. This trend highlights an opportunity for further innovation and investment in non-invasive 

monitoring methods, artificial intelligence, and remote patient monitoring, which are becoming 

essential in modern diabetes management. 

2 Literature Survey 

Diabetes maintenance often means having to check blood sugar levels several times per day, 

and this must often be done in ways that are invasive, such as through a finger prick. Although 

successful, they are intrusive and inconvenient, resulting in extensive research on non-

invasive procedures. Among these, skin impedance measurement, which measures the electric 

resistance of the skin, has been focused on as it reflects the variation of the body's composition 

that is correlated with blood glucose level. 



            𝐺𝑙𝑢𝑐𝑜𝑠𝑒 =  𝑏𝑎𝑠𝑒𝑙𝑖𝑛𝑒 +  𝑎1|𝑍𝑚𝑖𝑛|  +  𝑎2𝑇𝑠𝑒𝑛𝑠 +  𝑎3𝑇𝑑𝑒𝑣 +  𝑎4 𝑓𝑚𝑖𝑛                  (1) 

2.1  Skin Impedance as an Indicator of Glucose Levels 

The impedance of the skin (resistance of the skin to an electrical current) is known to vary 

with blood glucose levels. This is because increased glucose leads to changes in the 

distribution of water within skin cells, which in turn changes their resistance to current flow. 

Here, at the core of which is the “minimum impedance value,” for a certain frequency range, 

i.e., minimum observed impedance value. Such a minimum makes to enhance the accuracy, 

because it will less subjected to other physiological "noise." Studies have demonstrated that 

tracking the skin impedance at selected frequencies may provide a means of capturing 

significant features associated with glucose level. 

2.2  Influence of Temperature on Impedance Readings 

Another important parameter in this strategy is temperature. Skin impedance can be affected 

by body and environmental temperatures. For instance, impedance is normally reduced at 

higher temperatures due to increased skin hydration and blood flow. Two parameters are 

relevant in this context, the temperature sensitivity, i.e. the degree of change of the impedance 

with temperature, and the temperature deviation, i.e. the temperature difference between the 

ambient temperature and the temperature of the body [4]. These parameters enable the model 

to compensate for environmental differences, leading to a more precise prediction of glucose. 

2.3  Using Frequency Analysis to Refine Impedance Measurements 

Bio impedance analysis is even more powerful when employing frequency sweeps to calculate 

impedance at various frequencies. Such an approach can be used, for example by using devices 

such as the impedance analyser AD5933 to allow researchers to identify the point where 

frequency is a minimum and easiest to decouple from other effects. The high frequency-based 

analysis may capture the relatively stable impedance reading, which is important especially in 

building an accurate glucose predictive model. 

2.4 Machine Learning for Multi-Parameter Prediction 

Non-invasive monitoring of glucose levels has been further enhanced through the integration 

of machine learning models. By developing algorithms on a dataset that contains baseline 

impedance, minimal impedance, temperature in, temperature deviation, and minimum 

frequency, these models can recognize complicated patterns related to the glucose level in the 

body. For instance, with models such as the K-Nearest Neighbours (KNN), systems 

recognizing such physiological associations and giving real-time glucose estimates can be 

constructed by researchers. 

 

2.5  Challenges and Future Potential 



However, while this method is promising, many obstacles still need to be overcome. 

Variations in results can occur based on skin type, environmental conditions, and other factors. 

These methods are based on impedance and temperature measurements, and the measuring 

technology must be robust and easy to use in order to be readily used. Future work is to refine 

this technique for application in further trials and to bring low cost, non-invasive glucose 

measurement to a more diverse sample of the population [5]. As m-paths continue to be 

examined, this multi-parameter approach— utilizing Z, temperature, and frequency 138 Small 

could present a comfortable, yet ac- curate, non-invasive alternative to people man- aging 

diabetes. 

