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Abstract. Human Activity Recognition (HAR) serves as an essential element of AI and 

ML which plays an important role in healthcare supervision and sports monitoring and 

security systems development and smart environment performance. This research 

evaluates the application of Convolutional Neural Networks (CNNs) for Human Activity 

Recognition (HAR) since they can analyze both spatial and temporal elements from raw 

data inputs automatically. CNNs achieve high accuracy in action detection when they 

receive training from labeled sensor or video datasets to recognize strolling, running, 

resting and skipping behaviors. The proposed method demonstrates advantages for real-

time processing capabilities along with ease of deployment across various contexts which 

make it selectable for real-world implementations. Research findings indicate that 

activity recognition applications benefit immensely from CNNs through their precise 

analysis along with their resistance to failures and high-speed operation. 

Keyword: Human Activity Recognition, Sports Analytics, Convolution neural network, 

Dataset, Deep Learning Models, Real-Time Activity. 

1 Introduction 

Human Activity Recognition (HAR) has become an essential technology in modern life, 

supporting applications in patient health monitoring, security surveillance, and smart home 

automation. By analyzing data collected from sensors, images, video feeds, and wearable 

devices, HAR systems can automatically detect and classify human movements. In recent 

years, Convolutional Neural Networks (CNNs) have proven especially effective for this task 

because of their ability to learn hierarchical features from complex, unstructured data, which 

enables accurate recognition of activities such as walking, jogging, or sitting [1]. When sensor 

and image inputs are combined, CNN-based HAR systems provide higher accuracy, greater 

efficiency, and more reliable tracking, making them valuable in areas such as elderly care, 

sports performance evaluation, and human–technology interaction [2]. The advancement of 

Human Activity Recognition (HAR) has been significantly influenced by progress in data-

driven and machine-learning techniques that enable systems to extract meaningful patterns 

from complex sensor signals. Early studies demonstrated that combining information from 

multiple accelerometers and gyroscopes improves recognition accuracy compared to single-

sensor configurations [3], [4]. Later research explored wearable and smartphone-based sensing 

approaches, showing that inertial data can effectively capture motion variations across 

different users and environments [5], [6]. These developments highlight how data-centric 

learning has transformed HAR from simple motion tracking to an intelligent framework 
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capable of producing reliable, real-time activity predictions that support applications in 

healthcare, fitness monitoring, and smart environments. 

2 Literature Survey 

Human Activity Recognition (HAR) has been extensively researched across various sensing 

modalities and algorithmic frameworks. Early approaches relied heavily on handcrafted 

features and classical machine learning methods. For instance, depth-based methods 

employing shape features and extreme learning machines demonstrated promising results in 

fall detection tasks [1]. Similarly, ubiquitous sensing in home environments using simple 

wearable and ambient sensors enabled activity classification at acceptable accuracy levels [2]. 

Early research in Human Activity Recognition (HAR) explored various sensing modalities, 

showing that combining multiple accelerometers improves recognition accuracy compared to 

single-sensor setups [3]. Subsequent studies demonstrated that smartphone-based inertial 

sensing and wearable accelerometer systems effectively capture diverse human motions for 

activity classification [4], [5]. Later advancements focused on achieving user-independent 

motion recognition to enhance system robustness across individuals and environments [6]. 

Despite the advances in wearable sensing, limitations such as device dependency and user 

compliance were identified. To overcome these, single accelerometer-based methods were 

investigated for identifying activity types in daily life [7], and innovative devices like 

accelerometer-based digital pens showed the versatility of inertial sensing technologies [8]. 

Complementary studies explored feature extraction and classification techniques to enhance 

recognition accuracy, including probabilistic neural networks and feature reduction methods 

applied to biomedical signals [9] [10]. 

The emergence of deep learning significantly transformed HAR research. Surveys emphasized 

that convolutional neural networks (CNNs) dominate sensor-based HAR due to their ability to 

extract hierarchical and discriminative features directly from raw input [11] [12]. Empirical 

work reinforced these findings, with CNNs achieving superior accuracy compared to 

traditional models [13]. Reviews further highlighted the strengths of deep CNN architectures 

in handling complex recognition tasks across domains [14]. Additionally, multimodal systems 

incorporating 3D posture data enhanced contextual understanding of human activities [15]. To 

facilitate research benchmarking, datasets such as HARTH were introduced, providing 

standardized resources for evaluating HAR models [16]. Meanwhile, machine learning 

methods such as support vector machines were applied to security-focused HAR applications, 

showing strong performance in controlled environments [17]. 

