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Abstract. In the digital economy of today where businesses profit from electronic 

transactions, credit card fraud is a serious problem that causes millions of dollars of losses 

every year. To overcome this problem, our research proposes a novel deep learning-based 

solution to detect fraudulent transactions effectively. To mitigate this issue, the proposed 

model applies the Synthetic Minority Oversampling Technique (SMOTE) due to the 

common class imbalance issue seen in realistic transaction data. The model is trained using 

a publicly available data set containing anonymized transaction records with a deep neural 

network optimized with the Adam optimizer and with ReLU activation. We evaluate the 

performance with important classification metrics (accuracy, precision, recall, F1-score, 

and AUC-ROC curve). The results demonstrate that the improved deep learning algorithm 

works better than traditional machine learning techniques, offering a dependable and useful 

strategy for identifying financial system fraud. 

Keywords: Credit Card Fraud Detection, Deep Learning, SMOTE, Class Imbalance, 

Anomaly Detection, Neural Networks, Financial Security.  

1 Introduction 

The explosion of online financial services in recent years has changed how consumers and 

businesses transact. Unfortunately, it has also paved ways for fraud. Among these attacks, 

Credit card theft has grown to be a serious risk to card holders, requiring banks to heavily invest 

every year on detection and prevention systems [11]. According to Phua et al. [10], credit card 

fraud detection is a difficult classification task as only a small amount of transactions are 

fraudulent and their behaviour changes over time. 

Fraud detection algorithms used to mainly use static rules or machine learning models. Such 

methods are not only less flexible but also have poor generalizability to novel fraud types in 

significantly imbalanced datasets [7]. In almost all real-life credit card datasets, there are 

virtually few fraudulent transactions, normally below 1%, resulting in biased models that focus 

on accuracy rather than recall, using the existing fraudulent transactions as the baseline. 

To overcome these limitations, researchers have been focusing on employing deep learning (DL) 

in their work because of its capacity to extract high-level characteristics and discover intricate 
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patterns from unprocessed data. According to LeCun et al.'s work, Deep Learning models like 

as Convolutional Neural Networks (CNNs) [1] and Long Short-Term Memory (LSTM) 

networks   have surpassed traditional methods in a variety of pattern recognition tasks, including 

speech recognition, image processing, and even anomaly detection [3,4]. 

However, using deep learning methods for fraud detection is not simple. DL models may be 

biased toward forecasting the majority class (i.e., genuine transactions) as a result of the extreme 

class imbalance. Chawla and associates.   presents the Synthetic Minority Oversampling 

Technique (SMOTE) to create synthetic samples of the minority class in order to counteract 

such an uneven distribution of classes, which enables each class to be under-represented with 

an equivalent number within the training set, thus enhancing classifier performance. Fiore et al. 

[2] build upon this idea by leveraging Generative Adversarial Networks (GANs) to generate 

realistic fraudulent samples and increase training robustness. 

We expand upon these concepts in this paper and present a holistic framework that integrates 

from class balancing methods to deep learning models and hyperparameter tuning. We analyze 

Three AE, CNN, and LSTM performance - across different sampling methods, while we 

implement Random Search and Bayesian Optimization to optimize model parameters. We aim 

to assess which of these model and optimization strategies improves the detection rate most 

significantly, while maintaining precision and computational efficiency as per data up to 

October 2023. 

2 Related Work 

The use of deep learning to identify financial fraud is supported by a number of seminal articles. 

LeCun et al. Specific challenges in the financial industry, associated with data sparseness and 

nonlinear relationships, have been approached through the tools of deep learning, which exploit 

the capabilities of deep networks [1] for themselves correlative, yet high-dimensional data 

classes, leading to potential DL application opportunities in fraud detection. SMOTE, a method 

for creating synthetic samples of the minority class that has been extensively utilized for 

imbalance management, was presented concurrently by Chawla et al. This method is still a key 

part of many fraud detection systems however. 

More recently, Fiore et al. [2] applied GANs that obtained increased diversity of synthetic fraud 

data with a considerable boost on classifier performance. Jurgovsky et al. [3] highlighted the 

need of sequence modeling in fraud detection and generalized LSTM networks over sequential 

data to capture temporal dependencies in transaction records. They found that sequential data 

contains information about user behavior crucial for identification of fraud. 

