

Real-Time Movie Recommendation System using

Locality-Sensitive Hashing

Baramkula Vishnu Pavan1, D V S Mihir2, Yogen Aralaguppi3 and Gayathri Ramasamy4*
{ bl.en.u4cse22108@bl.students.amrita.edu1, bl.en.u4cse22110@bl.students.amrita.edu2,

bl.en.u4cse22168@bl.students.amrita.edu3, gayathri_r@bl.amrita.edu4 }

Department of Computer Science and Engineering, Amrita School of Computing, Amrita Vishwa

Vidyapeetham, Bengaluru, Karnataka, India1, 2, 3, 4

Abstract. The increasing volume of online movie content and the need to categorize and

rate them requires an efficient recommendation system. To achieve this, Locality-Sensitive

Hashing (LSH) and fuzzy matching (FM) are used in the recommendation system. The

method of LSH is described, focusing on both user-based and item-based approaches. To

achieve this, LSH schemes MinHash and SimHash are used, which use cosine similarity

and resemblance similarity to compare data elements. Moreover, fuzzy matching

techniques are used to accommodate the uncertainty in user ratings and preferences which

improves the accuracy of recommendations. The movie recommendation system is trained

on a real-world dataset. LSH and fuzzy matching algorithm have their advantages over

other methods such as KNN and therefore are ideal for building real-time recommendation

systems that can effectively address the challenges of big data and user preference

dynamics.

Keywords: Locality-Sensitive Hashing (LSH), Movie Recommendation System,

Collaborative Filtering, fuzzy matching, MinHash,SimHash, cosine similarity,

resemblance similarity, user preference dynamics, collaborative filtering, KNN alternative.

1 Introduction

There is a great demand for personalized recommendations, especially in areas like movies and

e-commerce websites. A recommendation system is used to meet these demands, which usually

uses KNN. However, there are several problems faced by recommendation systems such as the

cold start problem, data sparsity, and the over-specialization problem. There exists a need to

create a better recommendation system. We achieve this using LSH or Locality-Sensitive

Hashing combined with fuzzy matching.

LSH offers a highly efficient approach to approximate nearest neighbor search, a crucial step in

Collaborative Filtering algorithms, which can be categorized into user-based and item-based.

By mapping similar items or users to the same hash buckets, LSH drastically reduces the search

space in comparison to KNN. We also see various LSH schemes such as SimHash and MinHash

and their applications in recommendation systems. LSH has the increased benefit of privacy

because the user data can be anatomized and processed through hash functions without revealing

any sensitive information.

Furthermore, to handle the uncertainties in user ratings and preferences, we try to incorporate

fuzzy matching techniques into our movie recommendation system. The project is developed

using Java.

ICITSM-Part I 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2357924

mailto:bl.en.u4cse22108@bl.students.amrita.edu1
mailto:bl.en.u4cse22110@bl.students.amrita.edu2
mailto:bl.en.u4cse22168@bl.students.amrita.edu3
mailto:gayathri_r@bl.amrita.edu4

2 Related works

Qi et al. [1] discuss perfecting the trade-off between data privacy and recommendation accuracy

without violating the Quality of Service. It improves privacy by creating less sensitive user

indices for neighbor searches while still delivering accurate and tailored suggestions.

Ayeteki et al. [2] introduce the concept of LSH to address scalability issues observed in

neighborhood-based collaborative filtering in real-time applications. LSH effectively decreases

the search space while allowing for real-time processing, further improving speed. Positive

outlooks include better real-time efficiency, improved scalability with bigger datasets, and more

consistent recommendation accuracy. Limitations include parameter sensitivity, the impact of

data sparsity, and the possibility of overlooking recommendation novelty and diversity.

Anwar et al. [3] dives into a comparison between two recommendation algorithms that use CF

and KNN, addressing cold start problems and sparsity issues in recommender systems, followed

by a detailed analysis. Upon addressing these problems, [3] offers selection recommendations

validated by experiments on the MovieTrust dataset.

Li et al. [4] talk about IKNN, an enhanced version of the KNN algorithm, and how

recommendation systems using this algorithm tend to reduce data sparsity issues. IKNN offers

better precision and accuracy in its recommendation process by using global effect factors and

compression, validated by several experiments. Although it's easy to use and interpretable, it's

deficient in scalability, and its evaluation is dataset-specific.

