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Abstract. In the data hungry era of machine learning, the problem of datasets shortage, 
data imbalance, and privacy constraints impede the model effectiveness and ethical 

conformance. In this work, we propose a new approach to enhance data privacy with the 

help of the Generative Adversarial Networks (GANs). The method addresses concerns for 

protecting sensitive data and the need for augmentations to be effective. The proposed 
approach utilizes the synthetic data generation capability of GAN for increasing the 

diversity and representativeness of the training data whilst preserving privacy and avoiding 

the re-identification of actual records. The model uses a hybrid network with a conditional 

GAN (CGAN) to treat underrepresented classes together with a differential privacy (DP) 
approach to anonymize synthetic versions. Our framework is based on TensorFlow and 

focuses on adversarial learning for private realism without sacrificing model quality and 

privacy. Experiments on unbalanced benchmark data reveal that the generated data 

benefits later models (e.g., classification accuracy and F1-score), also resists membership 
inference attack, and can satisfy data protection regulation. This research fills a niche 

between data augmentation and ethical AI, for scalable solutions in domains such as 

healthcare and finance. Code, results and comparisons are provided to encourage 

reproducibility and following work. 

Keywords: Generative Adversarial Networks, Data Augmentation, Data Imbalance, 

Privacy. 

1 Introduction 

Deep Learning models trained on sensitive data like medical history need to be trained in such 

a way that the privacy is maintained. One way is to train models on private data, and release 

only an indirect “student” readout model trained on public data that is not sensitive. The teacher 

model makes predictions on public data but introduces noise in a controlled manner to protect 

privacy. The student subsequently learns from these noisy predictions. Using this method, 

knowledge is transferred securely while maintaining privacy of individuals [1]. 

Privacy preserving mechanisms such as differential approach is used to obfuscate and 

anonymize the individual’s data to assure the reuse of the complete dataset and still protect the 

individual's privacy. Noise is intentionally generated in either the data or the predicted outputs, 

and sensitive inferences are hard to recover. According to the works in Green (2016) and 

Rajgarhia (2019), differential privacy provides a practical tradeoff between data utility and  
confidentiality2, which is of prime importance in sensitive domains like healthcare, finance and 

technology. 
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In this work, we investigate how well Gans can be used for generating new data in several 

domains, including both image and table data. We analyze the influence of generalization 

samples in the performance of the model, understand processing difficulties when training Gans 

(mode collapse and instability) and some suggestions in the future as well. Our findings suggest 

GAN-based augmentation as a scalable and flexible solution that could lead to more reliable 

and accurate machine learning. 

2 Literature Survey 

Generative models, particularly generative adversarial networks (gans), are a wide range of 

techniques for creating realistic synthetic data. Gans introduced by Goodfellow et al. In 2014, 

two neuronal networks and identifiers consisted of a competitive debate process. This 

adversarial learning process will lead generators to provide more realistic samples, while also 

improving the ability of discriminators to distinguish between actual and synthetic data.  

In this section, a selection of research studies that utilize the algorithms mentioned above are 

reviewed, and their findings are summarized: 

TechFunnel (2020) [4] gives a broad summary of different anonymization approaches to 

augment how GANs contribute towards privacy and confidentiality in synthetic data generation. 

The creation of synthetic data is an important technology for modern scientists. M. Manohar [5] 

emphasizes value in solving the main problems faced by the actual data. One of the main 

advantages is the ability to process data, especially in the area where the actual data collection 

is expensive or powerful. Synthetic data also plays an important role in maintaining user 

confidentiality because it can imitate the actual data set without exposing confidential 

information. He also supports the production of more diverse and balanced data sets, increasing 

the performance and effectiveness of machine learning models. Overall, synthetic data 

generation enables the development of reliable and ethical AI systems.  

Sharma and Bhatia (2017) [6] provides clear overview of various methods used to generate 

synthetic data to protect individual confidentiality. It explains all the old and new methods that 

help to retain meaningful patterns without identifying personal information. Some of these 

methods include artificial records that add noise to data or follow the same template as the actual 

template. Their review shows how to safely use synthetic data in areas such as medical and 

finance. In general, their work helps to understand how to balance the need for information that 

is useful for the confidentiality of the data.  

The works [7] and [8] address the creation and exploitation of specific methods to generate 

synthetic data using the Generative Adversarial Networks (GANS). [7] Goodfellow et al. 

