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Abstract. The preservation of road infrastructure and the safety of vehicular traffic are 

critical challenges in modern transportation systems. Potholes, in particular, pose 

significant risks to road users and contribute to accidents, making their timely detection 

and repair essential. This study proposes the concept design and realization of an 

intelligent automated pot- hole detection system utilizing YOLOv11, A cutting-edge 

object detection model powered by deep learning algorithms. In this approach, deep 

learning algorithms are trained to detect potholes in image data collected from road 

surfaces under varying environmental conditions, including different lighting and 

weather scenarios. The real-time capabilities of YOLOv11 enable accurate and rapid 

detection, making the system suitable for integration into autonomous vehicles, traffic 

monitoring systems, and road maintenance operations. The system is developed using 

Python, OpenCV, and deep learning frameworks such as TensorFlow and PyTorch. Its 

performance is evaluated against Important measurements like processing speed, 

intersection over union (IoU), and mean average precision (mAP) are used in order 

to measure both accuracy as well as computing speed. The framework for detecting 

potholes, which was created, can help facilitate the improvement of intelligent 

transportation systems through the incorporation of automation, resulting in enhanced 

road safety and simpler maintenance procedures. 
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1 Introduction 

Roads are the most popular means of travel in India, with millions reliant on them every day. 

Still, the increasing figure of road accidents over the last several years has become a very 

important issue of concern for safety. Among the key factors behind these accidents is the 

existence of potholes, which can initiate sudden stops, vehicle instability, and life-

threatening injuries, especially for two-wheeler drivers and pedestrians [1]. 

Potholes usually occur as a result of a combination of heavy traffic, poor road maintenance, 

harsh weather conditions such as heavy rainfall, and ground movements. When roads are 

not properly maintained, tiny cracks appear and gradually develop into big potholes due to the 

continuous pressure of vehicles and water infiltration. These dangers not only lead to 

serious damage to vehicles but also pose a threat to human lives. To counter this, recent 

research has been aimed at creating automated and precise pothole detection systems [2]. 
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Deep learning object detection models, particularly real-time models such as YOLO (You 

Only Look Once), have been highly promising in this area. The progressive development of 

YOLO models from initial versions to more light-weight and precision-oriented variants such 

as YOLOv8 has made practical deployment possible on a range of platforms ranging from 

drones to handheld devices. Research has also examined the possibilities for extending models 

like YOLOv11 to more general traffic safety use cases, including the detection of accidents, 

highlighting their potential for smart infrastructure [3]. 

In addition, recent developments have incorporated edge computing and digital twin 

technologies under the Internet of Vehicles (IoV) model for improving pothole detection in 

real time. Through processing information at the edge, such systems minimize latency while 

facilitating instantaneous identification of hazards. The addition of digital twins ensures 

constant monitoring and predictive maintenance and thus the response and dependability of 

vehicle networks in solving road anomalies [4]. A sample image from dataset is illustrated in 

Fig. 1. 

 

Fig. 1. Sample image from dataset. 

A comprehensive comparison of different YOLO architectures highlights the trade-offs 

between speed, accuracy, and computational complexity, making it easier to select the 

most appropriate model for specific real-world use cases [5]. 

Furthermore, recent surveys on multi-object detection models underline the increasing 

relevance of such technologies in intelligent transportation systems, offering scalable and 

efficient solutions for urban mobility challenges [6]. 

Building upon these advancements, the present work aims to develop a pothole detection 

system using the latest YOLOv11 framework, focusing on real-time performance, model 

efficiency, and suitability for Indian road conditions. 

This paper’s remaining sections are organized as follows: The literature on object and pothole 

detection methods is reviewed in Section II. The suggested approach, dataset characteristics, 

model structure, and implementation plan are all defined in Section III. The experimental 



setup, findings, and performance evaluation of the YOLOv11-based system are described in 

Section IV. Section V wraps up the research and suggests possible directions for further 

investigation. 

2  Related works 

The identification of potholes is extremely crucial for safe travel on roads. Detection of 

potholes has now become much easier compared to traditional methods like manual inspections 

and vibration-based techniques, which are time-consuming and expensive. With the help of 

advanced technologies like computer vision and deep learning, Automated pothole detection 

has emerged as a promising area in research. 

