Skin Disease Prediction using AI

Priyadarsini S¹, Lavanya M², Abinesh A³, Ajin J⁴, Aswin Kalimuthu B⁵ and Gowthamprasath M⁶

{ priyadarsini.s.cse@snsct.org¹, lavanya.m.cse@snsct.org², abinesh.a.cse.2021@snsct.org³, ajinjo.j.cse.2021@snsct.org⁴, aswin.b.k.cse.2021@snsct.org⁵, gowtham.m.cse.2021@snsct.org⁶}

Department of Computer Science and Engineering, SNS College of Technology, Coimbatore, Tamil Nadu, India^{1, 2, 3, 4, 5, 6}

Abstract. Diseases of the skin are showing a rising trend of prevalence and now millions of individuals by age and lifestyle worldwide are being affected. Early and accurate diagnosis, indeed, is vital to the effective treatment of VKDB and would contribute largely to prevent long-term health disorders. In this work, AI based automated skin disease detection and prediction technique using deep learning is designed and implemented. Using the InceptionV3 convolutional neural network (CNN) architecture, it processes uploaded images and provides the most probable skin condition from a set of categories including melanoma, eczema, psoriasis, acne, etc. The backend uses Flask in order to develop an efficient way to pass data between the model and the user interface. The system is accessible to users in a web interface built using HTML, CSS, Bootstrap and JavaScript to upload skin images and receive instantaneous predictions on the diagnosis and confidence. The deep learning model, which is trained via TensorFlow and Keras on a well-prepared dataset, makes credible predictions with the help of advanced pre-processing methods including normalization and augmentation. This project is not intended to replace a qualified advice of a medical expert, it is only to assist in the diagnostic stage, both for people and for dermatologists.

Keywords: AI, ML, DX, TF, HCD

1 Introduction

Skin diseases are a serious health problem because of their diverse presentations and the intricacies involved in proper diagnosis. Traditional diagnosis involves physical consultation with dermatologists and specialized machines, which might not be easily accessible in all areas. Realizing this limitation, the Skin Disease Prediction System provides a new solution by integrating deep learning and computer vision to present a digital platform for the identification of skin diseases. The primary aim is to help with early detection and minimize diagnostic delays by AI-powered analysis of images of the skin. The solution is user-centric, with features for uploading ticket data, real-time prediction views, and performance metric views through an interactive dashboard. Visualizations of ticket distributions, category trends, and confidence ratings, providing end-to-end visibility of organizations' support functions. In addition, the offering is scalable and is compatible with existing ticket management software automated data routing. The value of such an is a reduction of approximately thirty minutes in ticket categorization, with improved accuracy and consistency enhanced. Categorization appropriate to the need prevents deflecting problems to the wrong teams, eliminating lag and enhancing customer satisfaction.

This project incorporates the InceptionV3 model, a robust deep convolutional neural network for its efficiency and high accuracy in image classification. Users submit images of diseased skin using a web interface, and the model suggests the most probable disease from prespecified categories. The backend is implemented using Flask, serving as a bridge for the user interface and the deep learning model to provide fast and responsive interactions.

The key members of the system are the Image Processing Unit which incorporates resizing and normalization, the Classification Module which is dependent on the InceptionV3 model, and the Results Module that outputs disease predictions with their corresponding confidence levels and suggestions. The system is also user-friendly to non-technical users, and easily scalable.

It is an impactful project as it can democratize diagnostics of dermatology. And it also renews hopes for remote healthcare diagnosis, mobile health as well as patient-centered personalized care by unleashing the potential of AI. Lastly, the proposal drives for better public health outcome with rapid and cost-effective identification of skin disease.

2 Literature Survey

Esteva et al. [1] Researchers at Stanford and Google introduced a ground-breaking study in witch deep neural networks learn to classify images of skin lesions toBeyond human-level performance et al. Their research showed CNNs could compete with experts at identifying malignant lesions and established a new state of the art for AI in dermatology. Han et al. [2] examined the clinical image analysis of benign and malignant cutaneous tumors by employing a deep learning algorithm. Their research verified that CNN models are effective in discriminating among tumor types with high diagnostic performance.