Zhou et al. [8] built on this by implementing CNNs along with attention mechanisms to 

emphasise the relevant features across transaction windows. They found that this approach 

improved classification performance due to enabling the model to concentrate on the pertinent 

trends of data. Pozzolo et al. proposed to mitigate p bias in imbalanced data scenarios using 

undersampling and probability calibration [4], and Bahnsen et al. at additional engineered 

features, such as transaction frequency and time gaps, on boosting the accuracy of models [5]. 

Dal Pozzolo et al. [6] highlighted the limitations of unrealistic evaluation strategies and 

proposed methods for simulating real-world fraud scenarios. Their work emphasized the 



importance of cost-sensitive learning and realistic sampling. When it comes to deploying, Scarff 

is a Spark-based streaming fraud detection system and easily scalable to millions of transactions, 

was presented by Carcillo et al. [9]. 

Surveys by Ngai et al. [11] and Phua et al. [10] provide comprehensive overviews of the 

evolution of fraud detection methods. Both papers underline the shift toward deep learning and 

the integration of data mining techniques with real-time analytics for scalable, adaptive fraud 

detection systems. Recent advances in scientific machine learning have demonstrated the use of 

deep neural architectures for solving partial differential equations and inverse problems, 

highlighting the growing synergy between applied mathematics and deep learning approaches 

(12). Pironneau [13,14] emphasized that supervised learning frameworks are increasingly 

embedded in applied mathematics research, providing theoretical grounding for integrating 

machine learning into complex mathematical modeling tasks. Moreover, recent work has 

explored practical implementations of deep learning algorithms using Python-based 

frameworks, showing improved scalability and accuracy for computational tasks compared to 

traditional methods by Jin et al., [15]. 

3 Methodology 

3.1 Dataset 

We use the public European credit card fraud dataset released by ULB Machine Learning Group, 

consisting of 284,807 transactions that were documented during two days in 2013. Just 492 

transactions, or around 0.172% of the total, have been flagged as potentially fraudulent. The 

dataset includes 30 anonymized features (V1 to V28), along with 'Time', 'Amount', and 'Class' 

as the label. 

3.2 Preprocessing 

In preparing the dataset for deep learning model training, a rigorous preprocessing pipeline was 

followed to ensure data quality and consistency. To start, we made sure that the dataset was free 

of missing values so that the model wouldn't be skewed.  Features with a low percentage of 

missing entries are necessary to preserve the general distribution of the data were imputation 

using the corresponding feature's mean.  To prevent substantial bias or noise from entering the 

model, records were discarded when the proportion of missing data exceeded a predetermined 

threshold.  The range of features was standardized via feature scaling input variables after 

missing data was handled.  The Z-score normalization method was used to do this, which 

changes the data in order for the standard deviation to be one and the mean to be zero.  When 

features differ significantly in size, it becomes very important to standardize the distribution of 

features so that deep learning models may employ gradient-based optimization strategies to 

efficiently converge.  The last step was to use a stratified k-fold cross-validation method to 

divide the dataset.  This method guarantees that the initial class distribution is preserved with 

each fold, maintaining the same proportion of fraudulent to legitimate transactions in the 

training and validation sets.  When dealing with data that is very uneven, stratification like this 

is crucial for evaluating models more reliably, especially in situations of infrequent fraud. 

 



3.3 Sampling Techniques 

Class imbalance handling is a fundamental phase in identifying credit card fraud, called the 

number of frauds is usually a very small percentage of the overall dataset. After that, we utilize 

the below sampling approaches to make sure that the learning ability of deep learning models 

work good and train well for the minority class (the fraud transactions). 

3.3.1 Random Undersampling (RUS) 

One quick solution to class imbalance is random undersampling, the only option to this point 

which has produced results using the baseline classifier. More concretely, RUS randomly 

removes legitimate (non-fraudulent) transactions until the minority class reaches the same size. 

On the downside, while this improves the balancing of classes and speeds up training by using 

a smaller dataset, it can lead to loss of information. This stage may discard significant or 

marginal cases in the majority class, which can impair the model capacity to construct models 

that can discriminate into fine-grained detail between fraud and non-fraud transactions. RUS 

is, however, a baseline method which serves for the assessment of the influence of more 

complex resampling methods. 