3 PROPOSED DESIGN 

This design uses open-source software such as Raspberry controller, Raspberry Pi, and a 

Machine learning algorithm written in Python, DS18B20 Temperature sensor, DHT11 Sensor, 

AD5933 IC, Ag/AgCl electrodes. 

3.1  Hardware 

With the help of real- time data from skin temperature and skin impedance measures, this 

exploration seeks to develop anon-invasive blood glucose monitoring system that can estimate 

blood glucose situations. A jeer Pi serves as the system’s primary processing unit and 

communicates with two important detectors the AD5933 impedance analyzer and the DS18B20 

temperature detector. Together, these detectors gather information about skin temperature and 

skin impedance, two physiological variables that are impacted by variations in blood glucose 

situations [6] as shown in Fig.8. The skin impedance (| Z_min|) at a certain frequency(f_min) 

is measured by the AD5933 impedance analyzer in confluence with Ag AgCl electrodes, while 

the DS18B20 detector measures the skin temperature (T_sens) with high perfection. The 

system also takes into consideration the ambient temperature(T_dev) by using the DHT11 

sensor to regard for environmental impacts, as changes in the surrounding temperature. 

3.1.1  Raspberry Pi 

The Raspberry Pi as shown in Fig.2 acts as the core processing unit, managing data processing, 

analysis, and user interaction. It’s vital to select an appropriate model with sufficient 

processing power and GPIO pins for sensor connectivity and display control. Custom Python 

scripts will be developed to handle data acquisition, execute machine learning algorithms, and 

manage the user interface, ensuring smooth operation 

Fig. 2. Raspberry Pi. 

3.1.2  LCD Display 



The LCD display as shown in Fig.3 provides real-time feedback to users, presenting glucose 

level predictions and system status. We’ll carefully select a compatible display module with 

the appropriate resolution and size for clear visibility. Integration with the Raspberry Pi will 

involve GPIO pin communication, and custom code will be written to control and update the 

display as needed, guaranteeing accurate information presentation 

 

Fig. 3. LCD Display. 

3.1.3 DS18B20 Temperature Sensor 

The DS18B20 temperature sensor as shown in Fig.4 is chosen for its accuracy and ease of 

integration. It communicates over a 1-Wire bus, simplifying connectivity to the Raspberry Pi. 

Sensor placement will be optimized for accurate skin temperature measurement, and 

considerations for waterproof variants will ensure durability and adaptability across various 

environments. 

 

Fig. 4. DS18B20 Temperature Sensor. 

3.1.4  AD5933 IC 



The AD5933 is a largely technical intertwined circuit (IC) that’s constantly used in chemical 

seeing, bioimpedance analysis, and general impedance spectroscopy because of its capability 

to descry impedance precisely as shown in Fig.5. It operates by creating a sine surge signal and 

transferring it to an external impedance element, like a detector or electrode. The IC also 

determines the impedance of the element being tested by measuring the voltage response that 

results. 

Fig. 5. AD5933 IC. 

3.1.5 Ag/AgCl Electrodes 

Ag/AgCl (silver/silver chloride) electrodes are ideal as reference electrodes because they are 

stable, metallic and relatively free from electrical noise and are effectively utilized for 

bioelectrical and biomedical applications, particularly skin impedance tests. These are 

composed by a silver-based electrode covered by silver chloride [7]. This produces an 

electrochemical contact for the purpose of reliably and expediently transmitting electrical 

signals from the skin to the measuring device. To understand how the impedance is measured, 

the Ag/AgCl electrode configuration interacts with ions in the skin and surrounding tissues as 

in Fig. 6. The electrode is able to discern changes in electrical characteristics indicative of 

tissue nature (composition and hydration, for example) and type and perhaps of glucose, the 

blood glucose, affecting tissue conductivity. That’s because the ions in your skin respond to 

a little current. 

Fig. 6. Ag/AgCl Electrodes. 

