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Abstract. In an interconnection network, the structural relationship between addresses of 

nodes often resonates with the network's topology, directing how data is transferred 

between nodes. This type of structural relationship is essential for efficient routing and 

communication. In this paper, we studied the structural relationship between the addresses 

of nodes and vectors of a hypercube interconnection network. We found that the 

relationship between the addresses works beautifully as it works in the vector analysis of 

the nodes of the hypercube; this is an isomorphic behavior of the interconnection network. 

Keywords: Hypercube (HC), Structural Relationship, Hamming Distance, Binary 

Relation, Tripod, Address of Nodes  

1 Introduction 

In Parallel and Distributed Systems, an interconnection network is a topology of interconnected 

processing elements called nodes/processors. It is sketched by a structure, where each node is 

connected to exactly n other nodes based on the unique addressing of the nodes. The structure 

is usually used to expedite communication and data exchange between nodes/processors [1] [2]. 

The addresses of nodes can affect the performance of the interconnection network. The 

structural relationships of nodes play an important role in simplifying routing, improving 

efficiency, and reducing latency [3]. In this paper, we explored the structural relationship 

between the nodes of a Hypercube (HC) interconnection network [4]. The addressing of the 

nodes of a hypercube is a power set of 2n, which can be represented by binary numbers; 

therefore, it is called the binary complete set of a hypercube. Assuming that the nodes are in 

Hamming distance, and finding the characteristics of addressing with Hamming distance 

between the nodes of a hypercube. Each node has tripod connectivity with degree 3, having a 

Hamming distance [19]. We will find the structural relation between the adjacency nodes of the 

hypercube so that binary relations between the nodes can be derived.  A binary relation 

determines the connection or relationship between the nodes/processors inside the 

interconnection network. The relationship can be represented as an ordered pair (a, b), where a 

and b represent nodes. We assumed that a node is connected to itself, but the connection of a 

node to itself does not make any difference in the binary relations of tripod connectivity. A 

tripod connectivity has three connections between four nodes, with the Hamming distance, or 
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we can say that the tripod connectivity between nodes is the Hamming distance in binary 

relations. The Hamming distance of the addressing of connected nodes behaves as it holds 

binary relations between nodes on the counterpart of the binary relation of addressing nodes. 

We have used binary relation properties (reflexive, symmetric, antisymmetric, and transitive 

relations) to study the relations between the nodes of the hypercube and found that the binary 

relations of the addressing nodes and the binary relations of vectors of the connectivity matrix 

remain the same [15]. Finally, to verify and validate the study, the tautological statements have 

been used, which play an important role in the study of the binary relation of an interconnection 

network. The tautology is a well-defined formula and rules of inference, where the logical 

statement may be either true or false [21]. The tautology is based on mathematical logical 

operations.  

 

 

 

 

 

 

 

Fig. 1. Hypercube with degree 3. 

The binary addresses in the above hypercube in Fig 1 are defined as 000, 001, 010,
011, 100, 101, 110, 111. 

2 Connectivity Matrix of the Hypercube  

The connectivity matrix is used to show the interconnections between the nodes of an 

interconnection network. Each row and column (basically, cell [𝑖, 𝑗]) represents a potential 

interconnection between two or more nodes. The hypercube connectivity matrix is defined as: 

𝐶𝑀𝑖𝑗 = {
1, if connection exists between those two nodes
0, if no connection                                                        

                                                  (1) 

The following is the hypercube connectivity matrix based on Fig 1: 

Table 1. The Hypercube Connectivity Matrix. 

 000 001 010 011 100 101 110 111 

000 0 1 1 0 1 0 0 0 

001 1 0 0 1 0 1 0 0 

010 1 0 0 1 0 0 1 0 
011 0 1 1 0 0 0 0 1 

100 1 0 0 0 0 1 1 0 

110 111 

010 011 

001 000 

100 101 



 

101 0 1 0 0 1 0 0 1 

110 0 0 1 0 1 1 0 0 
111 0 0 0 1 0 1 1 0 

 

Let 𝑛 be 3 in the connectivity matrix of a Hypercube interconnection network. In Fig 1, there 

are 8 tripods and modules; all modules in the hypercube have the modular properties called 

modularity. Below lemma that proves the modular properties of the tripod of hypercube 

interconnection networks. 