3.3.2 Synthetic Minority Over-sampling Technique (SMOTE) 

Covers the SMOTE (Synthetic Minority Over-sampling Technique) proposed by Chawla et al. 

is a popular method for oversampling the class of minorities. By interpolating between chosen 

minority samples and their closest neighbours in feature space, SMOTE creates synthetic 

samples rather than replicating pre-existing fraud cases. In this way, the minority class is 

increased and the model will generalize better as it is trained on more variants of the frauds. In 

contrast to RUS, it preserves all original data while expanding the size of the dataset in such a 

way that no information is lost, which is especially useful in cases of imbalance when training 

deep learning models. Fig. 1 shows the Sampling Techniques: (a) RUS, (b) SMOTE, and (c) 

ADASYN 

3.3.3 Adaptive Synthetic Sampling (ADASYN) 

 

Fig. 1. Sampling Techniques: (a) RUS, (b) SMOTE, and (c) ADASYN 



In accordance with the learning difficulty of each minority class instance, ADASYN develops 

the number of generated synthetic samples based on the SMOTE concept. It aims to generate 

more samples, particularly in cases where the minority class is underrepresented or overlaps 

with the majority class, which forces the classifier to focus more on fraud cases that are more 

difficult to learn. This adaptive scheme enhances the classifier’s sensitivity and robustness, 

particularly in scenarios where there is complex behavior of fraudsters or abnormal (non-

uniform) distributions. ADASYN is especially beneficial in scenarios where the dataset 

features subtle signs of fraud that many people could overlook uniform resampling techniques. 

3.4 Deep Learning Models 

In this work we measurer distinct deep learning architectures' performance, each representing a 

different learning paradigm. Autoencoder (AE), Convolutional Neural Network (CNN), and 

Long Short-Term Memory (LSTM) models are used in our implementation because of their 

efficient capacity in detecting anomalies, extracting hierarchical features, and modelling the 

data sequence, respectively. All these models have been used widely across machine learning 

domains, and they suit the difficulties in detecting credit card fraud problems. 

3.5 Hyperparameter Optimization 

Because the welcome improvements in recall and precision can have significant real effects in 

sensitive applications such as Hyperparameter tuning is one of the most crucial methods to 

enhance the functionality of credit card fraud detection deep learning models in this field. Here, 

we apply the two most widely adopted hyperparameter optimization approaches to 

systematically find the best in form of the configuration for each model. 1. Random Search: In 

this approach, we sample random combinations of hyperparameters within predefined ranges. 

Random Search is simple to implement yet practically effective, outperforming exhaustive grid 

search when the parameter space is high dimensional due to its capability to cover different 

regions. 

We also use a more advanced technique called in order to forecast performance, Bayesian 

Optimization creates a probabilistic surrogate model, frequently a Gaussian Process. for unseen 

hyperparameter combinations from previous evaluations. This approach enables a more 

nuanced traversal of the search field, accurately detecting favourable configurations with the 

least amount of evaluations. This approach works especially well for models that take a lot of 

time to train, such as deep neural networks, as it attempts to balance exploration of areas not 

yet explored with exploitation of known good configurations. 

During this process, several hyperparameters are tuned, mainly including the learning rate that 

choose which step to take while updating the weight, and it is tested at several levels (0.01, 

0.001, and 0.0001). We further explore the batch size, ranging from 32 to 2048, which 

influences model convergence speed and generalization. Dropout rates of between 0.2 and 0.5 

are examined to avoid overfitting. We also experiment with alternative activation functions 

(ReLU, Tanh, Sigmoid)) that control the non-linearity introduced at each layer and, 

consequently, the ability of the model to recognize intricate patterns. Lastly, we analyse two 

optimization algorithms, the first known as Adam, which remembers the gradients and tracks 

last sessions that has proven to have an adaptive learning to perform better and Stochastic 

Gradient Descent (SGD), a classic optimizer which is still widely used thanks to its intuitive 



understanding and adaptiveness. This way we find the best-fit for each network with respect to 

time, stability, and prediction performance for imbalanced datasets specifically for fraud 

detection tasks. 