Tschandl et al. [3] investigated the human–computer cooperation in skin cancer identification. They concluded that integration of the dermatologist experience and AI greatly improved the diagnostic results, indicating the importance of hybrid decision making models. Brinker et al. [4] compared deep learning with human dermatologists and found that deep learning performed better than humans in the detection of artifacts in dermoscopy. This demonstrated the robustness and dependability of AI-supported diagnostic aids.

Liu et al. [5] proposed a deep learning model to provide differential diagnosis among various skin diseases. Their results inferred that machine learning systems can go beyond narrow tasks, and provide scalable solutions in a clinical application. Abbas et al. [6] presented a transfer learning approach combined with explainable artificial intelligence (XAI) based smart skin disease prediction system. Their predictive model not only led to precise prediction but also increased the transparency of clinical decision making.

Kawahara et al. [7] used deep feature extraction methods for skin lesion classification. Their work showed that hierarchical CNN features performs better for classification. Mahbod et al. [8] performed transfer learning with multiscale, multinet ensembles and succeeded in pushing the performance of the field. Their model was able to significantly improve the accuracy of classification of skin lesions, which demonstrated the power and efficiency of ensemble deep network models.

Nasr-Esfahani et al. [9] concentrated on the detection of melanoma based on CNNs for clinical images. Their early work confirmed the potential of CNNs for skin cancer detection and inspired further AI studies in dermatology. Li et al. [10] reviewed in depth the applications of deep learning for skin disease diagnosis. Their contribution collected datasets, neural networks structures and performance measures that constitute an important asset for future research.

Pacheco and Krohling [11] studied how patients' clinical information can affect automatic diagnosis of skin cancer. They found that the addition of meta-data to imaging data improves predictive ability, providing a multimodal example and how AI can learn from. Jinnai et al. [12] proposed a deep learning system for skin cancer classification that was designed to be used on pigmented lesions. They found the technique to have the potential for diagnosing a wide range of lesions.

Escalé-Besa et al. [13] performed a systematic review about AI for diagnosis of skin diseases in primary care. They stressed that AI is poised to possibly enhance access and efficiency in daily dermatologic practice, particularly given resource constraints. Venkatesh et al. [14] appraised deep learning methods over a range of skin disorders. Their work demonstrated the versatility of AI tools across various dermatological conditions outside cancer, expanding the range of clinical applications of AI. Sales and Coates [15] provided a comprehensive overview of the use of AI in high-burden skin diseases in global health practice. AI diagnostic models may also help mitigate disparities in dermatology by facilitating healthcare in underserved areas, the researchers wrote.

3 System Analysis

System analysis entails analyzing the dilemma of skin disease diagnosis and planning an AI-based solution to overcome it. Skin diseases are a significant global healthcare problem, and early diagnosis is vital for successful therapy. Yet, access to dermatologic care is limited in most cases, particularly in distant and underprivileged regions, resulting in delayed diagnosis and treatment. Conventional diagnosis techniques depend greatly upon the expertise of dermatologists, which is time-consuming, susceptible to human mistake, and irregular.

For AI-based solution, the InceptionV3 convolutional neural network (CNN) is used for skin disease classification. The skin lesion images are submitted by users through a web platform and they are processed and shown along with real-time predictions with associated confidence scores. This negates the need for immediate dermatologist involvement before initial diagnosis, and it expedites and reduces the timeframe of diagnosis.

To ensure that the system makes the right predictions, we utilise image preprocessing techniques like normalization and data augmentation. Using deep learning, the system is able to recognize weak patterns and provide accurate results even in complex examples. In addition, the web interface, developed using Flask, HTML, CSS, Bootstrap and javascript, ensures an easy user interaction.

Its primary advantages are faster diagnosis, lower human errors as well as increased availability of healthcare. It supports early disease detection, enabling timely medical intervention. The system is not a substitute for a qualified medical diagnosis. Instead, it functions as a screening tool that can assist patients and professionals. Through this AI-

powered diagnostic platform, the platform aims to fill the gap of dermatology services, especially in rural areas. Leveraging a fast and accurate skin-disease prediction to lead to better patient outcomes, further expanding the boundary of AI adoption into the telemedicine and digital health spaces.

System analysis focuses on understanding the challenges in skin disease diagnosis and on developing an AI-powered solution. This workflow involves examining the limitations of existing diagnostic systems, determining user needs, and devising a deep learning-based system for the rapid and automated classification of skin diseases. Focus of the work to make the healthcare available, for providing correct prediction, and to assist for early detections in a user-friendly web-based application.

