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Abstract. Multimodal data are essential to improve the precision and effectiveness of 

diagnosing neurological conditions such as Autism Spectrum Disorder (ASD). This study 

leverages functional magnetic resonance imaging (fMRI) time series data, processed using 

Harvard-Oxford (HO) and Automated Anatomical Labeling (AAL) atlases, alongside non 

imaging demographic features (e.g., gender, site), to improve ASD classification in 

complex clinical settings. We propose a multimodal framework that begins with recursive 

feature elimination (RFE), tailored for ASD tasks involving 1D fMRI time series, to isolate 

the most significant features contributing to class distinction and reduce dimensionality 

while preserving critical temporal patterns. The selected attributes are used to formulate a 

functional connectivity graph of the whole brain. This graph is processed through a hybrid 

architecture: a graph convolutional network (GCN) with residual connections to mitigate 

information loss and stabilize gradients, and a Stacked Graph Convolutional Network 

(GCN) that leverages random walk embeddings to capture higher-order structural 

relationships. The outputs of the DeepGCN with residual connections and the Stacked 

GCN are combined and subsequently fed into a Multi-Layer Perceptron (MLP) for binary 

classification of ASD versus typical controls. To further enhance the model, we introduce 

an adaptive weighted edge pruning mechanism during training, dynamically adjusting edge 

weights to optimize graph sparsity while preserving essential connectivity, and an 

EdgeDrop strategy to randomly sparsify node accuracy connections, reducing overfitting 

and over smoothing in DeepGCN training. Evaluated using nested 10-fold cross-

validation, the adopted methodology results in an ACC of 81. 29% and an AUC of 0.85 

for the identification of ASD, outperforming the baseline models and demonstrating the 

efficacy of integrating feature selection with graph-based learning for accurate and 

efficient diagnosis. 

Keywords: Autism spectrum disorder, multimodal data, graph convolutional network, 

stacked graph convolutional network, random walk embeddings, edge pruning. 

1  Introduction 

Autism Spectrum Disorder (ASD) is a complex neurodevelopmental disorder that affects 

individuals' perceptions and interactions with the world, manifesting as differences in social 

interaction, communication, and behavior. Those with ASD experience significant difficulties 

in interpreting nonverbal cues, such as facial expressions, intonation, and body language, and 

struggle with turn-taking in conversations and adapting to changes in daily routines. The 

severity of these challenges varies considerably across individuals (Ma et al., 2024; Parisot et 

al., 2017). Early identification of ASD is critical, as it enables tailored interventions that may 
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improve language development, social relationships, and overall quality of life (Zwaigenbaum 

et al., 2015; Masi et al., 2017). However, diagnosing ASD remains a major challenge due to 

its complex nature, as traditional diagnostic methods rely heavily on subjective assessments, 

such as behavior observation and caregiver interviews, which can vary in reliability and 

interpretation (Reddy et al., 2022; Falkmer et al., 2013; Loth et al., 2016; Hyde et al., 2019). 

These conventional diagnostic approaches are limited in terms of precision and reliability as 

they tend to be influenced by factors such as the experience of the observer, cultural 

dependency, or the likelihood of an individual masking symptoms (Parisot et al., 2018). 

Furthermore, these evaluations are time-consuming, potentially postponing much-needed 

intervention, particularly in underserved areas or for families with limited specialist access. 

This emphasizes the need for new, objective, and efficient diagnostics (e.g., based on 

technology, biomarkers, and data-driven insights) that would make it easier to detect ASD 

early, remove the bias of human components, and facilitate the screening process (Ktena et al., 

2018). Further developments in these fields have the potential to transform ASD detection and 

treatment, providing hope for more accessible and timely support for affected individuals and 

their families (Yousefian et al., 2022). 

However, despite stellar advances in these techniques, a major limitation remains: many classic 

deep learning architectures function within a Euclidean data structure, and are incapable of 

capturing the complex topological structure of brain connectivity networks (Li et al., 2021). In 

response to this limitation, graph-based representations have emerged as a more intuitive 

framework to model functional and structural networks of the brain, where the nodes index the 

brain areas and the edges represent the relationships among them (Yang et al., 2021). These 

graph representations model the non-linear hierarchical characteristics of neural interactions 

more effectively than other representations. However, both normal CNNs and RNNs struggle 

to directly process such non-Euclidean data, requiring specialized methods such as Graph 

Neural Networks (GNNs) to exploit these complex relations (Khodatars et al., 2021). 