3.6 Proposed Deep Learning Models with Hyperparameter Tuning 

So, there is a very serious challenge before us, and that is credit card fraud detection that requires 

to handle transaction in data that are the highly imbalanced nature. Deep learning model design 

and tuning are critical in order to create an effective detection system. By doing so, the 

proposed framework aims at building strong models that can efficiently classify legitimate vs. 

fraudulent transactions (while maximizing true positives at the same time as minimizing false 

positive and false negative rates). This means you are being accurately detected but it does not 

disrupt the user experience. 

The first step is data preprocessing, to get the input ready for modelling. The cleansed and 

normalized data is then employed to train a three deep learning models Autoencoder (AE), 

Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM). Hyperparameter 

tuning is done for each model with two methods namely Random Bayesian optimization and 

search. Hyper-parameter optimization: Methods to find the optimal parameter configurations 

for best performance. Fig 2.  Shows the Data Architecture of Test Bench. Fig 2 Overall System 

Architecture A. Test Data Generation. 2. 

 

Fig. 2. Block diagram of the proposed DL models with hyperparameter tuning 

4 Optimized Deep Learning Framework for Fraud Detection 

Carefully integrating data preprocessing, sampling strategies, and automated hyperparameter 

tuning, we present a deep learning (DL) based framework to build accurate and robust models 

for fraudulent credit card transaction detection. The workflow consists of preprocessing the raw 

transaction dataset (e.g., missing value treatment using either mean imputation or removal 



depending on a threshold) and applying Z-score normalization to scale numerical features. This 

standardization gets expressed as.: 

𝒵 =
𝒳 − 𝜇

𝜎
                                                                                                                                      (1) 

normalizes features to ensure consistent scaling (where x is the xth feature, μ\mu is the mean 

of fellow field, and σ sigma is the standard deviation.) 

To handle class imbalance, we perform dataset with class balancing techniques such as Random 

Under sampling (RUS) [15], Synthetic Minority Oversampling Technique (SMOTE) [12], and 

Adaptive Synthetic Sampling (ADASYN). They help balancing the dataset, and allow for better 

learning of minority class instances. Stratified k-fold cross-validation is used to split the dataset, 

maintaining the proportion of fraudulent and legitimate transactions in each fold, allowing for 

robust evaluation across multiple training and testing iterations. Three deep learning models, 

namely Autoencoder (AE), Convolutional Neural Network (CNN), and Long Short-Term 

Memory (LSTM), are applied to classify whether each transaction, once pre-processed, is 

fraudulent or authentic. Random Search is used to adjust each model's hyperparameters and 

Bayesian Optimization for better search through the hyperparameter space. δ, defined as:  

𝛿 = 𝛿1 × 𝛿2. . . . . . . . . . .× 𝛿𝑁                                                                                                   (2) 

where each configuration vector λ∈δ \lambda \in \delta corresponds to a distinct ordered 

combination of hyperparameters for model AA. The best parameter λ is induced from the 

optimal objective function TT evaluated on training and validation sets Ctr,Ctv  

𝜆′ = 𝑎𝑟𝑔 max
𝜆𝜖𝛿

T(𝐴𝜆,𝐶𝑡𝑟𝐶𝑡𝑣)                                                                                                         (3) 

In this study, the F1-score was used as the objective function since it considers precision (P) 

and detection rate (DR) in a balanced way, even though the dataset we are working with is 

heavily imbalanced: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  2 ∗  (𝐷𝑅 +  𝑃)/(𝐷𝑅 +  𝑃)                                                               (4) 

true positives (TP), false positives (FP), and false negatives (FN) are used in this context. One 

measure of credit card fraud detection accuracy is the True Positive (TP) rate. False Positive 

(FP) refers to the quantity of legitimate credit card transactions that are incorrectly identified as 

fraudulent, while False Negative (FN) refers to the quantity of legitimate credit card transactions 

that are wrongly identified as fraudulent. Each DL model is tailored for specific learning 

capabilities: AE reconstructs input data and flags anomalies based on reconstruction error; CNN 

extracts local spatial features using convolution and pooling operations; LSTM captures 

temporal patterns by modelling transaction sequences over time. These models are then trained 

using optimized hyperparameter settings identified via the tuning process, and their performance 

is assessed using accuracy, detection rate, and AUC-ROC metrics. 