CNN-based frameworks were further extended to multimedia event detection. Deep 

architectures such as DevNet were developed for event detection and evidence recounting in 

video data [18]. Similarly, joint attribute and event analysis models advanced contextual 

understanding in multimedia scenarios [19]. These developments build upon foundational 

CNN work such as LeNet [20], which laid the groundwork for modern deep learning 

techniques in recognition tasks. Collectively, the literature demonstrates a clear trajectory 

from handcrafted feature-based HAR methods toward CNN-driven approaches that enable 

robust recognition across wearable, sensor, and multimedia contexts. This evolution underpins 



 

 

the motivation for employing CNNs in human activity recognition for multimedia event 

detection, as explored in this study. 

3 Existing System 

The improvements in deep learning systems have produced significant benefits for human 

activity recognition especially when applied to assistive living and remote observation. Real-

world sensor-based application deployment of these models requires substantial amounts of 

annotated data therefore data collection proves to be costly and time-intensive. The emergence 

of contrastive self-supervised learning has become a vital answer to resolve sensor-based 

activity recognition problems which require decreased usage of large-scale annotated datasets.  

The growing number of research publications about self-supervised learning for sensor-based 

activity recognition fails to provide extensive reviews of current innovations in this field. A 

detailed evaluation of 43 research studies about contrastive self-supervised learning for human 

activity recognition takes place without including studies that use video or audio components 

due to privacy requirements. The review performs two tasks: it classifies contrastive learning 

approaches and evaluates the key models together with their components used for activity 

recognition. This paper explores specific data augmentation strategies tailored for sensor 

information and provides descriptive information about benchmark datasets that are often 

used.  

The evaluation of self-supervised contrastive learning approaches through different 

assessment scenarios including linear evaluation, semi-supervised learning and transfer 

learning helps identify the most suitable models. This section identifies existing research 

restrictions followed by potential research directions for future inquiries. Fields working with 

contrastive self-supervised learning face three major hurdles that involve limited sensor data 

available for research use and complex robustness design requirements in addition to real-time 

deployment complexities. Hyperparameter optimization requires significant computational 

power because it prolongs process execution times thus limiting its deployment on energy-

efficient devices. Three major issues which complicate the development of contrastive self-

supervised learning include questions of bias and discrimination and the need for robust 

operation in the presence of imperfect or targeted data inputs. The improvement of contrastive 

self-supervised learning reliability and applicability for sensor-based activity recognition 

requires proper resolution of these problems. 

Implementation of sensor-based activity recognition with contrastive self-supervised learning 

(CSSL) requires worldwide collaboration between specialists from all three fields: sports 

science healthcare and human-computer interaction. Several teams of domain experts and 

machine learning specialists develop first-generation operational recognition systems when 

they combine assigned domain constraints with improved contrastive learning context 

processing. Developers should combine self-supervised learning approaches with supervised 

learning approaches to reach their best performance efficiency and generalization ability. 

Secure information processing systems emerge through the integration of edge computing 

trends and federated learning to establish distributed training operations that function with 

inferential functions for rapid processing. Standard experimental boundaries must be 



 

 

established through research so scientists can verify knowledge independently through free 

verifications tools before making scientific discoveries. 

4 Proposed System 

A Human Activity Recognition framework builds a strong intelligent system for human action 

detection and classification by implementing Convolutional Neural Networks (CNNs). Deep 

learning algorithms at their latest state detect activities through sensory information processing 

as well as picture and video assessment to provide precise recognition results. The training 

process uses extensive datasets which provides strong performance during encounters with 

new environments. Dataset quality and diversity are crucial to model generalization, as 

highlighted by the HARTH dataset which was created to benchmark HAR models. While 

traditional methods such as support vector machines have been applied for HAR in domains 

like security systems, CNN-based models consistently outperform them in both accuracy and 

scalability. 