2 Literature Review 

Graph convolutional networks (GCNs) were introduced as a breakthrough for graph-based 

learning and have been widely used in applications such as neuroimaging and functional 

connectivity analysis (Zhou et al., 2024). GCNs have been applied to population-based disease 

prediction based on fMRI data, where demographic information was integrated with the graph 

structure to enhance classification results (Bandara et al., 2024). The integration of non-

imaging information with neuroimaging-based deep learning models represented a step 

forward in improving diagnosis (Atlam et al., 2025). 

Further developments in graph convolutional models for brain connectivity networks analysis 

have demonstrated significant improvements in diagnosing brain diseases (Cui et al., 2023). 

Strategies for feature selection, such as Recursive Feature Elimination (RFE), have been used 

to select the most informative functional connectivity patterns, emphasizing how 

dimensionality reduction can increase the interpretability and performance of models (Shao et 

al., 2023). 

Deep learning-based ASD diagnosis methods using fMRI data have shown high classification 

accuracy, demonstrating the effectiveness of unsupervised learning algorithms in neuroimage 



analysis (Nafisah et al., 2025). Additionally, advancements in domain adaptation techniques 

have helped to reduce variability across multisite neuroimaging datasets, improving the 

generalization of models across diverse populations (Wang et al., 2024). 

A hybrid approach combining GCN with multi-layer perceptron (MLP) models for ASD 

classification has shown improved classification performance (Gautam et al., 2023). Stacked 

GCN architectures for ASD classification, which leverage hierarchical feature extraction, have 

enhanced predictive accuracy, outperforming conventional methods (Rubio-Martín et al., 

2024). 

Finally, innovative frameworks for graph learning that integrate self-attention mechanisms 

have been proposed to capture complex brain connectivity patterns, offering new benchmarks 

for functional connectivity analysis (Shao et al., 2023). Their approach outperformed 

traditional GCNs, setting new benchmarks in functional connectivity analysis. 

 
Fig. 1. Proposed Architecture. 

3  Methodology 

A schematization of the methodology to be used is presented in Fig 1. We adopt a graph-based 

approach to represent multimodal data pertaining to the diagnosis of Autism Spectrum 

Disorder (ASD) as a node-classification problem. Functional connectivity networks are 

constructed using fMRI time-series data, parcellated with the AAL and HO atlases [20] 

defining the graph nodes are brain regions and the edges are pairwise correlations of their time-

series signals. Non-image data, such as age, gender, site and FIQ, are added for increasing the 

graph connectivity by capturing demographic similarities between the subjects. As shown in 

Fig 1, a Recursive Feature Elimination (RFE) mechanism is applied to select the most 

discriminative nodes and edges, optimizing the graph structure by iteratively removing the least 

important features [21]. The refined graph is then propagated to a Graph Convolutional 

Network (GCN) with residual connections to learn initial node embeddings, capturing local 

and global topological patterns in brain connectivity [22]. From the same graph, node 



embeddings are extracted, and random walk embeddings are constructed to capture structural 

proximity between nodes using a random walk-based approach. These random walk 

embeddings are then propagated to a stacked GCN, which further refines the representations 

by modeling higher-order relationships. The output layers of the GCN with residual 

connections and the stacked GCN are combined, integrating both sets of learned features. 

Finally, the combined features are forwarded to a Multi-Layer Perceptron (MLP) for 

classification, outputting predictions as ASD or Typical Control. 

3.1 Data Acquisition and Preprocessing 

We conducted our experiments using the Autism Brain Imaging Data Exchange (ABIDE) 

dataset, which is openly accessible. multimodal repository [23]. ABIDE-I includes 1112 

subjects from 17 global sites, providing resting-state fMRI (rs-fMRI) and phenotypic data [24]. 

We used a preprocessed version from the Preprocessed Connectomes Project, processed via 

the C-PAC pipeline. To ensure quality, we excluded subjects with missing time-series, 

incomplete brain coverage, severe motion, or artifacts, resulting in 871 subjects: 403 with ASD 

and 468 typical controls. For a balanced dataset, we selected 806 subjects, split equally into 

403 ASD and 403 non-typical controls. The rs-fMRI data was parcellated using two atlases: 

the Harvard-Oxford (HO) atlas, yielding 111 ROIs [25], and the Automated Anatomical 

Labeling (AAL) atlas, yielding 116 ROIs. Average time-series for each ROI from both atlases 

were extracted to construct functional connectivity networks. Non-imaging data, including 

gender, were encoded (e.g., gender as binary, site as one-hot) to capture demographic 

variations. 