N.Bhavana et al. [7] developed a POT-YOLO, a real-time pothole detection system built upon 

an edge segmentation- enhanced YOLOv8 architecture. In their methodology, they first 

converted pothole videos into image frames. To reduce distractions in the converted images, 

they applied Contrast Stretching Adaptive Gaussian Star Filter (CAGF). For detecting pothole 

regions, the Sobel detector was used. In performance evaluations, the YOLOv8-based model 

demonstrated superior results compared to models similar to Faster R-CNN and Mask R-

CNN. 

Li et al. [8] proposed a pothole detection system that utilizes crowdsourced information 

integrated with an enhanced Mask R-CNN model. The integration of multiple data sources 

improves model generalizability across different road conditions. The enhanced Mask R-CNN 

model enhances segmentation precision for accurate pothole area identification. The paper 

shows the potential of integrating community- sourced data with state-of-the-art deep learning 

methods for infrastructure inspection. This approach provides a scalable solution for real-time 

road maintenance applications. 

Wang et al. [9] proposed an intelligent pipeline drainage defect detection system based on an 

enhanced YOLO- DeepSort framework. The system is a combination of the fast object 

detection feature of YOLO and DeepSort’s tracking algorithm to track defects over time. 

This combination makes it possible to continuously evaluate the condition of the 

pipelines, making it possible for timely maintenance. The method illustrates the potential in 

using the fusion of detection and tracking algorithms for infrastructure health monitoring. The 

research indicates advancements in detection precision and working efficiency in pipeline 

inspections. 

Rout et al. [10] has proposed a hybrid system by combining Enhanced super Resolution 

GAN(ESRGAN) with YOLOV7 variants(standard,tiny,X) for detecting potholes in low-

resolution dash cam footage. In their methodology they processed 1784 Images (1265 

training) through ESRGANS Residual-in-Residual Dense blocks to upscale 640X360 pixels 

inputs to 1100X800 pixels before YOLOv7 analysis. The Yolov7X model achieved best 

performance on the other hand the smaller YOLO v7 tiny variant maintained real-time 

capability at 0.0093 per frame. The study demonstrated ESRGAN ability to enable high 

accuracy detection from low cost cameras. 

 



Sai et al. [11] introduced a YOLOv8 based system to detect potholes automatically using a 

dataset of 631 road images. Ambiguous pothole images were eliminated to reduce overfitting 

on irrelevant data. Following this, three YOLOv8 models—Nano, Small, and Medium—were 

trained. Among them, the YOLOv8-Nano model demonstrated the most optimal performance 

compared to the other two models. 

Aparna et al. [12] developed a pothole detection system where they have used thermal 

imaging and Convolutional Neural Networks (CNN’S) In their proposed methodology at first 

they collected images of roads under various conditions (day/night, water-filled, dry etc.) 

using the FLIR ONE camera. The collected Images were resized into (240X295 pixels format) 

by cropping and resizing to standard dimensions. To enhance the size of the dataset some 

data augmentation techniques including zooming, rotation and noise injection were applied . 

Both custom CNN models and fine-tuned pre-trained ResNet models (ranging from ResNet-

18 to ResNet-152) were implemented in the study. The ResNet-101 model specifically utilized 

input images resized to 224×224 pixels for training and evaluation. 

Dhiman and Klette et al. [13] introduce a systematic work on pothole detection using 

automation, comparing classical stereo vision methods with deep learning methods. They test 

four techniques: two stereo-vision methods (SV1 and SV2) and two deep learning models 

(LM1 and LM2). The work identifies an important trade-off between fine segmentation for 

infrastructure inspection and real-time detection for application within vehicles. The work also 

considers issues of irregular pothole boundaries and environmental noise. Their research has 

established critical milestones and has greatly impacted developments in intelligent 

transportation systems. 

Au Yang Her et al. [14] introduced a real-time pothole detection approach by enhancing the 

YOLOv5 object detection framework, specifically designed for motorized use on Malaysian 

roads. Their system utilized different YOLOv5 variants (including m6, s6, and n6) to analyze 

live video streams captured using an Intel RealSense D435i camera mounted on a moving 

vehicle. For onboard computing and fast inference, the configuration used a Nvidia Jetson 

Xavier X module. The approach combines deep learning-based detection with embedded 

hardware to enable real-time analysis. The study demonstrated YOLOv5’s potential for real-

time and on-vehicle pothole detection in Malaysian road conditions. 