Here we can see the suggested DL model with hyperparameter adjustment in action in 

Algorithm There are three potential DL models. 



 

Algorithm 1: The suggested DL model with hyperparameter tweaking 

Input: 

• Credit card transaction dataset: C = {C1, C2 . . .  , Cn} 

• Hyperparameter search space: δ 

• Number of hyperparameters: N 

• Maximum number of iterations: max 

Output: 

• Trained Model 

1: Handle missing values in C using imputation method 

2: Split the dataset, C into train, validation, and testing sets (CtrCtv, Cts) using 

a stratified k-fold cross-validation approach 

3: Resample the training dataset Ctr using SMOTE, ADASYN, or RUS technique. 

4: Scale credit card transaction dataset, C using Eq. (2). 

5: Determine the hyperparameter to be optimized for AE, CNN, or LSTM model 

6: Define the hyperparameter search space. 

7: Hyperparameter tuning using tuning technique T For i = 1 to max 

Builds DL model with the hyperparameters as inputs. 

8: Compile and train the DL model on the training data, Ctr 

9: Evaluate the DL model on the validation data Ctv using Eq. (4). 

10: End 

11: Select the hyperparameters that produce the highest F1-score using T 

12: Build and compile the DL model. 

13: Train the model on the training data, Ctr using the chosen hyperparameters. 

14: Evaluate the trained 



The encoder in the suggested Autoencoder (AE) model compresses the input transaction C into 

a latent vector C′, and the decoder reads it back out as C′′. Mean Squared Error (MSE) is used 

to assess the reconstruction error, which is then compared to a predetermined threshold α\alpha. 

Transactions with an MSE above α alpha are flagged as fraudulent. The threshold is determined 

using a percentile-based approach: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒 =  (
𝑉𝑥

𝑛
) × 10                                                                           (5) 

where Vx is the count of values below x and n is the total number of transactions. 

Three layers make up a Convolutional Neural Network (CNN): two convolutional, two pooling, 

one flattening, one dropout, and two dense. Transaction data is reshaped into a 3D format to 

mimic an image-like input structure. Convolution layers extract geographical patterns, and 

before supplying the input to fully linked layers for classification, pooling layers lower 

dimensionality. 

A dense output layer follows a single Long Short-Term Memory (LSTM) layer in the LSTM 

model. It takes 2D input data and transforms it into 3D sequences for processing credit card 

transactions. This allows the model to detect trends in user behavior over time and temporal 

relationships. 

5 Dataset and Experimental Setup 

The 284,807 transactions gathered over two days in September 2013 from the European credit 

card dataset were used to assess the suggested models. There is a significant imbalance in the 

dataset since just 492 of them are fake, which accounts for only 0.172% of the total. Each one 

has thirty anonymized characteristics and a class label that determines if a transaction is 

fraudulent. The model's performance was assessed using its accuracy, detection rate, and area 

under the curve. Each deep learning model AE, CNN, and LSTM was trained and tested under 

various configurations, including no sampling, SMOTE, ADASYN, and RUS. For 

hyperparameter tuning, both Random Search and Bayesian Optimization were applied, with 

each method run four times per model. Python 3.9.7 in the Anaconda 3 environment was used 

to perform experiments on a Windows 11 (64-bit OS) system with 16 GB RAM and 1 TB SSD.  

5.1 Hyperparameter Optimization Results 

The ideal values for each hyperparameter of three DL models that were improved using random 

and Bayesian techniques are displayed in Table 1. 

Table 1. Optimized DL architecture and hyperparameters obtained using both random and Bayesian 