3.2 Graph Nodes & Graph Edges Construction 

In the constructed population graph G = (V, E, A, X), each node vi ∈ V corresponds to 

a distinct subject, and the associated node features are derived from resting-state functional 

MRI (fMRI) data. For each subject i, a functional connectivity (FC) matrix Fi ∈ RR×R is 

computed by evaluating the Pearson correlation between the BOLD time series of each pair 

of brain regions (ROIs), 

where R denotes the total number of ROIs defined by an anatomical atlas such as the Harvard-

Oxford (HO) atlas and the Automated 

Anatomical Labeling (AAL) atlas. Given that each FC matrix Fi is symmetric, we remove the 

redundant upper-triangular and diagonal elements, and flatten the strictly lower-triangular 

part to form the node feature vector: 

𝒙𝒊 =  𝒗𝒆𝒄𝒍𝒐𝒘𝒆𝒓 (𝑭𝒊) ∈ 𝑹𝑴                                                                                                       (1)  

Where 𝑴 =  
𝑹(𝑹−𝟏)

𝟐
                                                                                                    (2) 

Unlike conventional approaches that define inter-node similarity purely based on 

neuroimaging features. we construct graph edges by leveraging subject-level demographic 

attributes, including age, gender, and data acquisition site. Each subject i is associated with 



a demographic vector di ∈ RD, where D is the number of demographic attributes. To 

quantify the similarity between two subjects i and j, we compute the cosine similarity 

between their demographic vectors: 

𝑨𝒊𝒋 =  𝒄𝒐𝒔 (𝒅𝒊, 𝒅𝒋) =
𝒅𝒊

𝑻𝒅𝒋

||𝒅𝒊||𝟐 .  ||𝒅𝒋||𝟐  
                                                                                             (3)               

where di, dj ∈ RD denote the demographic vectors for subjects i and j, respectively. This 

similarity score is then used as the edge weight in the population graph, enabling the 

model to capture learned demographic relationships among subjects through data-driven 

edge construction. This formulation ensures that edge weights reflect normalized demographic 

affinities between subjects. To enhance the sparsity and scalability of the graph, a k-nearest 

neighbor (k-NN) sparsification scheme is applied such that each node retains edges only to its 

k most similar neighbors: 

𝑨𝒊𝒋 =  {
𝒄𝒐𝒔(𝒅𝒊, 𝒅𝒋), 𝒊𝒇 𝒋 ∈  𝑻𝒐𝒑𝒌(𝒊)

𝟎, 𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                                                                                       (4) 

This leads to a sparse affinity matrix A ∈ RN×N and completes the definition of the 

population graph G, which encodes both imaging-based features and demographic similarity 

structure. 

3.3 Random Walk-Based Graph Embedding: DeepWalk 

To capture global structural information that encompasses both local neighborhood 

relationships and long-range dependencies that may reflect temporal or developmental 

similarities among subjects, we employ the DeepWalk algorithm a stochastic embedding 

method that uses truncated random walks and a skip-gram model to learn continuous vector 

representations of graph nodes. 

Let G = (V, E) be an undirected graph, where V is the set of nodes that represent subjects 

and E ⊆ V × V denotes edges representing demographic similarity. DeepWalk aims to 

learn an embedding function Φ: V → Rd that maps each node v ∈ V to a low-dimensional 

vector zv ∈ Rd, capturing both local and global structural information. 

1. Random Walk Generation: For each node v ∈ V, we simulate γ truncated random 

walks of fixed length L, resulting in walk sequences: 

𝑤𝜐
(𝑖) =  ( 𝜐0 =  𝜐, 𝜐1, 𝜐2, . . . . , 𝜐𝐿−1 )                                                                                   (5) 

𝑊ℎ𝑒𝑟𝑒 𝜐𝑡 +  1  

Here, N(vt) denotes the neighbors of node vt, and U denotes the uniform distribution over 

those neighbors. The total corpus of walks is: 

𝒲 =  ⋃ ⋃ 𝒲𝓋
(𝑖)𝛾

𝑖=1𝓋𝜖 𝑉                                                                                                        (6) 