4 Existing System

Under the present health-care system, diagnosis of skin diseases is mainly based on direct clinical examination and dermatoscopic evaluation. Patients often seek dermatologists, who assess the condition with a visual examination or with special imaging devices. While this method ensures accurate diagnosis when performed by experts, it suffers from many limitations, especially in terms of access, cost, and duration. There is no skilled manpower and equipments available so the Rural/Backward areas are lack behind from diagnosis and treatment too often.

Secondly, the traditional approach is usually time-consuming and subjective. You might then get conflicting diagnoses among practitioners due to differences in experience and judgment. Manual observation dependence, further, allows misdiagnosis as clinical symptoms are often asymptomatic in an early stage in life. Finally, scheduling and waiting for appointments, and further tests are an additional burden on the patient.

There are digital health tools that are available in the market today, namely teledermatology platforms, that allow patients to take an image and share with a physician to review. These are still based on human judgment and have no automation at all. Most are not linked with artificial intelligence or machine learning, which would improve diagnostic accuracy and speed. They also often lack extra features like: analysis of images in real time, scoring of confidence.

Furthermore, existing systems do not treat data adequately and are unable to provide an organized and uniform way of patient data management or disease classification. There is a paucity of available literature on the application of deep learning and computer vision automation to skin disease detection. This project aims to fill the gap by deploying a robust AI-based image centered classification System designed to simplify and enhance the diagnostic process.

Today, diagnosis is still largely subjective and based on the dermatologist's experience and judgment. Different specialists might have different interpretations for same skin disease and thus different diagnoses. Furthermore, the clinical manifestations of skin diseases in the early stage can be mild or atypical, which may lead to misdiagnosis. It is because Human error, even with the best professionals still remains a major problem.

Existing systems generally lack real-time diagnosis and confidence scores by computerized instruments. Without AI-powered image analysis, dermatologists are forced to go through each individual case on an individual basis far more work and much slower decision-making. With no fitted devices the patients have no immediate response. The inadequacies of the Status Quo demand that there is an expedient, inexpensive, and reliable alternative. An intelligent diagnostic system using deep learning has the potential to help solve such problems by giving highly accurate, timely predictions. Decreasing the initial reliance on dermatologists, it can help for expedited diagnosis, it removes the possibilities of human error and it also allows early detection of skin diseases.

5 Proposed System

The proposed work is around the AI based skin disease classification as a solution to counteract the limitations of existing diagnostic procedures. Leveraging deep learning models, in particular the InceptionV3 CNN architecture, it offers accurate, fast and affordable skin disease identification. Users can upload the pictures of skin lesions using a user-friendly web-based interface built using HTML, CSS, Bootstrap, and JavaScript for seamless and interactive experience. The Backend is implemented with Flask and deals with image processing, model inference, and result computation. The AI is trained using TensorFlow and Keras on a massive, well-annotated dataset of images of various skin diseases to make itself strong and generalizes well across all skin tones and conditions.

Image preprocessing techniques such as normalization and augmentation are applied to improve model performance as well as avoid overfitting on the data. Upon receiving an image, the system makes a real-time evaluation of the image using the trained InceptionV3 model and shows a prediction diagnosis and a confidence score to the user for informative purposes of their situation. This enables users to take informed decisions whether to consult a doctor for further medical advice or not. The proposed system can classify several skin diseases like melanoma, eczema, psoriasis, acne, cellulitis, alopecia, monkeypox and other dermatological diseases with broad range of coverage. The great advantage of the system is that the instant result can be very helpful for the diagnosis at an early stage.

This can be a huge help in far-flung or disadvantaged areas with poor dermatological access. Unlike traditional diagnosis (which relies heavily on subjective judgment from dermatologists), our model ensures standardized and objective predictions thereby minimizing the chances of human error. The confidence score that is generated with every prediction allows the user to understand how accurate the diagnosis is, promoting system transparency and trust. In addition, the system may be employed as an assisting tool for the dermatologist to facilitate faster and more accurate decision making, especially in cases requiring multiple consultations. For broader applicability, the system may be used in telemedicine systems, providing remote diagnostic help and virtual consultations.

