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Abstract. The tissue is the most frequently involved endocrine organ and therefore it
requires an accurate and early detection for the treatment and management. Such diagnosis
methods, while formally being a set of biochemical analyses and physical examinations,
are subjective and rely on repetitive tests and visual scoring, necessitating advanced
computer aided diagnostic schemes. This work presents a comparison of two hybrid deep
models, CNN-BiLSTM and attention CNN-BiLSTM, in the context of thyroid disease
classification. The CNN layer extracts spatial features from the input and the BiLSTM
layer captures long-term dependency of patterns within thyroid function tests. For better
feature selection and higher classification accuracy, the attention mechanism is introduced
in the second model. To address the class imbalance in dataset SMOTE is used for over-
sampling. Experimental results of the attention-based CNN-BiLSTM model are better
than the baseline with more precision, recall and F1-score. Experiments demonstrate that
the attention mechanism enhances the interpretability and classification performance of
the model. This paper demonstrates the potential of attention-augmented deep learning
models for reliable automatic thyroid disease diagnosis systems to improve clinical
decision-making and patient handling.

Keywords: Convolutional Neural Network, Bidirectional Long Short-Term Memory,
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1 Introduction

A critically important part of the endocrine system which releases the hormones that are
necessary for energy balance, metabolic control and physiological homeostasis. Thyroxine (T4)
and triiodothyronine (T3) are secreted to regulate metabolism, neural functions, and
cardiovascular functions by the thyroid [1] [2]. The pituitary gland controls the secretion of
these hormones very precisely by producing Thyroid-Stimulating Hormone to balance them all
out (maintain homeostasis.) We continue to require early identification and treatment as
disturbance of regulation on the metabolic level may bring serious metabolic, and in a wider
perspective systemic disease.

Thyroid diseases are extremely prevalent endocrine diseases globally and can affect people of
all ages. The two most prevalent thyroid dysfunctions are hyperthyroidism, where too much
hormone is secreted, and hypothyroidism, where there is too little hormone production.
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Symptoms of hyperthyroidism are anxiety, rapid heart rate, and loss of weight, while the
symptoms of hypothyroidism are depression, weight gain, and weakness. In most cases, the two
diseases are caused by autoimmune diseases like Hashimoto's thyroiditis. Dysfunctional thyroid
can result in severe conditions like cardiovascular disease, osteoporosis, infertility, and
dementia if not treated in time. Proper and effective classification systems are now demanded
by the rising cases of thyroid-related diseases to be able to diagnose the disorder at early stages
and effectively plan for the treatment.

Patients are classified based on the status of thyroid function in thyroid disease classification.
The three basic categories are employed by standard models: (1) Normal Thyroid, (2)
Hyperthyroid, and (3) Hypothyroid. Blood laboratory tests of T3, T4, and TSH are the basis of
the traditional diagnosis. Due to intersubject variation, overlap of symptoms, and extraneous
variables such as drugs and lifestyle, hand interpretation of these measurements is often
challenging. These challenges enhance the necessity for an automatic, objective, and accurate
system that enhances the accuracy of the diagnosis and assists clinical judgment.

Machine learning (ML) and its subset deep learning (DL), which have been extensively
developed in recent years, can be used as powerful tools to assist medical diagnosis. —Thyroid
disease classification using ML techniques is greatly legitimate given the advancement of
machine and deep learning. To the best of our knowledge, traditional ML algorithms (e.g.,
decision trees and random forests) have yielded relatively good results as well. This is in part
due to the fact that new types of deep learning, especially hybrid models, have been shown to
outperform others by exploring more complicated patterns in medical data. While CNNs are
good at learning transformation invariant features, BiLSTM networks are able to capture
temporal dependencies within sequences of data points in the case of medical field. Adding
these architectures in one by one would be great, which then we should be able to boost our
accuracy for diagnosing the bugs and thus reduce dramatically the number of false positives.