Hu et al. [5] suggest privacy-protecting methods for federated recommendation systems.

Scalability and efficiency for similarity computing in large-scale systems are guaranteed when

employing LSH. However, it lacks emphasis on data freshness in large-scale systems.

Lin et al. [6] explain the LSH methodology based on the collaborative recommendation method

responsible for AI-driven recommender systems. Both privacy protection and calculation

efficiency can be achieved. [6] mainly uses DisRecLSH, a type of LSH, and executes it in three

phases: feature extraction, user indexing, and online recommendation. It enhances

computational efficiency and provides collaboration among distributed data sources. However,

issues might arise for sparse user-item interaction.

Farahani et al. [7] use AUPRSLA, a method for adaptive personalized recommender systems.

It uses learning automata for accurate recommendations, capturing user preferences. However,

this might impact accuracy due to reliability and completeness issues. Additionally, scalability

issues arise with an increase in new data, suggesting the need for parallel or distributed

computing.

Paleti et al. [8] introduce an ALS approach for mitigating the cold start problem in recommender

systems, combining Louvain’s algorithm with alternating square factorization for effective

recommendations. It helped improve prediction accuracy by reducing errors between actual and

predicted data. However, it might result in poor performance due to missing item interactions,

suggesting a need for collaborative filtering methods. Complexity can increase with an

increasing number of users.

Kumar et al. [9] use the DRWMR approach to enhance recommender systems by tackling data

sparsity and the cold start problem through a two-phase process: neighbor formation and

recommendation. DRWMR efficiently enhances recommendation precision and accuracy

compared to other methods. Challenges remain with increasing items and data.

Xu et al. [10] introduce an enhanced collaborative recommendation algorithm combining

locality-sensitive hashing (LSH) and matrix factorization to improve efficiency and save user

privacy. [10] use LSH for neighbor search, which leads to privacy by using hash values instead

of plain data. It also predicts missing ratings to address data sparsity and uses neighborhood-

based collaborative filtering methods. The advantage of using the LSH method is that it speeds

up the neighbor search and results in faster recommendations and increased accuracy.

Shrivastava and Li [11] provide a comprehensive analysis of MinHash and SimHash and states

why MinHash reigns supreme in neighbor search in binary data, especially in search

applications. It demonstrates the higher retrieval accuracy and efficiency of MinHash over

SimHash, particularly in high-similarity regions.

Heidari et al. [12] explores recommender systems and categorizes them into content-based and

collaborative filtering with their respective challenges and advantages. Matrix Factorization

(MF), a model-based method, ensures accuracy but still faces challenges such as the cold start

and sparsity. Existing methods lack addressing long-distance dependencies in data sequences.

[12] propose using a deep learning-based method addressing sparsity and cold-start problems

by integrating side information using self-attention with matrix factorization. The complexity

of deep learning-based methods might be difficult in real-time practical implementation,

specifically in resource-constrained environments.

Harper et al. [13] The MovieLens dataset have been downloaded more than 140,000 times and

have been cited in more than 7,500 scholarly articles MovieLens datasets are widely accepted

as valid and reliable resources for scholarly research. Each dataset captures more than 17 years

of data, allowing findings to include long-term trends and patterns in user behavior and

recommendations. Within the context of recommendation systems, the datasets can be used to

solve problems that are of interest to data scientists and data engineers alike, such as data

summarization, discovery of patterns and relationships, and data visualization and exploration.

As with all human assessments, ratings on movies are inherently subjective, which makes the

MovieLens datasets ideal for the evaluation and enhancement of technologies that personalize.

The datasets have had a large impact on teaching, research, and industry, including the creation

of high-quality tools for teaching and learning, software systems, and commercial ventures

(start-ups).

Mao et al. [14] use fuzzy content matching to improve recommendation accuracy. It models

user ratings and preferences using fuzzy numbers to handle uncertainty in user ratings,

establishes relationships between item descriptors to help complete user profiles, and shows

better performance on Yelp and MovieLens datasets.