(2014), we consider the original GAN structure where the generator and the identifier play a 

game to generate data following the real distribution. The original idea is now realized in many 

generating models in other fields. 3 Results Justib XU and Martha Skoularidou Based on this 

study [8], XU and Skoularidou. (2019) introduces Conditional Tabular GANs (CTGAN), which 

is particularly derived for Table structure with numbers and categories. CTGAN also introduces 

conditional generation and normalisation approaches to alleviate imbalanced and complex data 

distributions. This study demonstrates the strength and flexibility of GAN in generating realistic 

synthetic data for a range of machine learning tasks. Yoon et al. (2019) [9] in which the idea of 

missing data imputation is incorporated together with GANs further validating our argument on 



their versatility. Choi et al. (2017) [10], further applied GANs in the generation of multi-label 

discrete patient records, which is also able to capture evidence in the real data ofChoi et al. 

(2017) [10], expanded the use of GANs and demonstrated that GANs can be applicable to 

generate realistic multi-label discrete patient records, of GANs have been used in the healthcare 

domain to generate synthetic patient data preserving meaningful clinical information. This work 

shows that it is possible and feasible to use GANs to generate synthetic simulated data that can 

be used to simulate realistic medical data. 

Investigate the use of Generative Adversarial Networks (GANs) to create synthetic table data 

[11] and [12]. These works show how GAN can be adapted and optimized to obtain realistic 

data suitable for machine learning models in structured data sets (e.g. existing GAN, Tgan). 

These approaches focus on preserving the statistical properties and feature relationships of the 

original data, making synthetic data highly valuable for analysis. This approach is especially 

useful when working with confidential or limited data sets because it provides safe and effective 

data exchange and analysis. Research also emphasizes problems such as the collapse of the 

regime and the instability of training that researchers continue to solve. In general, these 

contributions extend the boundaries of synthetic data production for actual application of 

machine learning. Xie et al. More advanced work by (2020) [13] explores differentially private 

GANs for tabular data, providing privacy in synthetic data generation while maintaining utility. 

[14] uses an overload method based on GAN to focus on solving class imbalances in data sets. 

In many actual tasks of classification, certain classes cannot be protected, leading to biased 

models and prognosis performance. This study suggests the creation of synthetic samples for 

minority people to use GAN to balance the data set. While studying the distribution of minority 

classes, GANs generate realistic examples that help classifiers learn rare patterns. This increases 

the overall accuracy of the model and provides fair processing of all classes. This method is 

especially effective in areas such as fraud and medical diagnostic detection, where imbalance 

data is a common problem. 

Both [15] and [16] serve as educational materials to simplify the basics of GAN and actual 

applications. Brownlee (2019) provides convenient introduction to beginners in the architecture 

and curriculum of the creation competition network, allowing people who are new to deep 

education can use the concept. Rashid 2021 discusses how to apply GANS in detail to expand 

this understanding and increase the data of the data tablet set. He explains how synthetic samples 

created by GANS can improve various data sets and improve the performance of the machine 

learning model. This papers together provides theoretical and practical information about the 

use of GAN for actual data tasks. 

Both [17] and [18] emphasize the role of GAN in the production of synthetic data and 

confidential preservation. OpenAI (2020) emphasizes how to create a realistic synthetic data set 

so that HANS can imitate the statistical characteristics of the actual data so that the data can be 

replaced more safely without identifying confidential information. H2O.AI (2022) explores how 

GANs help to improve the productivity of machine learning models while maintaining 

confidentiality by increasing data as well as data generation. The two researchers emphasize the 

effect of the GAN -based method that improves the availability of data and supports reliable 

education of artificial intelligence models in confidential areas such as personal information 

protection and health care and finance. 



3 Methodology 

To evaluate the efficacy of Generative Adversarial Network (Gans) for data augmentation we 

implemented systemic technologies such as data harvesting, pre-processing, synthetic data 

generation, models training, and evaluation. 2 Methodology This section provides a brief 

overview of the main elements of the approach followed, namely: (i) the data preprocessing 

steps (preparation of spectral images of Sparrow sound), followed by (ii) the deep GAN 

architectures, and how they are employed in the context of data augmentation (spectrum 

augmentation). 