 



 

2 2 

Skip-Gram Embedding Learning: Each walk W ∈ W is treated analogously to a sentence 

in a language model. Using a Skip-gram architecture, we aim to maximize the likelihood 

of observing context nodes within a window size w around a central node. The optimization 

objective is: 

 𝐦𝐚𝐱
𝚽

∑ ∑ ∑ 𝒍𝒐𝒈 𝑷( 𝓿𝒕+𝒋 |𝒛𝓿𝒕
)−𝒘≤𝒋≤𝒘 𝒋≠𝟎

|𝓦|
𝒕=𝟏𝓦𝝐𝓦                                                                       (7) 

where the conditional probability is modeled using softmax: 

𝑷(𝓿𝒋|𝒛𝓿𝒊
) = 

𝒆𝒙𝒑 (𝒛𝓿𝒋
𝑻 𝒁𝓿𝒊

)

∑ 𝒆𝒙𝒑(𝓿𝒌𝝐 𝒗 𝒛𝓿𝒌
𝑻 𝒁𝓿𝒊

)
                                                                                                      (8) 

Due to computational costs, this softmax is approximated via negative sampling.The final 

output of the DeepWalk model is an embedding matrix: 

Z = [ 𝒛𝟏, 𝒛𝟐, . . . . . . , 𝒛|𝑽|]
𝑻 ∈  ℝ|𝑽|𝒙 𝒅                                                                                            (9) 

where each row zv represents the learned embedding for node v ∈ V. 

3.4 Graph-Based Classification: Stacked GCN & DeepGCN 

1) Deep Graph Convolutional Network (DeepGCN): To model complex topological 

structures and subject-level dependencies directly from graph-structured inputs, we adopt a 

Deep Graph Convolutional Network (DeepGCN) framework with residual connectivity. This 

architecture enables deeper propagation of node features without suffering from the issues of 

vanishing gradients and feature oversmoothing, which typically arise in standard GCNs. 

We construct a population-level undirected graph G = (V, E), where each node vi ∈ V 

denotes a subject, and edges eij ∈ E capture phenotypic similarity. A feature vector is 

associated with each node. xi ∈ RC, which yields a feature matrix X ∈ RN×C. The adjacency 

matrix A ∈ RN×N encodes the connectivity, and D denotes its degree matrix. To enable 

localized spectral filtering, we adopt the Chebyshev polynomial approximation of graph 

convolutions. The lth hidden layer output y(l+1) is computed as: 

                             

𝒚(𝒍+𝟏)  =  𝓰(𝑫−𝟏/𝟐 𝑨𝑫−𝟏/𝟐 𝒚(𝒍) 𝑾(𝒍)                                                                                     (10) 

 where y (0) = x, W(l) is the trainable weight matrix, and G (·) is a non-linear activation 

function (e.g., ReLU). This formulation approximates spectral convolutions using K-order 

Chebyshev polynomials Tk (L̃) of the normalized Laplacian L̃ ,  which avoids explicit 

eigen-decomposition. 

However, stacking multiple GCN layers introduces gradient instability, where feature 

representations collapse to indistinguishable vectors across nodes. To alleviate this, we 

integrate residual connections, inspired by Reset, into the GCN architecture. The residual 

formulation converts the transformation H(y(l)) into: 



 

 y(l+1) = S(y(l), W(l)) + y(l)                                                                                  (11) 

Here, S (·) denotes graph convolution operation with learnable parameters W(l). Each layer’s 

output is thus a summation of its transformation and the original input, promoting gradient 

flow and mitigating feature degradation. 

All intermediate convolutional layers incorporate ReLU activations and dropout regularization 

to further stabilize training and reduce overfitting. Notably, residual units are excluded in the 

final layer, such that the output feature representation X̂ ∈ RN×P is solely derived from the last 

graph convolution, before being passed to a Multi-Layer Perceptron (MLP) for 

classification. 

This DeepGCN branch complements the Stacked GCN by directly leveraging the raw graph 

structure and node-level features in a deeper, more expressive architecture capable of 

modeling non-local and higher-order interactions across the population graph. 

Stacked GCN: Traditional GCNs typically assume rich, high-dimensional input features 

for each node. However, in our case, the node attributes are sparse or unavailable. The 

StackedGCN addresses this issue by replacing raw features with unsupervised DeepWalk 

embeddings, enabling the model to learn over the structure of the graph rather than node-

specific input. 