The enhancement of the input pattern quality is performed through several pre-processing 

steps, which continue to filter out background noise and normalize data values, but to read 

their key features. By spatial and temporal dependency detection a deep CNN model tunes to 

the capability of recognizing complex activities in complicating environments. We improve 

the performance of the system using three model optimization techniques, data augmentation 

transfer learning, and hyperparameter tuning. The HAR system has a wide range of 

applications ranging from health monitoring and smart homes, to fitness tracking and security/ 

surveillance applications. The entry of data is facilitated by a menu-oriented system interface 

that also returns predictions together with real time analysis. The union of CNNs into 

TensorFlow also allows for deployment to cloud platforms and edge hardware that consume as 

little resources while scaling. 

The accurate modeling of space-time patterns allows finding activities with more accuracy. 

The TensorFlow serving system operates flexibly in diverse environments to handle varying 

operational requirements. The system has higher usability in the dynamic state since it is 

capable of dealing with many different data formats. Preprocessing systems ensure that input 

data and optimization methods are more reliable, as well, because they employed techniques 

such as data augmentation and hyperparameter optimization for reliability of performance. 

The interactive and real-time monitoring with easy-to-use interface allows users at all 

technical levels to monitor the system. The device would have numerous applications such as 

in healthcare for monitoring falls and activity-based control for home automation systems, as 

well fitness trackers or security devices that can detect irregular behavior. 

The presented Framework for Human Activity Recognition (HAR) is enriched with real-time 

feedback together with a flexible learning application. The system parameters are 

automatically adaptable based on user feedback and an analysis of the logs at the systems to 

adapt for changes in user behavior; environmental variations. The adaptive approach preserves 

high accuracy of the system from its birth as well as individual features. The XAI techniques 

integrated in the system help users comprehend how activities are predicted, particularly those 

in safe domains like health and identity. The system is trusted by users because its capabilities 

are explicit so they accept. Integrating attain inertial sensors with environment sensors and 



 

 

biometric input s is required in framework design to realize a more intelligent human activity 

recognition, promote system reliability and reduce errors in complex environments. 

5 Methodology 

5.1 Design Architecture 

A basic future construction representation is Design coming from the area of engineering. A 

method known as software design process systematically turns these specified requirements 

into an implemented software system. The schematics give structure and a few crucial 

components of an operational system with details about the information structure and some 

functionalities. 

Convolutional Neural Networks have served as the most popular approach for Human Activity 

Recognition (HAR) enabling deep learning algorithms interpret the wearable device sensor 

data and video sensor data to recognize human activities. Data collection Data are recorded by 

acquiring information from sensors (e.g., accelerometers, gyroscopes and cameras) that 

identify walking, sitting or running strides. 

The collected data is processed through normalization and feature extraction methods by 

cleaning of noise components. The video frame extraction, resizing and optimization step the 

serves to pre-process them for CNN processing. A CNN organizes its layers to first transform 

input patterns into convolutional units that capture spatial dependencies, follow with pooling 

operations for feature selection and finally implement a fully connected unit for classification. 

Model learns from labeled training data using backpropagation with Adam or SGD optimizers 

to minimize the loss. A model that has been trained requires testing on unseen data to confirm 

whether it can generalize and perform well in new situations. Evaluation of system reliability 

relies on 4 dependent performance measures considering; accuracy, precision, recall and F1-

score. Post training, the model finds applications in healthcare systems and security 

surveillance as well as smart home automation for real-world activity classification tasks. The 

training of the CNN relies on annotated data to make it capable of correctly identifying images 

and also to recognize their related activities. 

An example CNN model has some active layers such as Dense, Dropout, Activation, Flatten, 

Convolution2D and MaxPooling2D. Once the preprocessing and training on test image are 

completed, predictive model inspects that to detect human activities. 

5.2 Convolutional Neural Network 

Artificial Neural Networks contain Convolutional Neural Networks as one of their subclasses. 

The convolutional layers define this network which serves well for image processing and 

feature extraction as well as the analysis of data that requires sequential dependence. Inside 

Eras users have three possible choices to define their models through. The Sequential model 

allows simple use because layers can be arranged in sequence yet this model works only for 

single-input and single-output functions. The Functional API serves industrial applications by 

providing users with an extensive and adaptable procedure to build complex model 



 

 

architecture. With model sub classing users obtain the highest level of autonomy since they 

create model elements by hand for complete tailoring. 