In this paper, we compare two hybrid deep learning models for thyroid disease classification:
(1) CNN+BILSTM without attention and (2) CNN+BiLSTM with attention. Our baseline model
employs CNNs for extracting features and BiLSTMs for detecting temporal dependences among
biochemical test values. To enhance classification performance further, we employ an attention
mechanism in the next model for selectively attending to the most significant features,
improving decision-making and interpretability. The inclusion of attention is to be able to
increase the model's capacity to classify between normal, hypothyroid, and hyperthyroid more
precisely. The experimental results show that the addition of an attention mechanism improves
classification accuracy, proving to enable the robustness of the thyroid disease classification.

Application of deep learning in thyroid disease classification has significant public health and
clinical practice implications. Automated classification reduces human bias, offers diagnostic
reliability, and supports endocrinologists and general practitioners in thyroid disease diagnosis.
Higher classification accuracy allows for personalized treatment plans, maximizing hormone
replacement in hypothyroid patients and tailored interventions in hyperthyroid patients. Large-
scale classification systems further support public health by monitoring thyroid disease
prevalence, identifying high-risk populations, and supporting epidemiological studies [3] [4].

The organization of the rest of this paper is as follows: Section II introduces related work in
thyroid disease classification. In Section III, we explain the methods used in terms of data
preprocessing steps, model design, and training steps. In Section IV we present the experimental



results, quantify the performance of the model and summarize our analysis by highlighting key
findings.

2 Related Work

Thyroid Disease Diagnosis is increasingly gaining interest because of its increasing prevalence
and the major role of the thyroid in regulating metabolism, development, and growth. With the
rapid advancement of technology numerous ML [13] and DL [14] approaches have been
suggested to improve diagnostic accuracy and treatment results. Heterogeneous data set, such
as clinical, medical imaging, genomic and spectroscopic signals, has been applied and used for
these methods, since this is symptomatic of the complexity in thyroid disease diagnosis. The
goal of these efforts is not just for enhanced prediction, but also to assist clinicians in making
better, early and informed therapeutic decisions.

Recently, one of the most significant work [1] proposed an LSTM (Long Short-Term Memory)
and CNN (Convolutional Neural Networks) to predict thyroid disease using the ultrasound
image. Evaluation of the two layers using LSTM and CNN that utilizes LSTM for sequential
data and exploits CNN for visual feature extraction.Full size table Besides that, a meta-heuristic
approach was used to handle optimization of the model parameters leading to enhancing the
accuracy of the model. It helps in difficult conditions of noisy and uncertain medical imaging
data and it provides a good approach for diagnosis of thyroid disease.

A deep convolutional neural network (VGG-16) was also applied to distinguish malignant and
benign thyroid nodules in ultrasound images [2]. The VGG-16 image classification model was
used as the pre-trained network and finetuned with a thyroid cancer dataset. With the help of
transfer learning, it was able to learn from a large dataset, and to enhance its recognition ability
on subtle features presented on ultrasound images, providing an effective aid to doctors for
decision support.

A comparison study [3] used multiple machine learning classifier such as SVM, RF, DT, to
classify thyroid disease based on clinical data. Although other classifiers performed well, the
work emphasized that MLP classifier outperformed other classifiers.

Other research [4] involved the authors applying feature selection (such as Boruta and Recursive
Feature Elimination (RFE)) with machine learning classifier for increasing the effectiveness of
the model. This integrated approach minimized the effect of irrelevant features, and produced
better classification results in conjunction with ensemble methods such as Random Forest. The
multimedia technology fusion (MTF) is also applied to the detection of thyroid disease.

In [5], authors proposed MSCNet, a multimodal cross-fusion and separation network for
Raman and FTIR (Fourier Transform Infrared) spectral fusion for diagnosing thyroid cancer.
By integrating the information of both the spectroscopic modalities, MSCNet have shown the
potential of fusion of multimodal data for better diagnosis.

In genomics, [6] introduced DEL-Thyroid, an ensemble learning method which employed
advanced deep learning architectures such as LSTM, Gated Recurrent Units (GRUs), and Bi-
directional LSTM (Bi-LSTM) for early stage detection of thyroid cancer mutations. In a large
set of thyroid cancer mutations, a model trained with recurrent neural networks was used to



identify the temporal patterns in genomic data, resulting in improved identification of non-
obvious mutations related to thyroid cancer.