Lemma 1: A tripod is a modular lattice in the addressing of the nodes in the Hypercube for 

binary relations. 

Proof: Let’s define a tripod as a modular lattice in the following manner:  

𝑐 ≤ 𝑎) ⇒ (𝑎 ∧ (𝑏 ∨ 𝑐)) ⇔ ((𝑎 ∧ 𝑏) ∨ 𝑐)         (2) 

Considering the addressing value of the hypercube from Fig 1, for the tripod node address 000. 

(100 ⇒ 001) ⇒ (001 ∧ (010 ∨ 100)) ⇔ ((001 ∧ 010) ∨ 100)      (3) 

Hence, above (2) shows the tautology that holds the modularity in the tripod of the addressing 

of the hypercube for binary relations. In the same fashion, we can find the tautology for other 

tripods, and they also hold modularity in the tripods of the hypercube. 

Lemma 2: The degree of each node in an n-dimensional hypercube is n neighbours, where n is 

3. 

Proof: Let us consider the addresses of nodes in Fig 1, where we flip every n bits in the binary 

address. After each flip, a unique neighbor is found as a result, which differs in exactly one bit. 

In the hypercube, node 000 has exactly three other neighbors, namely 001, 010, and 100, which 

are tripod members of the current node. Hence, each node has a degree n corresponding to 3 

neighbors in 3 dimensions and one neighbor per dimension. 

Lemma 3: In an n-dimensional hypercube interconnection network, the total number of edges 

is 𝑛 ∗ 2𝑛−1 

Proof: The addressing of the nodes of the hypercube is the power set of 2n, each node has n 

edges, as elaborated in Lemma 2. Now the total sum of edge degree is 2*2n, since edges are 

shared between 2 nodes, so that the edges of the Hypercube (HC) will be:  

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 =
𝑛∗2𝑛

2
= 𝑛 ∗ 2𝑛−1                                                                (4) 

From Lemma 2, considering 𝑛 = 3 and the total number of nodes of the hypercube is 8 nodes, 

then in this case:  

 

𝑇ℎ𝑒 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑒𝑑𝑔𝑒𝑠 = 𝑛 ∗ 2𝑛−1                                                                              (5) 

 3 ∗ 23−1 = 12 



 

The total number of edges in Fig 1 is 12, which can also be validated through Table 1. Hence, 

the lemma holds. 

3 Structural Relationship of the vectors and addresses of nodes 

Table 2 shows the structural relationships and transition matrix between the connectivity of 

addresses of nodes of an Interconnection Network, where we represent relationships with the 

help of properties of binary relations. 

Table 2. Representation of the transition matrix for a binary relation. 

 000 001 010 011 100 101 110 111 

000 <000, 

000> 

<000, 

001> 

1 

<000, 

010> 

1 

<000, 

011> 

 

<000, 

100> 

1 

<000, 

101> 

 

<000, 

110> 

 

<000, 

111> 

 
001 <001, 

000> 

1 

<001, 

001> 

 

<001, 

010> 

 

<001, 

011> 

1 

<001, 

100> 

 

<001, 

101> 

1 

<001, 

110> 

 

<001, 

111> 

 

010 <010, 
000> 

1 

<010, 
001> 

 

<010, 
010> 

 

<010, 
011> 

1 

<010, 
100> 

 

<010, 
101> 

 

<010, 
110> 

1 

<010, 
111> 

 

011 <011, 

000> 
 

<011, 

001> 
1 

<011, 

010> 
1 

<011, 

011> 
 

<011, 

100> 
 

<011, 

101> 
 

110 <011, 

111> 
1 

100 <100, 

000> 
1 

<100, 

001> 
 

<100, 

010> 
 

<100, 

011> 
 

<100, 

100> 
 

<100, 

101> 
1 

<100, 

110> 
1 

<100, 

111> 
 

101 <101, 

000> 

 

<101, 

001> 

1 

<101, 

010> 

 

<101, 

011> 

 

<101, 

100> 

1 

<101, 

101> 

 

<101, 

110> 

 

<101, 

111> 

1 

110 <110, 

000> 

 

<110, 

001> 

 

<110, 

010> 

1 

<110, 

011> 

 

<110, 

100> 

1 

<110, 

101> 

 

<110, 

110> 

 

<110, 

111> 

1 

111 <111, 
000> 

 

<111, 
001> 

 

<111, 
010> 

 

<111, 
011> 

1 

<111, 
100> 

 

<111, 
101> 

1 

<111, 
110> 

1 

<111, 
111> 

 

 

Lemma 4: The shortest path between two nodes (e.g. 000,001) in a hypercube interconnection 

network is equal to the Hamming distance between the addresses of the nodes, and it follows 

the symmetric property. 