Jahanvi et al. [15] work compares Convolutional Neural Networks (CNNs) for the classification

of skin cancer based on images from the HAM10000 dataset. It compares custom CNN and

MobileNetV2 architectures with various optimization algorithms (Adam, Adagrad, SGD,

Adadelta). Experiments indicate that MobileNetV2 with SGD has the highest accuracy, and this

demonstrates deep learning's ability to enhance dermatological diagnosis.

Murthy and Kavitha [16] studies on secure fuzzy keyword search on encrypted cloud data has

been investigated recently using cryptographic indexing, encrypted data structures, similarity

measures, and verifiability mechanisms for maintaining privacy. The research considers

efficient search improvement, multi-keyword query support, and addressing security issues. The

systems to be proposed need to achieve tradeoffs between security and performance with

supporting accurate privacy-preserving search over sensitive information stored in clouds.

Ramasamy et al. [17] provide a framework for pest identification in the Coconut Leaf Dataset

using cost-sensitive learning, multi-class classification, and under sampling to address class

imbalances. It uses ResNet-50 for the accurate detection of pests and evaluates the performance

with metrics such as accuracy, precision, and F1 score. Future research should be on advanced

architectures, ensemble learning, and real-world validation for enhanced pest identification in

agriculture.

Shaik et al. [18] explore using deep learning models such as EfficientNetB2 and ResNet for the

early detection of Alzheimer’s disease based on MRI scans. SMOTE and data augmentation

helped to handle class imbalance to improve accuracy. The paper concludes that, in complexity

and performance, EfficientNetB2 is the most efficient model and recommends more research

into larger, uniform datasets that could generalize these methods in neurodegenerative disorder

diagnosis.

3 Methodology

The movie recommendation system developed in this paper combines features of both

collaborative filtering and locality-sensitive hashing algorithms to provide accurate movie

recommendations with minimal search time. The process starts with data loading and data pre-

processing which involves transforming and cleaning the data. The data set containing the user

IDs, movie IDs, and the corresponding rating given is loaded from the CSV files and is stored

in the Hashmap. Specifically, it makes it easier to review data and changes as the need arises in

the standard format. Then the movie names are read from the other CSV file into another

HashMap so that the movie names can be quickly accessed by their IDs.

MovieLens dataset is a complete set of user ratings and movie attributes and descriptions needed

to create a recommendation system. Containing more than 20 million ratings from 138000 users

on 27000 movies, it represents a large data set that can be used to develop efficient and scalable

recommendation algorithms.

The dataset comprises two main components:

ratings.csv: It contains user-movie ratings with the fields: unique user and movie ids, rating

given by the user id and the time the rating was given in Unix timestamp format. The ratings

provide the foundation for building the user-item matrix that is used in collaborative filtering

approaches.

movies.csv: Here, each movie is identified by the unique ID, the movie title, and the list of

genres separated by commas. In this way, using movie IDs for further referencing and matching

the IDs with movie titles and genres makes it easier for the user to navigate the recommendations

in the context of movie titles.

Key characteristics of the dataset include:

Sparsity: Because the number of movies is so large and the rating data is dense which means

that users generally rate only a small subset of the total set of movies. The sparsity reduces the

amount of empty space in the matrix and improves both storage and computation.

Temporal Aspect: Despite the fact that timestamps enable time-related analysis and

recommendation strategies called temporal strategies, including trends or seasonal

recommendations, this feature is not employed in our current work. But it opens the possibilities

for the improvement of the recommendation systems in the future.

MoviesLens data set was used to generate this user-item matrix. The 2-tuple or matrix is a user-

item matrix where the cell represents what value user U has given to item i, thus allowing us to

make a finer analysis of how users interact with the items.

The basis of the recommendation system is the sparse user-item matrix based on previous users'

interactions with items. This matrix focuses more on the users, as it reflects on the ratings given

by the users with respect to the movies. While generating recommendations, the first step

involves creating LSH signatures for the users.

Computing similarities for high-dimensional data is an optimization problem, here LSH is used

as an optimal method to estimate similarities between the two data points. In the given user-

item matrix, multiple hash functions are applied to derive totally different signatures for various

users so that the ratings of similar users can be distinguished.