The embeddings Z ∈ R|V |×d obtained via the DeepWalk-based RWGE-DW framework 

are used as input node features for a stacked Graph Convolutional Network (GCN), which 

learns task-specific representations for subject-level classification. Let G = (V, E) be the 

same demographic similarity graph as: 

• A ∈ R|V |×|V | denotes the binary or weighted adjacency matrix. 

• Z ∈ R|V |×d is the node feature matrix obtained from DeepWalk embeddings. 

• Â = A + I add self-loops. 

• D̂ ∈ R|V |×|V | is the diagonal degree matrix of Â. 

We stack L GCN layers to progressively refine node-level representations. The propagation 

rule for layer ℓ = 1, . . ., L is: 

𝑯(𝒍)= 𝝈( 𝑫̂−𝟏/𝟐 𝑨̂𝑫̂−𝟏/𝟐 𝑯(𝒍−𝟏)𝑾(𝒍)                                                                                        (12)

• W(ℓ) ∈ Rdℓ−1×dℓ is the trainable weight matrix for the ℓ-th layer, 

• σ (·) is an activation function, e.g., ReLU. 

The final layer output H(L) ∈ R|V |×d
′ 

provides the task-specific node embeddings. For node 



classification. 

Final Classification: We combine features from two different graph models—one based 

on brain connectivity and the other on subject similarities. By merging their outputs, we 

capture richer information about each subject, which is then used by an MLP to make the 

final ASD prediction. 

Let X̂ stacked ∈ RN×d1 denote the output node embeddings obtained from the Stacked 

GCN branch, and let X̂ deep ∈ RN×d2 

represent the embeddings from the DeepGCN branch. These embeddings are concatenated 

along the feature dimension to form a 

unified node representation: 

𝑿̂ = Concat (𝑿̂𝒔𝒕𝒂𝒄𝒌𝒆𝒅, 𝑿̂𝒅𝒆𝒆𝒑) ∈  ℝ𝑵𝒙 (𝒅𝟏+𝒅𝟐)                                                                             (13) 

This fusion preserve both the local message-passing hierarchy captured by the Stacked GCN 

and the global residual-enhanced representations from the DeepGCN. The resulting joint 

embedding. The shared Multi-Layer Perceptron (MLP) then processes X̂ for node-level 

classification: 

z = MLP (X̂) ∈ RN×C                                                                                                 (14) 

where zi ∈ RC denotes the probability vector of the class for the subject i and C is the 

number of output classes (e.g., ASD vs. TD). The MLP consists of fully connected layers 

with nonlinear activation (e.g., ReLU), optional dropout for regularization, and a final softmax 

layer to produce probabilistic predictions. 

This fusion paradigm allows the model to exploit diverse relational information across 

modalities and population views, thereby enhancing classification performance and robustness 

to graph construction variability. 

4 Experiments and Results 

We evaluated our proposed dual-stream GNN model on the ABIDE-I dataset using a 

nested 10-fold cross-validation scheme to ensure robust and unbiased performance estimation. 

The primary loop partitions the data is divided into training and testing subsets, while the inner 

loop further divides the training data into training and validation subsets for hyperparameter 

tuning and early stopping. This nested strategy ensures that the test set remains completely 

unseen during model development, preventing feature peeking and improving generalization. 

In each fold, node features were constructed from raw imaging data using functional 

connectivity profiles, while edge features were derived from phenotypic metadata (age, gender, 

and site). Functional graphs were passed to the DeepGCN stream, and phenotypic graphs were 

processed via DeepWalk to obtain random walk-based node embeddings, which were then fed 

into a StackedGCN. The two graph streams were fused at the feature level and classified using 



a shared MLP. During training, model optimization was carried out using the Adam algorithm, 

configured with a learning rate of 0.001 and L2 regularization to prevent overfitting. To 

enhance generalization, early stopping was employed based on validation loss, with a patience 

threshold of 30 epochs. The model was trained for up to 250 epochs per fold. At each epoch, 

we computed accuracy, AUC, precision, recall, and F1-score on both the training and 

validation sets. The best model for each fold was saved based on validation accuracy and used 

for final evaluation on the corresponding test set. We explicitly evaluate the role of edge 

pruning via edge dropout on model generalization. During training, edge weights in the 

connectivity graph are randomly dropped with a probability p = 0.2, in order to prevent 

overfitting and induce robustness against noisy or spurious correlations. 