6 List of Modules 

The initial step involves using Keras' image data generator function which enables 

modifications including image re-sizing and flipping along with re-scaling and zooming. The 

selected data set located in an assigned folder can be accessed with this function which 

partitions the information between training data and testing and validation sections. The 

system requires users to establish target image size parameters together with selection of batch 

size and classification protocol. This structured input enables the training process of our built 

custom CNN network through layered convolutional maps which serve as effective learning 

modules. 

6.1 To Train the Module by Given  

Data Analysis: The process of data analysis requires raw information to undergo purification 

alongside data restructuring leading to situation where enterprises acquire important 

conclusion-based decision support. The extensive method lowers the uncertainty level through 

its vital assessment output. A data analysis process begins with collecting raw information and 

continues with refinement techniques before identifying patterns to derive useful outcomes 

from the data. The analysis process for image data includes evaluation of organization as well 

as verification of accessibility together with confirmation of correct alignment between 

original datasets and their related mask datasets. 

Manual Architecture: We designed our Human Activity Recognition (HAR) system with a 

customize neural network which reached 86% accuracy in identifying human activities along 

with their classification between walking, running and sitting. Although our method reaches 

accuracy numbers slightly below the highest performing models it demonstrates reliable 

performance in detecting real-world human activities. The system demonstrates satisfactory 

environmental independence through its 86% accuracy performance level but additional 

system improvements are possible. Fig 1 show the Architecture of manual net. 

The current outcome provides strong groundwork for the system with chances for better 

performance when we validate it through testing various datasets and environmental 

conditions. Our model demonstrates substantial reliability through its 86% accuracy level 

despite data quality limitations and environmental factors because it proves suitable for 

healthcare applications and fitness monitoring and smart home automation. Additional 

accuracy enhancement will be achieved by utilizing enhancement methods including data 

augmentation and parameter fine-tuning for our model. Fig 2 show the Model Accuracy. 

 



 

 

 

Fig. 1. Architecture of manual net. 

 

Fig. 2. Model Accuracy. 

Key Mathematical Formulations Used in the CNN Model for Human Activity Recognition: 

1. Accuracy Calculation 

 Accuracy = (Number of Correct Predictions) ÷ (Total Number of Predictions) × 100 = 86% 

Symbol definitions: 

• Accuracy: Percentage of correct predictions by the model 

• Number of Correct Predictions: The total predictions that match the ground truth 



 

 

• Total Number of Predictions: All predictions made during testing or evaluation 

2. Softmax Activation Function 

 

ŷᵢ =  𝑒^{𝑧ᵢ}  ÷  𝛴ⱼ 𝑒^{𝑧ⱼ}                                                    (1) 

 

Symbol definitions: 

ŷᵢ: Predicted probability for class i 

zᵢ: Logit (raw output) for class i 

Σⱼ: Summation over all classes j 

 
e: Euler’s number (≈ 2.718)                          (2) 

3. Categorical Cross-Entropy Loss 

 

𝐿 =  − 𝛴ᵢ 𝑦ᵢ ×  𝑙𝑜𝑔(ŷᵢ)                                                         (3) 

Symbol definitions: 

L: Loss value 

yᵢ: True label for class i (1 if correct class, 0 otherwise) 

ŷᵢ: Predicted probability for class i 

log: Natural logarithm 

Σᵢ: Sum over all classes 

3. 2D Convolution Operation 

𝑂(𝑖, 𝑗)  =  𝛴ₘ 𝛴ₙ 𝐼(𝑖 +  𝑚, 𝑗 +  𝑛)  ×  𝐾(𝑚, 𝑛)                       (4) 

Symbol definitions: 

O (i, j): Output feature map at position (i, j) 

I (i + m, j + n): Input value from position (i + m, j + n) 

K (m, n): Kernel/filter weight at position (m, n) 

 

Σₘ, Σₙ: Summation over the kernel dimensions 

4. ReLU Activation Function 

𝑓(𝑥)  =  𝑚𝑎𝑥(0, 𝑥)                                                                    (5) 

Symbol definitions: 

f(x): Output after applying ReLU 

x: Input value (from convolution or previous layer) 

max: Returns the larger of the two inputs (0 or x) 