In order to address the issue of class imbalance and multi-class classification, [7] proposed an
approach involving differential evolution for the optimization of machine learning models or
class-imbalanced data sets. The proposed method employed Conditional GANs to generate
synthetic samples, which aimed to balance the dataset and reduce potential overfitting.

Further research has applied E-CNN [8] to distinguish benign and malignant thyroid tumours
through 2D US images [8]. The model trained on a combination of breast and thyroid tumor
data utilized transfer learning by fine-tuning the pre-trained breast cancer model toward thyroid
tumor classification, indicating the adaptability of transfer learning across tumor types.

Recently, to enhance the decision of thyroid ultrasound images, in particular the noisy and low
contrast ones, a new learning framework, Dual-branch Attention Learning (DBAL), was
presented in [9]. Employing a self-supervised pretext task such as jigsaw puzzle solving, the
model enhanced feature learning especially from limited annotated data. The dual-branch
attention mechanism enabled the model to capture the dependence of context, which
contributed to the discrimination between benignancy and malignancy of thyroid nodules.

In [10], the MAA-Net was proposed to simulate the clinical expert knowledge to the
interpretation of thyroid nodules from ultrasound images, by predicting valuable features and
malignancy. Its ability to perform multi-attention enhances learning of salient features for easier
interpretation of diagnosis.

Some multi-channel learning networks were proposed to record more contextual information
for multi-classification [11] and were developed with multiple CT feature channels. The
technique aids in more accurate diagnosis, particularly when there are multiple or complicated
thyroid diseases to take into consideration.

In [12] machine learning models such as random forest and XGBoost were used to check on
clinical information i.e., age, gender, and hormone level for thyroid classification. It
emphasized in increasing the interpretability of models through feature selection and cross-
validation.

Concurrently, the review [13] targeted a development of deep learning-based thyroid nodule
diagnosis in ultrasonic images. The focus was on the hybrid techniques as CNN-BiLSTM that
capture spatial and temporal patterns effectively. Models built in this way worked well,
especially when the images were boring or the labels bad.

In another study [14], a Key-frame Guided Network for the detection of thyroid nodules in
ultrasound videos was proposed. Differently from the classical static frame-based methods, this
model selects the informative diagnostic frames from video and incorporates a motion attention
mechanism to follow the schematically clinically meaningful sequences.



In another work [15], n-ClsNet was proposed, a CNN network containing multi-scale
classification layers and HAC blocks to extract spatial features in different resolutions. This
feature extraction was also effective for classification of thyroid nodules, which underlines the
complementarity of it. Our proposed CNN-BiLSTM hybrid model further extends this to
temporal feature extraction and becomes a very potent technique for image sequence
classification.

3 Methodology

In this paper, we propose two deep learning models for thyroid disease classification: (a) CNN
with BiLSTM without attention and (b) CNN-BiLSTM with attention. Both of them make the
most power use of Convolutional Neural Networks (CNN) in representing features and
Bidirectional Long Short-Term Memory (BiLSTM) networks in modeling sequential relations.
Only the former adds a self-attention module, which assigns weights dynamically to each
important component for feature representation.

3.1 Dataset Overview

Thyroid Gland the Test data suitable for us to use the Root cause which is occurring in Thyroid
gland, there are around 215 patient s records including five features of biochemical test on this
record we have train our model and classify thyroid function into normal conditions (cases
=150), hyperthyroid(cases=35) or hypothyroid (cases=30). The five features were T3RU (%),
serum total thyroxine (T4), serum total triiodothyronine (T3), Basal Thyroid-stimulating
hormone (TSH) and Maximum Absolute difference in the level of TSH before and after TRH
stimulation. The dataset was originally gathered by scientists at James Cook University and
commonly used in machine learning for testing the prediction quality of classification models.
This is a clear dataset for deep learning model to classify the patient's response with thyroid
disease without any missing values. The study compares the performance of two CNN-BiLSTM
models, one without attention and one with a self-attention block to understand how much
attention-based feature enrichment improves our prediction accuracy.