3.1.6  DHT11 Sensor 



A popular sensor for determining ambient temperature and humidity, the DHT11 is valued for 

its affordability, de- pend ability, and ease of use in a range of environmental sensing 

applications. Its two main parts are a capacitive humidity sensor and a thermistor for 

temperature measurement. These readings are obtained by the DHT11 by monitoring variations 

in the resistance and capacitance of its constituent parts, which fluctuate according to the 

temperature and moisture content of the surrounding air [8] as shown in Fig.7. Because the 

sensor is made to output data in a digital format, it is easier to integrate with microcontrollers 

that can read and analyze the data, like a Raspberry Pi. The DHT11 provides reliable readings 

within its designated operating range, with an average temperature accuracy of ±2°C and a 

humidity accuracy of about±5 

 

Fig. 7. DHT11 Sensor. 

 

 

Fig. 8. Block Diagram of Hardware Setup. 

3.2  SOFTWARE 



In order to read glucose situations using machine literacy, the system you are creating 

interfaces a jeer Pi with a DS18B20 temperature detector and an AD5933 impedance analyzer 

in confluence with Ag/AgCl electrodes. Temperature data from the DS18B20 detector is 

anatomized in confluence with AD5933 impedance measures. A k- Nearest Neighbors (k- NN) 

system that predicts glucose situations also uses these data as features. By comparing new data 

points — temperature and impedance readings to a training dataset, the k- NN algorithm finds 

the" k" nearest neighbors and, using the maturity of these neighbors, determines the most likely 

glucose position [9]. As the central mecca, the Raspberry Pi gathers data from the detectors, 

processes it, and uses the k NN model to read glucose situations in real time, performing in a 

smooth and effective system. The system also takes into consideration the ambient 

temperature(T_dev) by using DHT11 sensor to regard for environmental impacts, as changes in 

surrounding temperature [10]. 

4 Result 

Our project demonstrates a promising non-invasive approach for blood glucose monitoring by 

combining skin impedance and temperature data, with measurements facilitated by the 

AD5933 impedance analyzer, ECG electrodes, a DS18B20 sensor for body temperature, and a 

DHT11 sensor for ambient temperature as shown in Fig.9. Through initial testing, we observed 

an inverse relationship between skin impedance and glucose levels, with higher glucose 

concentrations correlating with decreased impedance. Temperature data, particularly body 

temperature, further refined glucose predictions by accounting for physiological variations, 

while ambient temperature adjustments reduced environmental noise [11]. The AD5933 IC’s 

frequency-sweeping capability allowed us to identify precise frequency points where 

impedance was most sensitive to glucose changes, enhancing model accuracy as shown in 

Fig.10. A machine learning model, trained on a dataset comprising these parameters, 

demonstrated high predictive accuracy within clinically acceptable ranges, showing that this 

multi-sensor, impedance-based system could be a viable, non-invasive alternative for 

continuous glucose monitoring [12]. The entire data set is provided in below link: 

https://in.docworkspace.com/d/sICek8sOgAd6EubkG 

 

Fig. 9. Hardware configuration of the Proposed method. 



 

 

Fig. 10. Output of Proposed method. 

5 Conclusion 

In conclusion, this study presents a feasible, non-invasive approach for blood glucose 

monitoring by integrating skin impedance and temperature data, enabled through the use of 

the AD5933 impedance analyzer, ECG electrodes, and temperature sensors [13]. The 

observed correlation between glucose levels and skin impedance, enhanced by frequency-

based analysis and temperature adjustments, underscores the potential of this method to deliver 

accurate glucose readings without invasive procedures. Our machine learning model, trained on 

multi- parameter data, demonstrated reliable predictive accuracy, positioning this system as a 

promising alternative to traditional glucose monitoring techniques [14]. With further refinement 

and validation, this multi-sensor approach could contribute to the development of comfortable, 

continuous, and user-friendly glucose monitoring devices for diabetes management [15]. 
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