Dharneeshkar et al. [15] presented a deep learning framework aimed at detecting 

potholes with the help of YOLO variants to address road surface damages on Indian roads. 

Their methodology involved capturing road images and training object detection models such 

as YOLOv2, YOLOv3, and YOLOv3-tiny to identify potholes from 2D visual data. The 

framework makes use of the speed of convolutional neural networks and specializes in vision-

based detection and presents a low-cost substitute to existing vibration or 3D reconstruction 

methods. The study emphasizes the adaptability of YOLO models for region-specific road 

monitoring applications in developing countries. 

While various YOLO-based pothole detection systems show promising results, many rely on 

limited or region-specific datasets, which reduces their ability to generalize to different 

environments and road conditions. High-accuracy models like YOLOv8 and ResNet-101 

require powerful GPUs, limiting their use on low-resource or edge devices. In contrast, 

lightweight models offer real-time processing but often compromise detection precision. Some 



methods also involve complex preprocessing steps or require specialized sensors like thermal 

cameras, increasing the cost and implementation com- plexity. Additionally, environmental 

factors such as lighting, shadows, and road texture can still affect detection accuracy. The 

absence of standardized benchmarks further complicates model comparisons and hinders the 

development of universally applicable solutions. 

3  Methodology 

The proposed workflow of Pothole Detection using YOLOv11-n is shown in Fig 2. The 

collected dataset, which already includes augmented images. This dataset is categorized in to 

training and validation sets to make it ready for model development. The YOLOv11-n 

variant is then initialized by setting the required parameters and declaring important 

hyperparameters. In the following stage, the model is trained by specifying the number of 

epochs and applying pre-trained weights to enhance its accuracy. The trained model is then 

tested using the validation data to determine its overall performance and reliability. Finally, 

key evaluation metrics including precision, recall, and mean Average Precision (mAP) are 

computed, and the model is utilized to perform inference on unseen images to effectively 

detect potholes. 

 

Fig. 2. Methodology. 

3.1 Dataset 

The data used in this research was obtained from Kaggle and augmented with real-time 

pothole images gathered from other online sources to provide diversity and realism. The 

image set contains a total of 3,226 images, including not just images with a single pothole 

but also images with multiple potholes in the same frame. Each image in the dataset is 

annotated using the YOLO format, where annotations follow the structure: 

<class_id> <x_center> <y_center> <width> 

<height> 

, with all values representing normalized coordinates. The dataset already contains 

augmented images, so there is no need for further augmentation in preprocessing. The 

mean original image resolution was about 410×410 pixels; however, to improve model 



performance and detection quality, the input image size was increased to 624×624 pixels 

during training. The data was classified into training and validation sets of 2,602 images 

and 624 images, respectively. 

3.2 YOLOv11 

YOLO (You Only Look Once) is a popular real-time object detection framework that 

uses a single convolutional neural network to identify object classes and predict their 

bounding boxes in one unified step. YOLOv11 is the latest version in this series, 

developed by Ultralytics, and it sets a new benchmark with respect to accuracy, 

inference speed, and computational performance. Being an extension of its 

predecessors, YOLOv11 offers several architectural enhancements and optimization 

techniques to improve results achieved across various computer vision tasks 

Fig 3 [3] illustrates the architecture of the YOLOv11 model, The architecture is structured 

into three core modules: Backbone, Neck, and Head. 

The YOLOv11 architecture is organized into three fundamental components:the Backbone, 

Neck, and Head, each having a different purpose in the object detection pipeline. The 

Backbone takes charge of obtaining rich visual information from the input image by 

going through a cascade of convolutional layers and Cross Stage Partial (C2f) modules 

that enhance computational efficiency and gradient flow with shortcut connections. It is 

concluded with an SPPF (Spatial Pyramid Pooling - Fast) layer, which is responsible for 

capturing multi-scale features. The Neck serves as a feature aggregator, taking features 

from various levels of the backbone through upsampling and concatenation operations. 

Such integration enables the model to maintain fine-grained spatial information while 

including high-level semantic features, which improves its capability to detect objects of 

different sizes. 

 

Fig. 3. Network architecture of YOLOv11. 