With the use of data augmentation techniques, it helps in class balancing and model
generalization. Structured as a CNN-BiLSTM hybrid model, the diagnostic experiment was
performed in the form of data pre-processing and followed by model building before training
and testing. Below is the process by which we do it use major steps.

3.2 Data Preprocessing

A systematic effort was then directed towards the preprocessing of data in the spirit of having
best model performance and quality in available dataset. There were five biochemical values:
T3-resin uptake, serum thyroxin, serum triiodothyronine, basal thyroid-stimulating hormone
(TSH), and maximal TSH difference.

3.2.1 Feature Scaling and Normalization

To eliminate inconsistencies brought about by varying feature ranges, we applied Min-Max
Scaling to scale all numerical features to 0 to 1 range. Subsequent to resampling, Z-score



standardization was applied to even out the feature distribution to facilitate quick training and
convergence of the model.

3.2.2 Addressing Class Imbalance

The dataset was initially heavily imbalanced, with the normals dominating the others greatly.
To have an equal representation:

e SMOTE was employed to artificially increase the hyperthyroid and hypothyroid samples
to 150 each.

e The normal class was randomly downsampled to 150 samples. This resulted in an even
dataset of 150 examples per class for a total of 450 samples.

3.2.3 Splitting and Encoding

To test model performance, the dataset was divided into 80% for the training and 20% for the
testing with balanced class distributions. The categorical target labels (hypothyroid,
hyperthyroid, normal) were converted into one-hot encoded vectors to support easy
classification using deep learning models.

3.2.4 Data Reshaping for Model Input

For fulfilling the input conditions of the CNN-BiLSTM model, the dataset was reshaped in the
form of three dimensions. By reshaping it, convolutional layers are enabled to gather relevant
patterns and the BiLSTM layers have acquired temporal correlations of the data. These
processes during preprocessing had boosted the stability, generalization, and precision of the
model while classifying the thyroid disease.

3.3 Model Architectures

Nevertheless, the proposed models for thyroid disease prediction contains a fusion of
Convolutional Neural Networks (CNNs) and Bidirectional Long Short-Term Memory
(BILSTM) networks to apply spatial and sequential learning consecutively. The CNNs learn to
extract meaningful features from the input data, and BiLSTM layers process these outputs for
bidirectional temporal relationship. This collaboration helps the model to learn more of patterns
and relationships in different data, hence to better distinguish between various thyroid
conditions. Model Architecture the Efforts focused on creating two different CNN model
architecture and testing them for their suitability.

3.3.1 CNN-BILSTM Without Attention

The below deep learning architecture consists of 1D Convolutional layers as a base to extract
spatial features and Bidirectional LSTM layers to extract sequential patterns from the data. It
then allows the features extracted to be processed by the fully connected layers, ending with a
Softmax activation for classification. Fig 1 shows the Architecture of the CNN-BiLSTM model
without attention.
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Fig. 1. Architecture of the CNN-BiLSTM model without attention.

3.3.2 CNN-BILSTM with Attention

This enhanced model adds a self-attention mechanism to the baseline model following the
BiLSTM layer. The attention component assigns various weights to various features, allowing
the model to attend to the most prominent information while making a classification. Fig 2
shows Architecture of the CNN-BiLSTM model with self-attention mechanism.
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Fig. 2. Architecture of the CNN-BiLSTM model with self-attention mechanism.

3.4. CNN-BiLSTM without Attention Mechanism
3.4.1 Feature Extraction with Convolutional Layers

The first model, CNN-BiILSTM without attention, employs a hierarchical feature learning
mechanism. One-dimensional convolutional layer (Conv1D) learns the spatial and local patterns
from the sequence input in the first phase. The convolution operation makes the model learn the
short-range dependencies and preserve the important feature relationships. In the second phase,
there is a max-pooling operation to again decrease the dimension and the corresponding
computational complexity, where only the most important features are preserved.