5. Max Pooling Operation 

𝑃(𝑖, 𝑗)  =  𝑚𝑎𝑥 {𝑂(𝑚, 𝑛)  ∈  𝑃𝑜𝑜𝑙𝑖𝑛𝑔 𝑅𝑒𝑔𝑖𝑜𝑛 𝑅(𝑖, 𝑗)}         (6) 

Symbol definitions: 



 

 

P (i, j): Pooled value at position (i, j) 

O (m, n): Feature map values within the pooling region  

R (i, j): Pooling region corresponding to position (i, j) 

 

6. Gradient Descent Update Rule 

𝜃ₜ₊₁ =  𝜃ₜ −  𝜂 ×  𝛻𝜃𝐿                                                            (7) 

Symbol definitions: 

θₜ: Current weight value 

θₜ₊₁: Updated weight after one step 

η: Learning rate (step size) 

 

∇θL: Gradient of the loss function with respect to weights θ 

7. Learning Curve (Empirical Accuracy Growth) 

𝐴(𝑡)  =  𝐴ₘₐₓ ×  (1 −  𝑒^(−𝑘𝑡))                                              (8) 

Symbol definitions: 

A(t): Accuracy at epoch t 

Aₘₐₓ: Maximum accuracy (86% in this case) 

e: Euler’s number 

k: Growth rate constant 

t: Training epoch 

 

8. Confusion Matrix–Based Accuracy 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  (𝑇𝑃 +  𝑇𝑁) ÷ (𝑇𝑃 +  𝑇𝑁 +  𝐹𝑃 +  𝐹𝑁)            (9) 

Symbol definitions: 

TP: True Positives 

TN: True Negatives 

FP: False Positives 

FN: False Negatives 

Accuracy: Classification accuracy calculated from the confusion matrix 

9. Epoch-wise Accuracy Change 

𝛥𝐴 =  𝐴(𝑡)  −  𝐴(𝑡 −  1)                                                                 (10) 

Symbol definitions: 

ΔA: Change in accuracy between two consecutive epochs 

A(t): Accuracy at epoch t 

A (t − 1): Accuracy at the previous epoch 

LeNet: Early in the 1990s, Yann LeCun led his team to develop LeNet, which became the first 

important convolutional neural network (CNN) to advance deep learning technology (LeCun, 



 

 

Y., Bottou, L., Bengio, Y., & Haffner, P., 1998). This artificial neural network system served 

to identify handwritten numbers, which could be applied for inspecting financial documents 

and processing postal mail. A neural network operates through a sequence of input, 

convolutional, pooling, and fully connected layers before generating final outcomes as 

predicted digits between 0 and 9. 

LeNet achieved substantial success during its time even though it remains much shallower 

than contemporary deep networks including ResNet and Inception because it brought forward 

vital CNN concepts that are now foundational in image recognition tasks. Libraries built on 

top of LeNet proved the ability of neural networks to classify images while becoming essential 

to modern deep learning developments during the twenty-first century. Fig 3 show the 

Architecture of Lenet. 

 

Fig. 3. Architecture of LeNet (adapted from LeCun et al., 1998) 

Convolutional layers: The deep convolutional neural network uses convolutional layers that 

operate filters on both initial data images as well as outcome feature maps coming from 

preceding processing steps. The network contains multiple user-defined parameters though the 

two most important parameters relate to filters and their respective dimensions. 

Pooling layers: The operation of pooling layers resembles convolutional layers although they 

run distinctive tasks using maximum value extraction from their filter domains through max 

pooling or value-averaging of their values through average pooling. The network includes 

integrated layers which reduces its complexity and simplifies its structure. 

Dense or fully connected layers: The final feature maps from a CNN get transformed into a 

flat representation by fully connected layers leading to the classification step. The 

classification procedure follows a similar operational principle to MLP output layers. 



 

 

Resnet: In 2015 Kaiming He, Xiangyu Zhang, Shaoqing Ren and Jian Sun presented Residual 

Network (ResNet) in Deep Residual Learning for Image Recognition as an important deep 

learning architecture. The innovative residual learning method within ResNet addresses 

training obstacles for deep networks which resulted in major changes to both computer vision 

and artificial intelligence domains.  