Lastly, the Head predicts by processing the combined features from the Neck and generating 

bounding boxes and class probabilities at three scales (80×80, 40×40, and 20×20) to 

accurately detect small, medium, and large objects in one forward pass. Fig. 4 shows the Key 

architectural modules in YOLOv11 [16]. 

Besides its standard architecture, YOLOv11 integrates three powerful modules that play 

important roles in its performance: 

Fig. 4. Key architectural modules in YOLOv11 [16]. 

• SPPF (Spatial Pyramid Pooling-Fast): Enhances multi- scale feature representation by 

pooling features at different scales without increasing inference time. 

• C2PSA (Cross-Stage Partial Self-Attention): Improves attention across spatial dimensions, 

this allows the model to more accurately focus on the important regions within the 

image.C3K2 (Efficient Convolutional Block): Increases the efficiency and speed of the 

model through optimized convolutional operations. 

3.3 Training 

To train the YOLOv11 model for pothole detection, we used a .yaml configuration file that 

contains essential details about the training dataset. This file defines the paths to the 

training and validation data, the number of object classes, and their corresponding names. 

The model was trained for 115 epochs to ensure it effectively learns the features. All input 

images were resized to 640×640 pixels, and a batch size of 64 was employed to expedite 

training process. The device was set to 0 to enable GPU usage, which further accelerates 

training. Additionally, rect=True was included to preserve the original aspect ratio of 

images during resizing. 



3.4 Inference 

Once the YOLOv11 model is trained, it is used for detecting potholes in new images 

through inference. The model takes an input image and returns bounding boxes along with 

confidence scores for each detected pothole, indicating the location and certainty of the 

detection. When source=0 is specified during inference, the system accesses the webcam 

and processes real- time images, allowing the model to perform pothole detection on live 

image feeds. 

4 Results and Analysis 

This section provides a detailed assessment of the proposed Pothole Detection using 

YOLOv11. The results are demonstrated using both quantitative metrics and visual 

outputs. The evaluation is carried out on a custom pothole dataset, which was 

preprocessed, annotated, and classified into train, validation and test sets. The YOLOv11 

model was trained using the Ultralytics framework and tested on images from the 

validation set. 

4.1 Input and Detection Output 

 

Fig. 5. Sample Input image (before detection). 

Fig. 6. Output image (after detection). 



A test image is provided, illustrating a real-world road scenario with clearly observable 

surface deterioration. Fig. 5 shows the Sample Input image (before detection). Fig. 6 shows 

the Output image (after detection).

After processing the input image through the trained YOLOv11 model, the detected potholes 

are highlighted using bounding boxes. The model performs real-time inference and outputs the 

detected objects with corresponding confidence scores. 

4.2  Model Training Analysis 

The confusion matrix shows how many accurate and inaccurate predictions the model 

produced in comparison to the real annotations. 

 

Fig. 7. Confusion matrix. 

The confusion matrix shown in Fig 7. indicates that the YOLOv11 model successfully detects 

the majority of potholes with 1330 true positive predictions. However, there are 661 false 

positives and 445 false negatives, which suggest the model at times confuses potholes with 

similar background features. 

When assessing object detection models, the Precision- Recall curve is essential, particularly 

when working with unbalanced data. It depicts how precision and recall fluctuate when the 

confidence threshold changes, helping students comprehend the trade-off between these two 

measurements. 

We employed three main performance metrics precision, recall, and mean Average 

Precision (mAP) to assess the efficacy of the YOLOv11 model. 



Fig. 8. Precision Recall Curve. 

• Precision: Precision indicates the correctness of positive predictions. It informs us 

about how many of the pre- dicted potholes were indeed correct. Fig. 8 shows the 

Precision Recall Curve. 

Formula: 

𝒑𝒓𝒆𝒄𝒊𝒔𝒊𝒐𝒏 =  
𝐂𝐨𝐫𝐫𝐞𝐜𝐭 𝐃𝐞𝐭𝐞𝐜𝐭𝐢𝐨𝐧𝐬

𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔 + 𝑰𝒏𝒄𝒐𝒓𝒓𝒆𝒄𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔
                                                                     

(1) 

• Recall: Recall indicates how well the model identifies all true potholes. It reflects the 

capability of the model to identify all objects of interest in the image. 