Proof: By considering the flipping of binary bits from Lemma 2, let's make the address of node 

a into the address of node b and vice versa, at the hamming distance we flip all bits, here every 

flip is one link. This conversion is nothing but a symmetrical relation that follows the rules of 

equality. That is if 𝑎 = 𝑏 𝑡ℎ𝑒𝑛 𝑏 = 𝑎.  

Example 1 

(000 ∧ 001) →  (001 ∧ 000) = 111 (Tautology) 



 

Here we get a tautology that verifies the symmetrical property. Hence, Lemma holds. The binary 

relation properties are elaborated in the sections below.  

3.1 Reflexive relationship 

A reflexive relation is a type of binary relation on a set where every element in the set is related 

to itself [10]. This means that if a hypercube node is connected to itself or a self-loop connection 

is called a reflexive node, it is a fundamental property of graph theory [11]. A binary relation R 

in a set is reflexive if, for every 𝑎 ∈ 𝑋,  𝑎 𝑅 𝑎, < 𝑎, 𝑎 > that is: 

𝑋 ⟶ (𝑎 𝑅 𝑎) or  𝑋 ⟶ (𝑎 ∧  𝑎)       (6) 

Example 2 

001 ⇒ (001 ∧  001) = 111       (7) 

Employing implication get 111, which is a tautology; hence, it holds that the reflexive property. 

3.2 Symmetrical relationship 

In a hypercube interconnection network "Symmetric" refers to those nodes that have the same 

connectivity ornament, as all other nodes in the network, meaning it is connected to the same 

number of neighbouring nodes with identical links characteristics, essentially displaying a  

stabilized and consistent structure throughout the network, essentially, no single node has a 

different connection ornament compared to others [5] [8] [9]. A relation 𝑅 in a set 𝑋  is 

symmetric if, for every 𝑎 and 𝑏 in 𝑋, whenever 𝑎 𝑅 𝑏, then 𝑏 𝑅 𝑎. That is:  

(𝑎 𝑅 𝑏) → 𝑏 𝑅 𝑎) or  (𝑎 ∧ 𝑏) → (𝑏 ∧ 𝑎)      (8) 

Example 3 

(10010100 ∧ 10010010) →  (10010010 ∧ 10010100) = 11111111 (Tautology) (9) 

The symmetric property also holds for the addresses of nodes in the Interconnection Network. 

(001 ∧ 010) →  (010 ∧ 001) = 111 (Tautology)     (10) 

Lemma 5: The binary relation of addressing of the tripods in Hamming distance and the binary 

relation of vectors of the connectivity matrix remain the same.  

Proof: The addressing of nodes is the power set of 2𝑛 of 𝑛 nodes. Here 𝑛 it is 3, so each node 

has three neighbours, and the neighbours of each node are in Hamming distance; therefore, we 

call each node a tripod, such as node 000 has three neighbours, namely 001, 010, 100, node 

001 has three neighbours 000, 011, 101, node 010 has three neighbours 000, 011, 110, node 

011 has three neighbours 001, 010, 111, node 100 has three neighbours 000, 101, 110, node 

101 has three neighbours 001, 100, 111, node 110 has three neighbours 010, 100,111 and 

node 111 has three neighbours 011, 101, 110. 



 

We can say that each node is connected to 𝑛 neighbours, and the address of the node is a binary 

complete set. We successively derived the Hamming distance of three bits of 𝑛 numbers, and 

we found that the first set of addresses has a Hamming distance of four elements in the set 

𝑒. 𝑔. {000, 001, 010, 100}. The second step is to find out the Hamming distance of the second 

element of the set 001 as 000, 011, 101, etc., and so on. We have the following set without 

repeating the previous nodes, and we can write the nodes with the Hamming distance. 

Table 3: Successive Hamming distance. 