For time series data, different approaches for address matching are accounted for variations and

noise in the user entry. This means that irrespective of the number of characters the user fails to

type, or the typo mistakes the user may make in a movie title, the database can accurately

highlight the right movie. After selecting a movie, the system finds the other individuals who

have watched the same movie and rates it above a given rating point, after which it gives the

user the list of recommended movies based on the individual's preferences.

Recommendations derived are based on the data of movies other users with similar interests to

the given movie liked. From these ratings, the system determines scores of corresponding

movies to help in sorting and generating the preferable recommendations. This form of

collaborative filtering works on the following principle:

• \\ If two users A and B both liked the same movie, A would like what B likes, or in this

case, A would rate other movies that B rated highly.

Finally, the obtained results are presented to the user who receives the list of movies that could

be considered relevant for him.

3.1 System Architecture

The system architecture is depicted in fig 1:

Fig. 1. Schematic Flow.

3.1.1 Data Loading and Preprocessing:

The most effective solution to read the data input is to use the CSVReader from the OpenCSV

library to read the ratings and the movie titles from the CSV files. The actual ratings are stored

in a HashMap along with the unique ID for the user and the IDs of the movie it relates to; the

keys are arrays containing the unique user ID for each entry and the actual ratings are the value

that make it easier to manipulate the data for access. Movies for a catalogue are stored in a

HashMap format improving the retrieval of a specific movie name given the movie ID.

3.1.2 User-Item Matrix:

A 2-dimensional array is used to capture the user ratings on movies which is in the form of a

sparse matrix. It consists of a cross-tabulation with the users as the first dimension and movies

as the second dimension (where the latter highlights the ratings that different users have assigned

to different movies). While building the matrix, across the rows of the matrix, it first becomes

a nested HashMap where the key is a user number and the value is another HashMap where the

keys are the movie number and the value is the rating.

3.1.3 Locality-Sensitive Hashing (LSH):

This is done for each user to create its specific set of different LSH signatures with respect to

each hash function applied to the user-item matrix in order to increase the likelihood of collision

between similar users or items. These signatures help in identifying other similar-minded users

or those who share the same preferences within a short span of time. These signatures are stored

in HashMap having the user ID as the keys and the list of hash values as the value of that key.

3.1.4 Fuzzy Matching

As for the search terms for movie titles, the Fuzzy Search library is used as a tool for handling

minor changes in the titles. This is helpful to search for a movie and connect it to the prospective

listener even in the case when entering of the name is incorrect or contains only a part of it.

Another class named FuzzyMatcher is added, which is the main body to find out the optimal

match for the given input and to do the main fuzzy matching.

3.1.5 Recommendation Engine

In the event that a specific movie fades from the memory of the system at the fuzzy matching

stage of the system, then highly rated users who have seeded this specific picture are also found.

After that, it gathers a list containing the movies that these users liked and calculates similarity

based on the provided ratings.

If there are many more movies to be rated, the system maintains a pending movies list and

recommends the movies according to the highest value of the score achieved here in the context

of the top recommended movies ranking.

3.2 Framework

The project is implemented in Java and IDE used is Eclipse.

The main libraries and Tools are:

Open CSV: It is used for reading and writing CSV files which simples the process of loading

ratings and movie titles from file.

Fuzzy Wuzzy: This library is used for fuzzy string matching to account for variations and

inaccuracies in user input while searching for movie titles.

Java Collection Framework: Used extensively for data storage and manipulation in particular

through Hash Maps and Array Lists for efficient data retrieval and storage.

It is modular and is extensible in which integration of additional features is easy. The use of

interfaces and abstract classes enables flexibility and reusability of code components. To

visualize through bar graphs and plots, Matplotlib and Seaborn has been used, extracting data

from a Pandas Data frame.

Matplotlib is an important library of data visualization in Python and it is used in various

research and industry applications.

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level

interface for drawing attractive and informative statistical graphics, which can visualize

relationships and distributions and can work well with Pandas data frame.

3.3 LSH Signature Generation

Let u be the set of users. M be the set of Movies. Ru, m be the rating given by user u to movie m.

H be the number of hash functions. su be the LSH signature for user u.