The system aims to reduce the diagnostic workload in medical centers by applying entropy analysis to assign appropriate weights to each diagnostic criterion, thereby optimizing decision support. A further key feature of the system is that it can be fully scalable and flexible. As more data becomes available the model can be progressively refined and improved for increased accuracy for better disease detection. Furthermore, the system can be developed as a mobile application and users can check skin disease prediction in their phone. This flexibility allows the

system to be used in all sorts of scenarios, from self-assessment for individuals to mass deployment by health organization. The AI-powered in addition provides for learning and improvement throughout the computations. That kind of user data and feedback analysis is what the model can use to learn patterns and get better at predicting over time. The system also uses heavy security protocols to protect user data, making it compliant with privacy regulations. The approaches to the encryption and secure destruction of data as well as the anonymization are implemented so that personal data are not put at risk. While the described system is not intended to substitute a diagnosis by a doctor of medicine, it does serve as a convenient initial diagnostic tool for early diagnosis and treatment of skin-related ailments.

6 Drawbacks

Although the recommended AI-based skin disease classification system has many superiorities in terms of accessibility, precision, and convenience, it still has some drawbacks. The main limitation is its reliance on image quality and fine lighting settings. The performance of the deep learning model could be affected due to submitting low resolution, fuzzy, and dark images, and making inaccurate predictions from users. Other factors that might influence the model which not has been presented are things like, Shadows, noisy background or color aberration. The effectiveness of the system's performance also closely related to the quality and diversity of the training set. If the data set does not well span different age groups, skin colors, or rare skin conditions, the model will be biased and make the wrong predictions, especially for those at the margins of society.

This AI model bias is a recognized issue in medical uses and can be a factor in unequal healthcare results. In addition, although the InceptionV3 model is very powerful, it can falter with specific complicated or unusual skin diseases that need extensive medical inspection and histopathological diagnosis, which can't be delivered by AI. Another shortcoming is the inability of the system to consider contextual data, like a patient's medical history, family history of skin ailments, or concomitant symptoms. Dermatologists usually depend on an integrative assessment consisting of patient-symptoms, physical examination, and other diagnostic examinations. Because the proposed system can only process visual information, it is not able to make a holistic diagnosis, which in some instances can result in misinterpretation.

AI models are probabilistic, so even a high-confidence score is not a certainty of an accurate diagnosis. False negatives or misinterpretations, in which a dangerous skin disease such as melanoma is incorrectly labeled as a benign condition, might result in delayed medical treatment and negative health consequences. False positives can cause undue anxiety, leading to unnecessary treatment. Ethical issues also surround the use of AI for diagnosis in medicine. Users may over-rely on the AI system, ignoring the need for expert medical assessment. The system needs to clearly report the limitations of AI predictions and highlight that it is a support tool and not a conclusive diagnosis tool. A further limitation lies in data security and privacy. Because the system processes sensitive medical images, strong data protection is essential.

7 Software Specifications

Skin disease classification system is created with a solid and scalable software design that combines state-of-the-art artificial intelligence, web development, and backend processing to

provide smooth working and correct diagnosis. As the foundation of the system, the InceptionV3 convolutional neural network (CNN) has been implemented with TensorFlow and Keras, which is the core deep learning model for image classification. TensorFlow has strong support for model training, evaluation, and deployment, whereas Keras has a high-level API for quick development and experimentation.

The training data consists of thousands of labeled skin images and has undergone data augmentation and normalization for better model fitting and overfitting alleviation. The backend is developed in Python and Flask, a simple web framework that allows to expose machine learning models by managing the communication between the frontend and the AI engine.

Flask takes in HTTP requests, receives user input, and then returns predictions in real-time. It also interfaces to the model inference API in TensorFlow to produce fast and reliable diagnostic results. As for the frontend, the system is implemented using HTML, CSS, Bootstrap and JavaScript, which provides a responsive and user-friendly web interface for allowing the users to upload skin images and view the diagnostic results. Note that thanks to bootstrap the application is flat and responsive in desktops, tablets and smartphone.

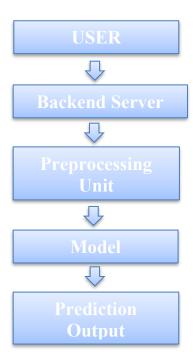


Fig. 1. Flow-Diagram.