3.4.2 Sequential Learning with BILSTM

The feature maps of the convolutional module are passed to a BILSTM network, which captures
long-range dependencies from the data. Unlike LSTMs, BiLSTM takes both the forward and



backward information so that the model can learn contextual relationships in the sequence. The
BiLSTM network learns bidirectional dependencies between the sequence data.

The final hidden states of the BILSTM are flattened and passed to the last stage, which is the
fully connected layer to classify, and a softmax activation provides the probability distribution
over thyroid disease classes.

3.4.3 Regularization and Optimization

To attain better generalization and prevent overfitting, the model adopts L2 regularization,
dropout layers, and batch normalization. All these approaches enhance stable convergence as
well as improve learning dynamics. The model trains on Adam optimizer and the categorical
cross-entropy loss function to enhance classification performance to the fullest extent.

3.5 CNN-BIiLSTM With Attention Mechanism
3.5.1 Feature Extraction and Sequential Learning

The second model, attention-based CNN-BiLSTM, has an additional self-attention layer after
the BILSTM module of the above framework. The beginning half of the model is kept the same
in which a spatial feature extraction process is performed with a Conv1D layer, and max pooling
is applied to reduce dimensions. The sequential data is passed as input to the BILSTM network,
learning bidirectional interactions in the sequence.

3.5.2 Integration of Self-Attention Mechanism

Instead of the BiLSTM outputs being fed directly to the classification layer, an attention
mechanism is employed. The self-attention module is responsible for calculating weights for
changing features dynamically to allow the network to focus on the most essential features and
sidestep trivial features. In the attention mechanism, every hidden state h¢ is provided an
importance score. The attention score is calculated as:

e, = tanh (W, h, + b,) €))

The normalized attention weight is derived with the softmax function:

— _exp(er)
%t = Siew e &

The context vector C is calculated as the weighted sum of all the hidden states:

C=Y,ah, 3)

This way the model is forced to concentrate to the most relevant parts of the sequence and to
improve the accuracy in classification. Attention mechanism empowers the ability to figure out
important feature representations for appropriate classification through a weighted sum of
hidden states. Finally, weighted feature maps are sent from the previous layers to the fully
connected layers, and the class label is estimated by a softmax activation function. Such an
approach adds more transparency to the model, at the same time letting the model to adaptively



focus on the most contextually relevant chunk of the input. Thus, the model is better able to
handle complex patterns and sequences of varying lengths.

3.5.3 Performance Benefits of Attention Mechanism

The incorporation of the attention mechanism is anticipated to be a game changer, as the
extracted salient patterns will contain all necessary information without any artifacts, and thus
model performance can be expected to attain unprecedented heights. Traditional CNN-BiLSTM
models such as the baseline in this paper consider all hidden states equally, whereas attention
mechanism allows model to selectively focus on part of input sequence where they are most
informative. It improves the classification accuracy as well as the model's generalization over a
variety of data distributions. In addition, even though it comes at a cost of more computation,
the attention-augmented model is able to optimize the usage of features that using deeper
networks may be unnecessary.

3.6 Comparative Model Training

In other to present a fair comparison between CNN-BIiLSTM with and without the use of
attention, we have trained both models under the same setting. This balanced dataset includes
450 samples (150 per class) and is used for training both models. The hyperparameters were
identical the learning rates, batch sizes and optimizers remained consistent across experiments
as was the use of categorical cross-entropy as an objective loss function. For training both
models Adam optimizer with adaptive learning rate was used and classification accuracy is
measured using accuracy, precision, recall and F1-score. In the former (sans attention), CNN-
BiLSTM, we fed this abstract representation into a BILSTM for classification, focusing on the
fact that CNNs were extracting features sequentially; in contrast, in the latter (of the two) version
with an attention mechanism added, CNN-BiLSTM attentive module allowed models to learn
which emphasized features are important at different times from each other clearly. This paper
therefore aims to answer whether attention improves the classification of thyroid disease and
what is its contribution to total performance, keeping all other experimental parameters constant
besides the one concerning the implementation of an attention mechanism.