Formula: 

𝑹𝒆𝒄𝒂𝒍𝒍 =  
𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔

𝑪𝒐𝒓𝒓𝒆𝒄𝒕 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔 + 𝑴𝒊𝒔𝒔𝒆𝒅 𝑫𝒆𝒕𝒆𝒄𝒕𝒊𝒐𝒏𝒔
                                                                          (2) 

• Mean Average Precision (mAP): By combining precision and recall for every object 

class and different confidence thresholds, mAP generates a total performance score. 

      To calculate mAP, we first determine the Average Precision (AP) for each class, which 

is the area of the Precision-Recall curve. The mAP is the average of all APs. 

Formula: 

𝑚𝐴𝑃 =
1

𝐶
∑ 𝐴𝑃𝑖

𝑐
𝑖=1                                                                                                                     (3) 

where C is the total number of object classes. 

The training and validation loss curves for the YOLOv11- n model over 120 epochs are 

shown in Fig 9. The box, classification, and DFL loss graphs, which represent the losses, 

decline gradually, reflecting successful learning. Meanwhile, performance metrics such as 

precision, recall, mAP50, and mAP50–95 increase steadily, reflecting that the model is 

becoming better at recognizing and classifying potholes. In general, the trends reflect fine 

model convergence and accuracy. 



 

Fig. 9. Training and validation loss curves along with evaluation metrics. 

4.3 Evaluation results 

The performance metrics—precision, recall, mAP@0.5, and mAP@0.5:0.95—offer a 

summary of how well the model performs on unseen validation data. 

 

Fig. 10.  YOLOv11n Model Performance Summary After Training. 

With a precision of 0.739 and a recall of 0.66 at an IoU threshold of 0.5, the model 

demonstrated strong performance. Good localization and classification capabilities were 

shown by the mAP of 0.392 for IoU thresholds between 0.5 and 0.95. With an average 

of 0.4 ms for preprocessing, 2.1 ms for inference, and 0.6 ms for post-processing per image, 

the system showed effective processing speeds. Because of this, the model can be used in 

systems like surveillance cameras, drones, or vehicle-mounted systems that need to monitor 

road conditions quickly and accurately. Fig. 10 shows the YOLOv11n Model Performance 

Summary After Training. 

5 Comparison with Yolo Models 

We assess our model’s pothole detection efficacy by contrasting its recall performance with 

earlier iterations of YOLO. One important parameter is recall, which shows how well the 

model can detect every real pothole. 

mailto:mAP@0.5


Table 1. Recall Comparison Between Yolo Models. 

Reference Model Recall (%) 

[11] YOLOv8-nano 60.0 

[11] YOLOv8-small 35.0 

[11] 

YOLOv8-medium 

YOLOv11-nano (Ours) 

50.0 

66.0 

 

The proposed YOLOv11-n model achieves a higher recall of 66.0%. This improvement 

reflects the effectiveness of YOLOv11-n in minimizing false negatives and enhancing 

detection reliability, especially in real-world scenarios. Table 1 shows the Recall Comparison 

Between Yolo Models. 

6 Conclusion and Future Work 

A very efficient pothole detection system based on deep learning was implemented with the 

YOLOv11 model. Due to increasing road accidents caused by poor road condition, especially 

potholes, the suggested approach offers real- time precise implementation that can be used 

on various platforms from mobile phones to drones and surveillance systems. The YOLOv11-

n model performed higher recall than other YOLO models including variants like YOLOv8-

nano, YOLOv8-small, YOLOv8-medium, indicating its higher capacity to identify potholes 

with fewer false negatives. The model’s stability and dependability were further validated 

by other assessment criteria like the precision-recall curves and confusion matrix. 

Incorporating this model into smart city infrastructure allows authorities to ease road 

monitoring, streamline repair priorities, and improve public safety. 

In the future, additional enhancements could include expanding the dataset to encompass 

different road types, weather conditions, and geographical locations to improve 

generalization. Incorporating real-time video stream processing would enable continuous 

pothole tracking for application in autonomous vehicles and real-time traffic management. A 

severity evaluation mechanism could also be added to assist municipalities in prioritizing 

repairs by pothole depth or size. Edge device deployment for real-time low-latency inference 

in resource-scarce settings is also a future prospect of interest. 
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