optimization techniques 

DL Tuning 

technique 

Sampling 

techniques 

Number of 

neurons per 

layer 

Batch 

size 

Optimization 

function 

Activation 

function 

Dropout Loss 

function 

Learning 

rate 

  
Without 

sampling 

512 512 Adam Tanh - BCE 0.001 

  
RUS 32 32 Adam Tanh - BCE 0.001 

AE Random SMOTE 512 128 Adam Relu - BFL 0.001 



  
ADASYN 32 512 Adam Relu - BFL 0.001 

  
Without 

sampling 

256 2048 Adam Tanh - MSE 0.001 

  
RUS 512 128 Adam Relu - BCE 0.001 

 
Bayesian SMOTE 512 64 Adam Relu - BFL 0.001 

  
ADASYN 512 64 Adam Relu - BFL 0.001 

  
Without 

sampling 

512 512 Adam Relu 0.2 BCE 0.001 

  
RUS 128 32 Adam Relu 0.5 MSE 0.001 

CNN Random SMOTE 64 64 Adam Relu 0.2 BFL 0.001 
  

ADASYN 64 64 Adam Relu 0.3 BCE 0.001 
  

Without 

sampling 

256 64 Adam Relu 0.2 BCE 0.0001 

  
RUS 256 32 Adam Relu 0.3 BCE 0.0001 

 
Bayesian SMOTE 128 64 Adam Relu 0.5 BFL 0.0001 

  
ADASYN 512 512 Adam Relu 0.2 BFL 0.0001 

  
Without 

sampling 

512 64 Adam sigmoid - BCE 0.001 

  
RUS 512 128 Adam sigmoid - BFL 0.001 

LSTM Random SMOTE 256 128 Adam sigmoid - BFL 0.001 
  

ADASYN 64 32 Adam sigmoid - BFL 0.001 
  

Without 

sampling 

512 128 Adam sigmoid - BCE 0.001 

  
RUS 512 32 Adam sigmoid - BFL 0.001 

 
Bayesian SMOTE 512 64 Adam sigmoid - BFL 0.001 

  
ADASYN 512 64 Adam sigmoid - BCE 0.001 

Note: -: represents that a particular hyperparameter is not included in the DL model architecture. BCE: 

represents Binary Cross Entropy.       

BFL: represents Binary Focal Loss. MSE: represents Mean Squared Error 

5.2. Hyperparameter Search Space and Tuning Insights 

Hyperparameter tuning requires defining a search space—the range of values explored to find 

the best-performing configurations for deep learning (DL) models. This process balances model 

accuracy with computational cost. 

Key hyperparameters and their tested ranges in this study include: 

• Number of neurons: {32, 64, 128, 256, 512} to control model capacity and prevent 

overfitting. 

• Dropout rate: {0.2, 0.3, 0.5} for regularization and improved generalization. 

• Activation functions: ReLU, sigmoid, and tanh to support non-linear learning. 

• Batch size: {32, 64, 128, 256, 512, 2048} affecting training efficiency and stability. 

• Optimizers: SGD, Adagrad, and Adam, with Adam being preferred due to its adaptive 

learning and momentum handling. 



• Learning rate: {0.01, 0.001, 0.0001} to control weight update steps. 

• Loss functions: Binary cross-entropy, focal loss, and MSE, guiding how the model learns. 

Across all models, Adam consistently emerged as the best-performing optimizer due to its 

efficient handling of learning rates and gradient momentum. For the AE model, learning rates 

remained consistent across tuning methods, suggesting architecture-specific stability. In CNN, 

activation functions remained consistent through all runs, indicating robustness in tuning 

outcomes. For LSTM, sigmoid activation performed best, aligning with its internal gating 

mechanisms and suitability for sequential, time-based fraud patterns. 

5.3. Performance Evaluation 

Table 2 summarizes the results of this section's comparison of the accuracy, detection rate (DR), 

and area under the curve (AUC) of deep learning models trained using Random Search and 

Bayesian Optimization across various sampling approaches. Overall, Bayesian Optimization 

consistently outperforms Random Search, demonstrating its effectiveness in identifying optimal 

hyperparameter combinations. 

Table 2. Comparing the accuracy, detection rate, and area under the curve of DL models utilizing 

random and Bayesian optimization parameters that were trained both with and without sampling. 

The bolded results represent the best outcomes for all DL models. 