4 Results and Discussion

In this section, we will provide the experimental results of thyroid disease classification using
two deep learning models. This consists of comparing a base CNN-BiLSTM to an attention-
added version of same model. To make the comparison fair and nonbiased, both models were
trained and tested on the same well-balanced dataset. These metrics would help us decide the
performance of our model, we applied critical evaluation metrics such as training and validation
accuracy, loss measures, precision, recall, F1-score.

4.1 Performance Comparison
4.1.1 CNN-BiLSTM Model (Without Attention Mechanism)

The baseline CNN-BiLSTM model was first trained without the use of an attention mechanism.
Convolutional layers were employed to learn spatial features, and Bidirectional LSTM layers
were responsible for extracting temporal relationships in the data. Both training and validation
accuracies consistently increased during the course of training, and early stopping was



implemented once a satisfactory validation accuracy had been achieved. The model showed
excellent performance in all three classes, with the following results being noted:

e Class 1 (Normal): The model's training accuracy was at 94.78%, while the validation
accuracy was at 97.14%.

e C(Class 2 (Hyperthyroid): Training accuracy was 93.70%, and the model had perfect
validation accuracy of 100%.

e  Class 3 (Hypothyroid): Training accuracy was 97.46%, with validation accuracy of 96.88%.

Plots for training and validation accuracy vs epochs are given below: Fig 3 shows Training
Performance of CNN-BIiLSTM Without Attention, Fig 4 shows Validation Performance of CNN-BiLSTM
Without Attention and Fig 5 shows Confusion Matrix of CNN-BiLSTM Without Attention.
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The classification report for without attention mechanism is presented in Table 1

Table 1. Classification Report (Without Attention Mechanism)

Class Precision Recall F1-score
Normal 0.97 0.97 0.97
Hyperthyroid 0.96 1.00 0.98
Hypothyroid 1.00 0.97 0.98
Accuracy 0.98

4.1.2 CNN-BiLSTM Model (With Attention Mechanism)

We had enhanced the CNN-BiLSTM model in the second phase by adding an attention
mechanism to deduce important temporal patterns within time-series data effectively. The
additional attention layer after the BILSTM units helps the model to focus on informative time
steps and hence enables it to capture long range dependencies better. Besides a focal loss
function was used to alleviate the impact of class imbalance, this reduces importance to each
class during training and drives learning more evenly over all classes. With these modifications,

the model produced the following performance metrics:

Overall Accuracy: The model got a training accuracy of 91.48% and a validation accuracy of

93.75%.



Loss Metrics: The training loss of the model was 0.4307, and the validation loss was measured
at 0.4354, which demonstrates excellent learning performance and capacity to generalize to new,
unseen data.

Plot for Per-Class Accuracy Graph is provided below:

Fig. 6. Shows the Training and Validation Performance of CNN-BiLSTM without Attention
and Fig. 7. Shows the Confusion Matrix of CNN-BiLSTM with Attention.
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The classification report for with attention mechanism is presented in Table 2

Table 2. Classification Report (With Attention Mechanism)

Class Precision Recall F1-score
Normal 0.85 1.00 0.92
Hyperthyroid 0.95 0.91 0.93
Hypothyroid 1.00 0.84 0.92
Accuracy 0.92

5 Conclusion

Here, a hybrid CNN-BiLSTM model was created to perform thyroid disease classification, both
with and without using an attention mechanism. The base model without the attention
mechanism showed strong performance, with a training accuracy of 94.78% for the "Normal"
class, 93.70% for "Hyperthyroid," and 97.46% for "Hypothyroid." The validation accuracies
were equally strong at 97.14% for "Normal," 100% for "Hyperthyroid," and 96.88% for
"Hypothyroid." These results show the strong ability of the model to correctly classify thyroid
disease classes and generalize effectively to unseen instances.

Upon including the attention mechanism, the model has attained a training accuracy which is
91.48% and a validation accuracy of 93.75%. The addition of attention enabled the model in
focusing the most important features in the data, which may make it more interpretable and
better at capturing the most important patterns necessary for thyroid disease classification.

Both models successfully handled class imbalance through methods like SMOTE, proving the
efficacy of hybrid CNN-BILSTM models in offering accurate and reliable thyroid disease
classification.
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