3.1 Data Description and Preprocessing 

We used the MIMIC-III database for length-of-stay prediction, which consists of 116,354 

records and 27 attributes. This includes 26 categorical functions, including one continuous 

variable ("los"), "UDISSION_TYPE", "Insurance", "Paul" and various classification diseases, 

including a wide range of categories of demographic and diagnosis. The data set of MIMIC-III 

is used to predict mortality, with 58,976 lines and 19 columns, with 12 continuous and 7 

categories. The dataset includes variables representing demographic, clinical, and 

administrative information, such as HADM_ID, Marital_status, Numdiagnoses, and 

Numlabevents. Missing values were handled using mean or median imputation depending on 

the attribute type. Standardization via Min-Max scaling was applied to numerical features to 

ensure stable GAN training. The dataset was split into training and testing sets in an 80:20 ratio 

to prevent data leakage and enable reliable model evaluation. 

3.2 GAN-Based Synthetic Data Generation 

We used various Gan architectures that matched the attributes of the data record. Some GAN 

options have been used to solve specific problems of data creation. Designed for table data, 

CTGAN effectively reflects complex functional dependence and includes mixed data types. The 

TGAN is used to promote the collapse of the mode and to increase the stability of learning, 

which causes more diverse and reliable synthetic data. Adam Optimizer trained the Gan model 

using Hyperparameter Tuning. This was refined using grid search to improve convergence. gans 

were trained for several eras until the loss of identification became stable, indicating that the 

identifiable and generator were in balance. 

3.3 Model Training and Evaluation 

The augmented datasets (comprising real and synthetic data) were utilized to train multiple 

machine learning models: Deep Learning Models, TGAN, CTGAN, and Multi-Layer 

Perceptron (MLP), XG Boost, Random Forest, KNN algorithm. We have compared the model 

output with the original, augmented data using evaluation metrics such as pairwise distances, 

distance matrix, and distance, Explained Variance Score, mean squared error, Mean Absolute 

Error, Root Mean Squared Error, Coefficient Determination.                                             

3.3.1 Random Forest (RF) 

Using a group of decision trees to increase resilience: 



• Combines predictions from multiple trees using majority voting. 

• Reduces overfitting compared to a single decision tree . 

3.3.2 Gradient Boosting (e.g., XGBoost) 

An iterative algorithm that optimizes weak learners (trees) by minimizing a loss function: 

𝐹_(𝑚 + 1) (𝑥) =  𝐹_𝑚 (𝑥) +  𝛾ℎ_𝑚 (𝑥)                                                                          (1)                                                                                            

3.3.3 k-Nearest Neighbors (k-NN) 

A distance-based algorithm: 

• Predicts the class based on majority voting among k-nearest neighbors. 

• Common distance metric: Euclidean Distance. 

3.4 Model Evaluation 

Performance metrics used to evaluate models: 

• Mean Absolute Error: 

 

 (1/𝑛) ∗  𝛴 |𝑦𝑖 –  ŷ𝑖|                                                                                     (2) 

 

• Mean squared Error: 

 (1/𝑛) ∗  𝛴 (𝑦𝑖 –  ŷ𝑖)^2                                                                                (3) 

 

• Root Mean Squared Error: 

√([(1/𝑛) ∗  𝛴 (𝑦𝑖 –  ŷ𝑖)^2 ] )                                                                       (4) 

• Explained Variance Score: Explained variance measures prediction accuracy. 

• Coefficient Determination: It shows how well predictions fit data 

• Liftᵢ: within Distanceᵢ / external Distance 

3.5 Workflow Summary 

The process begins with the collection of raw data from relevant sources. Then follow 

preliminary processing. This includes data cleaning and preparation for modeling. Then, GAN 

(General Competitive Network) is trained as a pre -processed data for studying the template. 

After training, GAN is used in synthetic data to create data that mimics the actual data set. This 

synthetic data is then used in the educational model, which a machine learning model is created 

and specified. Fig 1 shows the work flow of this. Finally, the performance of this model was 

evaluated and analyzed to ensure accuracy and reliability. 



 

Fig.1. Work Flow. 

3.6 Comparison of Results 

From the evaluation of various models using both the original and synthetic datasets, we 

observed that the synthetic data performed differently from the original data in terms of error 

metrics. When teaching the source data from the XG boost model and random forest regression, 

we observed  higher variance and dispersion, indicating a wider spread in the data. This typically 

correlates with more robust learning. However, the mean absolute error (MAE) for the synthetic 

data shows higher values, suggesting that the synthetic data has higher prediction errors 

compared to the original data. Nevertheless, when learning the synthetic data of TGA, their 

performance has worsened significantly, indicating that generalization is not good at the 

negative value of the described dispersion and R² evaluation. Meanwhile, CTGAN's synthetic 

data has been relatively better than the TGAN, especially in the return of XG Boost and any 

forest model. The KNN regression model has followed the similar trend of CTGAN's source 

data and the worst source data in TGAN. The neural network results showed minimal variation 

in R² values, but the error metrics demonstrated similar reductions when synthetic data was 

included. This indicates that while predictive variance remained consistent, synthetic 

augmentation contributed to lowering overall error. Table 1 shows the evaluation metrics. 