 Model Tuning Sampling Acc / DR / AUC 

  None 95.0 / 90.0 / 92.7 

 Random RUS 95.1 / 90.4 / 92.7 

AE  SMOTE 96.1 / 89.7 / 92.9 

  ADASYN 95.1 / 90.4 / 92.7 

  None 95.0 / 90.4 / 92.8 

 Bayesian RUS 95.1 / 89.7 / 92.4 

  SMOTE 95.1 / 90.4 / 92.8 

  ADASYN 95.1 / 90.4 / 92.8 

  None 99.7 / 83.0 / 91.4 

 Random RUS 99.8 / 87.5 / 93.1 

CNN  SMOTE 99.8 / 90.7 / 94.7 

  ADASYN 99.9 / 90.8 / 94.9 

  None 99.9 / 82.3 / 91.1 

 Bayesian RUS 99.1 / 86.0 / 92.5 

  SMOTE 99.7 / 90.4 / 94.7 

  ADASYN 99.8 / 90.0 / 94.7 

  None 99.1 / 84.2 / 93.3 

 Random RUS 99.2 / 87.0 / 94.1 

LSTM  SMOTE 99.2 / 93.3 / 96.3 

  ADASYN 99.2 / 92.0 / 95.5 

  None 99.1 / 83.9 / 93.2 

 Bayesian RUS 99.2 / 86.9 / 94.0 

  SMOTE 99.2 / 93.3 / 96.3 

  ADASYN 99.2 / 92.0 / 95.5 



Models that incorporate sampling methods perform significantly better than those trained on 

imbalanced data alone. Among the sampling techniques, SMOTE and ADASYN yield better 

results than RUS, as they enrich the minority class without discarding valuable majority-class 

data, improving model generalization. While ADASYN performs best with the AE model due 

to its focus on difficult-to-learn instances, SMOTE shows better synergy with CNN and LSTM, 

which benefit from interpolative synthetic samples. Furthermore, CNN and LSTM models with 

SMOTE sampling outperform AE, primarily because of their ability to model temporal 

dependencies and extract meaningful features from sequential data. CNN achieves this through 

layered feature extraction, while LSTM captures long-term dependencies, making both more 

suitable for fraud detection in time-based transaction sequences. The proposed deep learning 

models—AE, CNN, and LSTM—demonstrate enhanced discrimination between fraudulent and 

legitimate transactions when compared to related approaches. 

  

Fig. 3. The suggested AE model's ROC curve. 

While the LSTM model requires more training time due to its architectural complexity, reduced 

batch size, and the integration of early stopping, it still outperforms the benchmark model 

presented in. The suggested models consistently show greater true positive rates (TPR) and 

lower false positive rates (FPR), which is clearly reflected in the ROC curves as improved 

performance. This results in The ROC curves nearest the upper-left corner of the plot, indicating 

robust fraud detection capabilities. Fig 3 shows The suggested AE model's ROC curve.  

Fig 4 shows the predicted CNN model's ROC curve compared to that of (Paper 8) and Fig 5 

shows the suggested LSTM model's ROC curve compared to that of (Paper 2). 



 

Fig. 4. The predicted CNN model's ROC curve compared to that of Berhane et al. [23] (Paper 8). 

 

Fig. 5. The suggested LSTM model's ROC curve compared to that of Benghazi et al.  (Paper 2). 

Each model was tested with and without sampling, and under both tuning strategies. Key 

findings include: 

• Autoencoder: Achieved ~95.1% accuracy with a detection rate of ~90.4% using SMOTE. 

Good at anomaly detection but less effective with evolving patterns. 

• CNN: Performed better than AE, especially with SMOTE and ADASYN. The highest AUC-

ROC was 95.1% with Bayesian tuning. 

• LSTM: Outperformed all other models with a 99.2% accuracy and 93.3% detection rate 

when trained on SMOTE-balanced data and optimized using Bayesian search. 

These results are consistent with those reported by Jurgovsky et al. [3] and Zhou et al. [8], 

affirming the utility of temporal modeling and attention mechanisms. They also support the 

efficacy of SMOTE   and hyperparameter optimization in imbalanced fraud detection. 

6 Conclusion 

Here, we used state-of-the-art optimization and sampling methods to assess deep learning 

models' ability to identify credit card fraud. We demonstrated that LSTM, when trained on 



SMOTE-enhanced data and optimized via Bayesian search, achieves superior performance in 

detecting fraudulent transactions in imbalanced datasets. Our findings align with recent 

literature [1]– [3], [8], reinforcing the importance of combining data preprocessing, architecture 

selection, and hyperparameter tuning. Future research may explore hybrid ensemble models, 

real-time detection pipelines, and privacy-preserving training methods such as federated 

learning 
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