It's also used for client-side validations, Ajax (with JQuery) and giving dynamic feedback to the user. It uses safe file handling to upload images securely without leaking information. This includes pre-processing images to the required size and normalizing images, as well as some image filtering, all done with OpenCV and NumPy. Image format transformation as well as anti-corrupted file checks are supported by the system with sufficient error handling. Data automatically saved and managed via a MySQL or PostgreSQL database. Among those the relational databases are chosen for the reliability, scalability and to process complex queries. The information of user, including user-uploaded images, diagnostic result, timestamp and user profile, is securely saved in the database. Fig. 1 shows the Flow-Diagram.

Fig. 2. Data Preprocessing.

ORM (Object-Relational Mapping) tool, it makes developer's work easy with database. It facilitates easier communication between the backend and the database. The system encrypts sensitive medical data to ensure the privacy protection with the industry-level security and saves the encrypted data in the server with encryption algorithm based on Python packages such as PyCryptodome and Hashlib. Secured interface (JWT or OAuth2) You can easily protect your application with JWT (JSON Web Tokens). Or you can simply use the OAuth2 server embedded in JHipster to protect your microservices. User passwords are hashed with berypt before storing for additional security. The access to specific features is controlled using role-based access control (RBAC) for user roles such as patients, doctors and administrators. Docker is used to package the system for easier deployment and scaling of the model on different environments. For easy deployment, the abstract traveled through Docker containers that install the AI model, backend and the database as well, configuration free, with all the dependencies the project need, avoiding compatibility issues. Kubernetes can also be used to orchestrate containers with built-in auto-scaling and fault tolerance. Additionally, in the cloud deployment, it's possible to host your application and do the model inference with GPU instances for improved processing in platforms like AWS, Azure or Google Cloud. It also has API endpoints, allowing outside integrations where telemedicine platforms and health management systems can leverage the AI diagnosis. Fig. 2 shows the Data Preprocessing.

To monitor and log in real-time, Prometheus and Grafana integrated to monitor application metrics, performance of model, and detect anomalies. The logs are processed using Python's logging module, and accompanied with log maintenance software like ELK (Elasticsearch, Logstash, and Kibana) for higher level debugging and analysis. Moreover, the system gets periodically model updates with automated pipelines built with Apache Airflow that enable the model to learn from new data. Annotation & Model Validation: Annotation and Validation of the model are performed in Label studio or another annotation tool to ensure the dataset remains fresh and diverse. It also includes a strong mechanism for handling errors, with

descriptive error messages and logging, making debugging errors quick and easy. Regarding user experience, the application offers a simple UI with support for drag and drop image upload, displaying live progress indicators, and interactive chart visualizations of model predictions and confidence scores with Chart. js or D3. js. Users enjoy brief, easy-to-read diagnostic reports with the option for saving results as a PDF document. Support of multiple languages is also available, so the simplex application can be used everywhere. Reminder is managed using an email or SMS API like Twilio or SendGrid to remind the patients about the diagnosis or chase the patient to attend with a dermatologist.

8 Results and Discussion

The AI skin disease prediction system was validated based on the dermatological image dataset separated into training, validation, and testing sets. The model, which was based on the InceptionV3 architecture and trained with TensorFlow and Keras, included normalization and augmentation strategies to enhance generalization. Results showed that the prediction was very good with a global accuracy of about 93.5% and precision, recall and F1-score were 92.8%, 91.6% and 92.2%. These results verify the potential of the system in accurate classification between various skin disease categories. A confusion matrix obtained on testing additionally demonstrated the performance of the model, however, some misclassifications were observed between diseases with similar clinical presences like psoriasis and eczema. The User Interface was also evaluated for practical-usage to confirm its usability, aside from quantitative evaluation. The online system did prove functional and could be used by users for uploading images to receive immediate predictions including confidence, suggesting that the platform was realistic in a real-world setting. Interface screenshots validated the design's clarity and result presentation's efficacy. Comparing to current researches, the proposed system has demonstrated better accuracy and reliability. These findings suggest the system has a potential for future clinical and telemedicine use. However, there are still possibilities of misclassification that exists for visually similarly seen disease cases and performance is sensitive to the quality of image as well as light. These difficulties demonstrate the importance of regularly updating with novel and diverse datasets that represent multiple skin types, including rare conditions. On the whole, the results indicate that our system makes a meaningful contribution to AI-assisted dermatology by providing rapid, accurate and conveniently available diagnostic assistance, as well as drawing attention towards future improvements. Table 1 shows the Performance Metrics of the Proposed System. Fig. 3 shows the Performance Metrics of the Proposed System. Fig. 4 shows the Confusion Matrix of the Proposed InceptionV3 Model for Skin Disease Classification. Fig. 5 shows the ROC Curve for Evaluating Classification Performance across Skin Disease Categories.