Table 1. Evaluation Metrics. 

Model 

Used 

Data Mean 

Absol

ute 

Error 

Mean 

Squa

red 

Erro

r 

Root 

Mean 

Squared 

Error 

Explai

ned 

Varian

ce 

Score 

Coefficient 

of 

Determina

tion 

XG Boost 

Regression 

 

Original 0.47 0.37 0.61 28.4% 28.4% 

TGAN 

Synthetic 
0.73 0.79 0.89 -7.5% -52.2% 

CTGAN 

Synthetic 
0.54 0.47 0.68 9.7% 9.6% 



Random 

Forest 

Regression 
 

Original 0.49 0.40 0.63 23.2% 23.2% 

TGAN 

Synthetic 
0.73 0.78 0.88 -4.3% -48.7% 

CTGAN 
Synthetic 

0.58 0.52 0.72 0.2% 0.2% 

KNN 

Regression 

 

Original 0.51 0.43 0.65 20.2% 18.6% 

TGAN 

Synthetic 
0.77 0.87 0.93 -12.5% -66.1% 

CTGAN 

Synthetic 
0.57 0.53 0.72 -0.9% -1.1% 

Neural 

Network 

 

Original 0.54 0.50 0.70 - - 

TGAN 

Synthetic 
0.77 0.88 0.94 - - 

CTGAN 

Synthetic 
0.68 0.78 0.88 - - 

 

In terms of Privacy at Risk (PAR), T-GAN reported a PAR of 1.02%, while CT-GAN reported 

0.62%. In the approach to PAR (including distance indicators), T-GAN announced PAR 

6.14%and CT-GAN-8.05%. We can see that PAR has now decreased to 0%. This is because the 

percentage of the TOP_REMOVE is set 100%by 100%, which deleted all synthetic data related 

to the initial record at risk. But the lack of confidentiality is not always meaningful to us. Table 

2 represents the privacy at risk evaluation. 

Table 2. Privacy at risk Evaluation. 

S.No Privacy At 

Risk(par) 

Par (with 

column 

matches) 

Par (with 

distance 

matches) 

Par (top 

remove 

percent is 

100%) 

1 CT-Gan  0.62% 8.05% 0% 

2 T-Gan 1.02% 6.14% 0% 

4 Results 

The model evaluation of the original and synthetic data sets (TGAN and CTGA) shows a 

noticeable difference in productivity and confidential risk. The models trained with initial data 

have consistently achieved the best results across all metrics, including Mean Absolute Error 

(MAE), Mean Squared Error (MSE), and explained variance. Among the synthetic data models, 

the data generated by CTGAN provides better results than the TGA, and the error is improved 

and the decrease in the râ² point is reduced, especially with the increase of XG and the regression 

of any forest. However, in terms of confidentiality, Privacy at Risk (PAR) analysis shows that 

TGAN preserved slightly more attribute-level privacy (1.02%) compared to CTGAN (0.62%). 



Compared to the distance, CTGAN shows higher risk (8.05%) than TGAN (6.14%). 

Nevertheless, both in both cases, the ratio of the best records that must be deleted to protect the 

confidentiality remains at a level of 0%, indicating that the confidential data is not critically 

applied. In general, CTGAN maintains the risk of confidentiality within the allowable limits 

while creating a more realistic synthetic data that provides the best compromise between the 

utility and the confidentiality, providing a relatively better model productivity. On the contrary, 

TGAN sacrifices both performance and confidentiality, making CTGA a more favorable option 

among the two synthetic data generators. 

5 Conclusion 

The results of this project confirm that data augmentation using GANs provides an effective 

solution for improving machine learning models, particularly when data is limited or 

unavailable. GAN-based augmentation significantly improves model performance on tabular 

datasets by generating diverse synthetic samples. Despite challenges such as mode collapse and 

training instability, advanced architectures like TGAN and CTGAN have shown promising 

results in producing reliable synthetic data. Overall, GANs are demonstrated to be a valuable 

tool for addressing data scarcity and enhancing the robustness of machine learning models. 
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