The built-in shortcut pathways in ResNet-50, ResNet-101 and ResNet-152 models enable 

information transfer between layers thus reducing gradient disappearance effects and enabling 

the training process. 

The bottleneck architecture improves efficiency by using a combination of 1x1 convolutions 

with 3x3 layers as an effective way to lower computational requirements. Global average 

pooling substitutes the typical dense layers at the end thus decreasing overfitting and 

enhancing algorithm generalization capabilities. Fig 4 show the Architecture of ResNet. 

The modern deep learning field uses ResNet as its foundational element for applying 

classification and detection and segmentation while designing improved neural networks. 

 

Fig. 4. Architecture of ResNet. 



 

 

7 Result 

A successful implementation of the HAR system with CNNs has the potential to identify daily 

activities including walking, running and sitting with high accuracy. CNNs demonstrate 

success rates ranging from 90% to 95% according to previous research while achieving 99% 

success in particular situations such as video-based HAR. Beyond HAR, CNNs have also 

demonstrated strong performance in multimedia event detection, such as DevNet for event 

recounting and joint attribute-event analysis for contextual understanding. These works 

highlight the scalability of CNN-based HAR frameworks into broader multimedia 

applications, including surveillance and smart environments. 

The method works for real-time processing as well, because the efficient ones require fast 

operation, which is required in healthcare fall detection as well as fitness data monitoring and 

for smart home applications. Furthermore, the system runs through frames in under a second 

due to its optimal performance time rendering near-instantaneous results for users. 

One of the greatest strengths of this system is that it demonstrates good scaling characteristics. 

By integrating its platform with TensorFlow framework, the system which can adapt to a wide 

variety of environments and users’ needs is available for implementation in phone outlets, 

wearables devices, Internet of Things (IoT) ecosystem. This structure makes it possible to 

work data collected from all types of sensor sources, so that it was developed within a myriad 

of use cases ranging from healthcare or security features to home automation needs. The 

system has been designed to generalize its performance beyond exposure from early 

encounters in order to learn unmet data and activities, making it a robust approach even in real 

world settings. 

Nevertheless, there are some restrictions with each patient population at the same time of 

practical use in clinical environment. The effectiveness and accuracy of the activity 

recognition are hampered by three primary performance-degrading factors: i) inconsistency in 

sensor measurements; ii) poor-quality video inputs; and iii) changes organ social elements 

such as lighting and motion blurring. The video-based system, on the other hand has the 

privacy problem of storing sensitive content that becomes even more interesting in such a 

system. The above discussed system improvements as well as the quality of data and strategic 

planning will cause the system to be more field-friendlier, when despite challenges it can 

become practically deployable. 

Without continued focus on increasing operational effectiveness through system optimization 

the observed forward development of the system cannot occur. Auto data augmentation 

solutions and parameter tuning techniques improve accuracy by applying methods that work 

without requiring a large amount of labelled dataset inputs. End-to-end system improvement 

will realize the complex real-world environment processing and HAR techniques become a 

permanent system support solution in healthcare and security markets. 



 

 

 

Fig. 5. Home Page. 

Fig 5 and 6 shows the Home page and Registration page respectively. 

 

Fig. 6. Registration Page. 

 



 

 

 

Fig. 7. Login Page. 

Fig 7 and 8 shows the Login page and Welcome page respectively. 

 

Fig. 8. Welcome Page. 



 

 

 

Fig. 9. Input Page. 

 

Fig. 10. Detection Page. 

Fig 9 and 10 are the input page and Detection page respectively. 

8 Conclusion 

Human Activity Recognition (HAR) exploits CNN, a well-known methodology to understand 

human actions using sensor related data and video data. The hierarchical architecture of CNNs 

is capable to capture essential motion patterns such as body posture in addition to gesture and 

interactive methods of usage, leading to robust activity recognition. 

Spatial as well as temporal analysis is the forte of CNNs and they have shown remarkable 

ability in managing challenging HAR applications. The superior performance of deep learning 

models is the product of leveraging big data sets combined with live operational deployment. 

By ongoing model enhancement and optimization research, CNN-based techniques further 

increase HAR's effectiveness in various fields such as medical study of security applications 

and intelligent system construction despite the fact that dealing with noisy data and 



 

 

computationally power demanding operations – and dependence on trainer-given datasets -are 

still challenges. 
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