Algorithm 1 Pseudocode 

Require: Functional signals X, demographic features D, number of GCN layers 𝐺ℎ, mapping 

functions S 

Ensure: Predicted class label 𝑌̂ for each subject 

1. Functional features X are processed to obtain X′ 

2. X′ and D are used to construct two graphs: 𝐺𝐹𝐶  (functional) and 𝐺𝑅𝑊 (phenotypic) 

3. Node embeddings 𝑍 𝑅𝑊are computed using random walk encoder from 𝐺𝑅𝑊 

4. 𝑍 𝑅𝑊 is passed through a stacked GCN to obtain Z𝑠𝑡𝑎𝑐𝑘𝑒𝑑 

5. 𝑧𝑑𝑒𝑒𝑝(0) = X' is used as input for DeepGCN 

6. for gh=1gh = 1 to Gh do 

7.     if gh= 1 then 

8.         𝑧𝑑𝑒𝑒𝑝
(𝑔ℎ) =  𝒮 (𝑧𝑑𝑒𝑒𝑝

(𝑔ℎ−1), 𝑤(𝑔ℎ)) 

9.     else 

10.             𝑧𝑑𝑒𝑒𝑝
(𝑔ℎ) =  𝒮 (𝑧𝑑𝑒𝑒𝑝

(𝑔ℎ−1), 𝑤(𝑔ℎ)) + 𝑧𝑑𝑒𝑒𝑝
(𝑔ℎ−1) 

11. end if 

12. end for 

13. Concatenate representations: Z= [𝑧 𝑠𝑡𝑎𝑐𝑘𝑒𝑑 || 𝑧𝑑𝑒𝑒𝑝
(𝐺ℎ)  

14. Feed Z into an MLP: 𝑌̂  =  𝑀𝐿𝑃(𝑍) 

4.1 Performance Evaluation 

To assess the effectiveness of the model, we utilize several evaluation metrics, including 

accuracy (ACC), precision, recall, F1 score, and the Receiver Operating Characteristic (ROC) 

curve. A true positive (TP) indicates a correctly identified positive instance, while a true 

negative (TN) represents an accurate classification of a negative case. Conversely, a false 

negative (FN) refers to a positive instance that has been incorrectly labeled as negative. 

These evaluation criteria are formally defined below: 

ACC = 
𝐓𝐏+𝐓𝐍

𝑻𝑷+𝑻𝑵+𝑭𝑷+𝑭𝑵
                                                                                                                               (15) 

Precision = 
𝑻𝑷

𝑻𝑷+𝑭𝑷
                                                                                                                                                     (16) 



Recall = 
𝑻𝑷

𝑻𝑷+𝑭𝑵
                                                                                                                                        (17) 

F1= 
𝟐𝒙 𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧𝐱 𝐑𝐞𝐜𝐚𝐥𝐥

𝐏𝐫𝐞𝐜𝐢𝐬𝐢𝐨𝐧+𝐑𝐞𝐜𝐚𝐥𝐥
                                                                                                                   (18) 

 

Fig. 2. Classification Accuracy with and without Edge Pruning. 

4.2 Effect of Edge Pruning on Model Performance 

To investigate the impact of edge pruning on graph-based learning, we incorporated an edge 

pruning mechanism into our graph- convolutional network (GCN) framework. Specifically, we 

trained the model under two configurations one with edge pruning applied during training and 

the other without it. The pruning mechanism estimates the importance of each edge based on 

the magnitude of the learned attention or the weights of the edges. At regular intervals, 

dynamically determined during training, edges that are less important than a computed 

threshold was removed. This threshold was adaptively set as the average value of all edge 

importance scores at that stage. 

This selective pruning process is intended to remove noisy or weakly contributing edges, 

thereby simplifying the graph structure and reducing the potential for overfitting. It 

encourages the model to focus on the most relevant and informative connections. During 

training, we monitored key performance metrics such as classification accuracy, area under 

the ROC curve (AUC), and F1 score using 10-fold cross-validation setup. It was consistently 

observed that using edge pruning resulted in improved validation performance across multiple 

folds. One particularly valuable feature of our approach is that the interval at which pruning 

occurs is updated adaptively it increases when the validation loss decreases, allowing the model 

to stabilize, and decreases when validation performance degrades, promoting further 

exploration of the edge space. We also enforced a constraint that ensures that the number of 

remaining edges in the graph does not drop below a minimum threshold. This guarantees 

sufficient connectivity for effective message transmission between nodes. 