1 2 3 4 5 6 7 

000 001 010 100 011 101 110 
001 011 011 101 111 111 111 

010 101 110 110    

100       

 

From Table 3, We can derive the Hamming distance by excluding 111 from the sets 5, 6, and 7 

as 011, 101, and 110. Here, in each node, there is a difference of exactly 1 bit. The symmetrical 

binary relation in section 3.2 of example 3, it is proving that the vector connectivity, i.e., a 𝑅 𝑏 

and b 𝑅 𝑎, is similar to the relation in the addresses of nodes in the Interconnection Network. 

Both vectors of the hypercube and the addressing of nodes of the hypercube show tautology; 

hence, the lemma holds. 

3.2.1 Symmetry in topology 

In network topology [14], Symmetry refers to the availability of self-similar structures or 

ornaments inside a network where predictable nodes and edges are functionally equivalent 

because of shared structural aspects. The overall structure of the hypercube is symmetrical, 

which allows for potent routing and data transfer due to certain connectivity ornaments as shown 

in Table 1. 

3.2.2. Importance of symmetry in an interconnection network [9] 

The Symmetrical networks facilitate simpler routing algorithms for better load balancing and 

improved fault catholicity. The importance of symmetry in an interconnection network is given 

below: 

• Uniform Connectivity: All node has the same degree (number of connections) to 

the other nodes. 

• No positions are special: No node has a particular induction compared to others. 

• Simplified routing:  With symmetric nodes, finding the shorter path between any 

two nodes becomes easier due to the predictable structure. 

• Productive load balancing: Symmetrical networks can disseminate workload 

evenly across nodes, improving overall performance. 

• Enhanced Fault catholicity: If any node fails, the network can often re-route data 

through other nodes because of the steady connectivity. 

 

 



 

3.3 Antisymmetric relationship 

Anti-symmetric means relating to a relation that implies equality of any two quantities for which 

it holds in both directions. It means the communication between 𝑎 and 𝑏  holds in both 

directions [16]. 

Let 𝑎 = 001 and 𝑏 = 001 be binary addresses of two nodes, then antisymmetric represented 

as: 

 (𝑎 ∧  𝑏) ∧ (𝑏 ∧  𝑎) ⇒ (𝑎 = 𝑦)       (11) 

In the context of the Hamming distance between 000 𝑎𝑛𝑑 001  there is exactly one bit 

difference in the addressing of nodes. 

3.4 Transitive relationship 

In an interconnection network, a "transitive" refers to the addresses of the node that, if connected 

to another node which is further connected to a third node, implies a connection between the 

first and third node as well [6] [7] [17]. The addresses of the node 000, 001 & 100 are transitive 

means the tripod is transitive.  

Let 𝑎, 𝑏, and 𝑐 are the nodes of a Hypercube then transitivity can be defined as: 

(𝑎 ∧ 𝑏) ∧ (𝑏 ∧ 𝑐) ⇒ (𝑎 ∧ 𝑐)       (12) 

The above explanation shows that the tripod is a lattice because the architecture shows the 

properties of a binary relation. 

• The tripods are modular lattices due to the properties of reflexivity, symmetry & 

transitivity holding. 

• The tripods pursue the properties of an equivalence relation because the properties of 

reflexivity, Anti-symmetry, and transitivity hold. 

• The property of connex is also pursued by tripods. 

The substantiation of the binary relation between vectors of the connectivity matrix and 

addresses of nodes proves that the architecture contains properties of a modular lattice [12] [13].  

4 Conclusion 

In this study, the connectivity of nodes is shown in the connectivity matrix of the hypercube. 

We found that the binary relation of addressing of the tripod in Hamming distance and the binary 

relation of vectors of the connectivity matrix remain the same. The tripod is a modular lattice in 

the addressing of hypercube and binary relations have been proven by applying binary 

operations, and proves that the shortest path between two nodes in a hypercube is equal to the 

Hamming distance between the addresses of the nodes. 

 

 



 

5 Future Scope 

This study will allow us to investigate the reliability of the system in convoluted computational 

environments and help to develop competent, cost-effective algorithms. In the future, with the 

help of this study and by embedding various AI methods and machine learning applications, the 

parallel execution of computation can be predicted earlier, which will efficiently reduce the 

processing and communication complexities. Various new interconnection network properties 

are expected, which may be useful for further research. 
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