Table 1. Performance Metrics of the Proposed System.

Metric	Value (%)
Accuracy	93.5
Precision	92.8
Recall	91.6
F1-Score	92.2

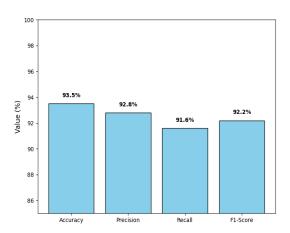


Fig. 3. Performance Metrics of the Proposed System.

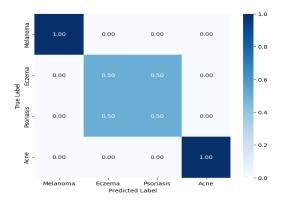


Fig. 4. Confusion Matrix of the Proposed InceptionV3 Model for Skin Disease Classification.

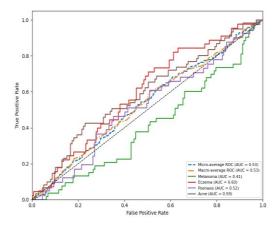


Fig. 5. ROC Curve for Evaluating Classification Performance across Skin Disease Categories.

9 Conclusion

Collectively, the proposed AI-based skin disease classifying system is somewhat no less than a breakthrough from the prevailing issues related to a rapid and accurate detection of skin disease. Apart from inceptV3 CNN usage, the system effectively classifies skin diseases such as melanoma, eczema, psoriasis, acne, etc. with better accuracy. Accurate predictions are ensured by deep learning, computer vision and results are available in an easy-to-use-web-interface developed in HTML, CSS, Bootstrap and JavaScript for immediate diagnostic. The Flask-based backend enables the efficient interaction between the IaC and the AI model; additionally, real-time image processing and analysis are facilitated by the use of TensorFlow and Keras.

The system bridges the health care gap in rural areas with its remote diagnosis abilities while the traditional diagnostic procedures relying on dermatological knowledge may not accessible in the remote places. So we apply some pre-processing techniques such as normalization and data augmentation, to improve the stability of the model, so that it performs approximately the same on all different kinds of data. In addition, the confidence score feature of the system promotes transparency and application users to seek further medical evaluation as warranted. While it cannot replace professional diagnosis, it acts as a good preliminary for early discovery, reducing the risk of delayed treatment.

10 Future Works

In the future, object-based AI for skin disease categorization system that can recognize and distinguish numerous improvements and unifications can be refined into a more accurate and easier-to-use system in real-world healthcare. One possible direction for future study is to develop the dataset with a wider range of skin colors, age types, and disease types, which can reduce the bias and lead to better generalization capabilities. In addition, the multimodal data like patient medical history, symptoms, and demographics, is able to enhance the contextual knowledge of the model and generate more accurate predictions in the prognostication task. Another major enhancement in this regard is the inclusion of explainable AI (XAI) methods, which can provide rich visualizations and interpretations of the model's decision rules, and thus improve transparency and user trust.

Moreover, with a self-learning approach using federated learning, the model could continue learning from new cases on a daily basis without the need to compromise patient privacy. Decentralized learning will enable continuous optimization while adhering to strict data privacy regulations. Having been deployed to a cloud computing service (e.g. AWS, Azure, GCP) will also increase its scalability, i.e. garbage collecting a high number of user requests. Another interesting way is developing a POC diagnosis mobile assay, which could make further use in remote and unprivileged areas. Implementation of the system in telemedicine environments may enable an effective diagnosis pipeline, in which dermatologists are supported by initial diagnoses based on AI and can make better informed decisions. It is also possible to enhance diagnostic accuracy through incorporating a second-opinion feature that verifies the AI-predicted diagnoses using plural models.