Fig-2 presents a bar plot comparison of classification accuracies for selected folds, with and 

without edge pruning. For example, in Fold 3, the accuracy improved from 70.21% to 72.7%, 

while in Fold 6, it increased from 71.4% to 75.9%. On average, edge pruning yielded a 2.3% 

improvement across all folds. This trend indicates a more consistent and robust generalization 

performance when pruning is applied. The integration of adaptive edge pruning introduces a 

powerful form of structural regularization. It helps the model focus on semantically and 

functionally meaningful relationships in the graph, leading to more robust and generalizable 

learning, particularly in domains such as functional brain connectivity, where noisy 

correlations are prevalent. 

4.3 Impact of Network Depth on Model Performance 

In order to explore how architectural depth affects model performance, we performed a series 

of experiments by varying the number of graph convolutional layers within our framework. 

Specifically, we evaluated configurations with 2, 8, 16, and 32 layers in both the stacked 

GCN architecture with residual connections and the GCN framework. Each configuration was 

trained on two datasets, AAL and HO, with differing graph structures and feature complexities, 

enabling the evaluation of depth robustness across data distributions. Performance was 

evaluated via 10-fold cross-validation for statistical reliability. 

The motivation behind this investigation was to understand the trade-offs between 

representational capacity and over smoothing, a common phenomenon in deep graph neural 

networks where increasing depth can lead to indistinguishable node representations and 

degraded performance. Incorporating residual connections improved gradient flow and feature 

retention across layers. Models with 8 and 16 layers outperformed both shallow (2-layer) and 

deep (32-layer) variants, offering a strong trade-off between expressiveness and stability. The 

8-layer model consistently generalized well, while the 16-layer setup offered marginal gains 

with added complexity. 

Table 1. Performance Metrics of GCN Models on AAL And Ho Datasets (Averaged For 8 And 16 

Layers) 

Dataset Accuracy Precision F1 Score AUC 

AAL 

HO 

81.2 

77.38 

78.80 

77.55 

77.38 

77.05 

84.85 

83.50 

 

In parallel, we experimented with the GCN architecture, which integrates residual connections, 

dilated convolutions, and normalization techniques designed to support deeper learning. 

Consistent with the stacked GCN findings, the GCN models exhibited superior performance at 

intermediate depths (8 and 16 layers). The 2-layer version was underpowered, lacking 

sufficient depth to model higher-order dependencies, whereas the 32-layer variant experienced 

diminished returns, likely due to over-smoothing and optimization challenges despite 

architectural adaptations. Table 1 shows the Performance Metrics of GCN Models on AAL and 

HO Datasets. 



Across both architectures, 8-layer and 16-layer configurations yielded the strongest 

performance. The 8-layer DeepGCN model achieved the highest average accuracy of 80.12%, 

while the 16-layer variant followed closely with 77.23%. These results highlight the benefit 

of moderate depth in preserving expressive power without introducing over-smoothing or 

training instability. 

4.4 Overall Performance 

To effectively assess the performance and stability of our model, DualStream-GCN, we 

conducted comprehensive experiments across two widely adopted brain atlases; AAL and 

HO. We contrasted our model with a variety of traditional and up-to-date models, including 

traditional GCN, DNN, EV-GCN. Baselines are non-graph-based model, shallow model, and 

new multimodal graph learning methods.For comparison fairness and reproducibility, we used 

nested 10-fold cross-validation, which splits the test data from the feature selection and 

training procedure, thus giving a more unbiased estimation of generalization performance. 

The DualStream-GCN model incorporates both imaging and non-imaging data streams 

into one diagnosis pipeline. Imaging data, derived from AAL and HO fMRI time series, 

undergo feature refinement, subsequently forming subject-specific functional connectivity 

graphs. These graphs are then used to compute two streams of embeddings. In the first stream, 

the raw graph data comprising node and edge-level phenotypic information is directly passed 

through a Residual Graph Convolutional Network (Res- GCN) to preserve low-level 

topological patterns and promote gradient flow through deeper networks. In parallel, the 

second stream computes high-level graph embeddings, which are input into a Stacked GCN 

module that learns to capture both local connectivity and global population-level topology, 

while also modeling temporal dynamics implicitly encoded within node relationships. These 

dual representations are fused and subsequently fed into a Multi-Layer Perceptron (MLP) for 

final classification into Autism Spectrum Disorder (ASD) or Typical Control (TC) categories. 

Our model attained a classification accuracy of 81.29% and an AUC of 0.85, outperforming 

all considered baselines on both datasets. The superior performance can be attributed to several 

key design principles within DualStream-GCN: (1) the residual connections in the Res-GCN 

branch, which mitigate vanishing gradients and enable the training of deeper architectures; (2) 

the stacked GCN embedding branch, which facilitates hierarchical feature abstraction and 

global context integration; and (3) the multi- modal fusion, which leverages both imaging and 

non-imaging features (age, gender, site), improving diagnostic robustness. These components 

work synergistically to enhance the expressive power of the model and capture subtle 

neurodevelopmental deviations indicative of ASD. 

Furthermore, we performed statistical significance analysis by applying Student’s t-test at 

a significance threshold of α = 0.05. The performance improvements observed with 

DualStream-GCN were found to be statistically significant (p < 0.05) when compared to the 

closest baselines such as EV-GCN and MVS-GCN. Compared to EV-GCN (75.37% accuracy, 

0.79 AUC), DualStream-GCN improved classification accuracy by 5.92% and AUC by 6 

percentage points. In contrast to ASD-DiagNet, which utilizes single- modality data, our 

framework demonstrated that integrating non-imaging demographic features leads to enhanced 

classification fidelity. Notably, Hi-GCN, despite its hierarchical representation, achieved 

4.17% lower accuracy, further validating the efficacy of our dual-branch architecture and 



feature fusion strategy. 

Table 2. Comparison of Performance Between Our Proposed Model and Various State-Of-The-Art 

Models Using 10-Fold Cross-Validation on The Aal And Ho Datasets. 

Method ACC Precision Recall AUC 
Parameter 

(M) 

GCN 70.45 68.09 74.47 73.22 0.1 

DNN 68.27 71.64 78.02 64.47 3.34 

ASD-DiagNet 70.04 69.05 70.73 71.39 4.67 

EV-GCN 75.37 75.22 84.45 79.12 0.13 

Proposed 81.29 78.7 77.28 80.13 0.22 

 
Additionally, Table 2 provides a comparative analysis of computational efficiency and training 

time across models. It highlights that while models like ASD-DiagNet and Hi-GCN require 

more parameters and longer training times, DualStream-GCN achieves superior performance 

with fewer parameters and faster training, making it ideal for resource-constrained clinical 

settings. 

The runtime and model complexity analysis further emphasize the practicality of DualStream-

GCN. Our model maintains a compact parameter space (∼0.22M parameters) and efficient 

training time (∼48 minutes per fold), while outperforming models like ASD-DiagNet, which 

require significantly longer training time (up to 16 hours) and higher parameter counts. The 

computational efficiency combined with strong classification performance positions 

DualStream-GCN as a compelling solution for real-world ASD diagnostic support systems. 

5 Conclusions 

This study introduced DualStream-GCN, a multimodal graph-based framework for ASD 

diagnosis that combines imaging and non-imaging features through two complementary 

embedding streams. The Residual GCN captures detailed local connectivity, while the Stacked 

GCN extracts higher-order structural and temporal patterns. These embeddings are fused and 

passed to an MLP for final classification into ASD or TC categories. 

Evaluated on the ABIDE dataset using AAL and HO brain atlases, our model outperformed 

established baselines in accuracy and AUC, all while remaining computationally efficient. 

The dual-stream design proved effective in capturing both local and global neurofunctional 

representations critical for robust ASD classification. 

While results are promising, challenges like over-smoothing in deeper layers and limited 

sample diversity remain. Future work will explore improved graph regularization, data 

augmentation, and interpretability techniques to strengthen model generalization and clinical 

insight. Lastly, interpretability remains an open concern. We plan to integrate explainable AI 

techniques, such as node-wise attribution and graph saliency analysis, to uncover critical 

brain regions and support biomarker discovery. 

In conclusion, DualStream-GCN offers a scalable and interpretable approach for multimodal 

ASD detection, opening pathways for more robust and practical diagnostic support tools. 
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