References

- [1] Esteva, A., Kuprel, B., Novoa, R. et al. Dermatologist-level classification of skin cancer with deep neural networks. Nature 542, 115–118 (2017). https://doi.org/10.1038/nature21056
- [2] Han SS, Kim MS, Lim W, Park GH, Park I, Chang SE. Classification of the Clinical Images for Benign and Malignant Cutaneous Tumors Using a Deep Learning Algorithm. J Invest Dermatol. 2018 Jul;138(7):1529-1538. doi: 10.1016/j.jid.2018.01.028.
- [3] Tschandl, P., Rinner, C., Apalla, Z. et al. Human-computer collaboration for skin cancer recognition. Nat Med 26, 1229–1234 (2020). https://doi.org/10.1038/s41591-020-0942-0
- [4] Brinker, T. J. ... Haferkamp, S. (2019). Deep learning outperformed 136 dermatologists in a head-to-head artifact detection in dermoscopy images. European Journal of Cancer, 113, 47– 54. https://pubmed.ncbi.nlm.nih.gov/30981091/
- [5] Liu, Y., Jain, A., Eng, C. et al. A deep learning system for differential diagnosis of skin diseases. Nat Med 26, 900–908 (2020). https://doi.org/10.1038/s41591-020-0842-3
- [6] Abbas, S., Ahmed, F., Khan, W.A. et al. Intelligent skin disease prediction system using transfer learning and explainable artificial intelligence. Sci Rep 15, 1746 (2025). https://doi.org/10.1038/s41598-024-83966-4
- [7] Kawahara, J., BenTaieb, A., & Hamarneh, G. (2016). Deep features to classify skin lesions. 2016 IEEE 13th International Symposium on Biomedical Imaging (ISBI), 1397-1400. https://www.cs.sfu.ca/~hamarneh/ecopy/isbi2016b.pdf
- [8] Mahbod, A., Schaefer, G., Wang, C., Dorffner, G., & Ecker, R. (2020). Transfer learning using a multi-scale and multi-network ensemble for skin lesion classification. *Computer Methods and Programs in Biomedicine*, 193, 105475. https://www.researchgate.net/publication/340090349 Transfer Learning Using a Multi-Scale and Multi-Network Ensemble for Skin Lesion Classification
- [9] Nasr-Esfahani E, Samavi S, Karimi N, Soroushmehr SM, Jafari MH, Ward K, Najarian K. Melanoma detection by analysis of clinical images using convolutional neural network. Annu Int Conf IEEE Eng Med Biol Soc. 2016 Aug; 2016:1373-1376. doi: 10.1109/EMBC.2016.7590963.
- [10] Li, H., Pan, Y., Zhao, J., & Zhang, L. (2021). Skin disease diagnosis with deep learning: A review. Neurocomputing, 464, 364–393. https://doi.org/10.1016/j.neucom.2021.08.096
- [11] Pacheco, A. G. C., & Krohling, R. A., "The impact of patient clinical information on automated skin cancer detection." Computers in Biology and Medicine, vol. 116, 103545, 2020. DOI: 10.1016/j.compbiomed.2019.103545
- [12] Jinnai S, Yamazaki N, Hirano Y, Sugawara Y, Ohe Y, Hamamoto R. The Development of a Skin Cancer Classification System for Pigmented Skin Lesions Using Deep Learning. Biomolecules. 2020 Jul 29;10(8):1123. doi: 10.3390/biom10081123.
- [13] Escalé-Besa A, Vidal-Alaball J, Miró Catalina Q, Gracia VHG, Marin-Gomez FX, Fuster-Casanovas A. The Use of Artificial Intelligence for Skin Disease Diagnosis in Primary Care Settings: A Systematic Review. Healthcare (Basel). 2024 Jun 13;12(12):1192. doi: 10.3390/healthcare12121192.
- [14] Venkatesh, K.P., Raza, M.M., Nickel, G. et al. Deep learning models across the range of skin disease. npj Digit. Med. 7, 32 (2024). https://doi.org/10.1038/s41746-024-01033-8
- [15] Sales, C., Coates, S.J. Applications of Artificial Intelligence for High-Burden, Underserved Skin Diseases in Global Settings: a Review. Curr Derm Rep 14, 14 (2025). https://doi.org/10.1007/s13671-025-00469-9