3.3.1 Initialize Signature

For each user u € U initialize their signature su as a list of H elements, each initialized to the

maximum possible integer value:

 𝑠𝑢 = [MAX_INT, MAX_INT, … MAX_INT] (1)

3.3.2 Hashing

For each user u € U and each movie m € M where Ru, m is not null:

Generate a random hash value hu, m using a hash function hi (where i is the index of the hash

function in the signature):

ℎ𝑢, 𝑚 = ℎ𝑖(𝑢, 𝑚) (2)

Update the corresponding element in the signature su with the minimum value between the

current value and the hash value:

𝑠𝑢[𝑖] = 𝑚𝑖𝑛(𝑠𝑢[𝑖], ℎ𝑚,𝑛) (3)

3.3.3 Final Signature

After iterating through all users and movies, the final signature su for each user u will contain

the minimum hash values for all movies rated.

4 Results and Discussion

4.1 Analysis of MovieLens Dataset

The distribution is described as a long tail, where some movies are rated often while many films

are rated rarely because a number of people tend to give limited ratings to them.

Top-rated films: Some movies may have as many as 120,000 ratings, possibly due to being

box office hits or indie movies with a huge following.

Long tail: Most movies receive low ratings, indicating a large population of relatively unknown

or specific films. This distribution implies that a small percentage of content attracts most

consumers, a trend observed in digital platforms.

Power users: A few users rate a large number of movies, with the most active user having rated

over 12,000 movies. These users contribute significantly to the system's data.

Casual users: Many users contribute minimally, with only a few ratings. However, their

contributions collectively affect the overall volume of ratings.

Movie rating: scores provide an idea of a movie's quality.

Fig. 2. Distribution of the rating score in logarithmic scale.

Bimodal distribution: Ratings are distributed with two major humps, indicating two groups of

active and positive respondents as shown in fig 2. The highest frequency is at 4.0, suggesting a

positive skew in ratings. Low extreme ratings of 0.5,1 and 1.5 are less frequent, suggesting users

are reluctant to give the lowest scores unless thoroughly dissatisfied.

4.2 Comparison between LSH and KNN + CF for Recommendation Systems

4.2.1 Scalability and Real-time Performance

KNN and CF suffer from scalability issues as computational complexity increases linearly with

the increase in the size of the dataset, making it impractical for large datasets.

LSH addresses the scalability problem by hashing items into buckets such that similar items

have a higher probability of being mapped to the same bucket, which significantly reduces the

search space.

4.2.2 Accuracy and Diversity

KNN and CF provide accurate recommendations; however, the movies they recommend might

lack diversity. While this might be important in recommendation engines that back up e-

commerce and dating apps, this might hinder a user from discovering new items.

LSH's hashing techniques balance accuracy and diversity, ensuring that a wider variety of items

are recommended across all users, keeping the recommendations fresh and exciting.

4.2.3 Computational Efficiency

CF + KNN involve extensive similarity computation, making them less efficient for real-time

recommendations.

LSH uses hashing techniques to approximate nearest neighbors, reducing the need for extensive

similarity computations, making it more efficient and faster than CF-based algorithms, and thus

more suitable for real-time applications.

4.3. Our Approach

The findings of the effectiveness of the proposed Movie recommendation system appeared quite

encouraging in terms of accuracy and time complexity. The fuzzy matching algorithm was also

apt in operation when interpreting appropriate user inputs with slight errors as it would ensure

the appropriate movie was chosen amidst similar movie titles. This made the use easier because

the input from the users could be in any format and the program would have to adapt to that

format.

The system achieved satisfactory results and guaranteed fast generation of user signatures and

subsequent similarity searches by employing the LSH technique, thus decreasing the real-time

computational process many times compared to conventional approaches. In this manner, the

recommendation process was made very fast but yet very efficient and accurate. It has also been

deduced that the recommendation produced by the system is quite appropriate and in proximity

to the user's tastes, thereby revealing how efficient collaborative filtering is alongside LSH. Fig

3 show the Recommendation for Dune (1984)

From the rating data, the user-item matrix allowed the system to study the user's similarities and

combine the presented ratings to optimize these recommendations. This was ensured as it

allowed for the assessment of user's behavior and their preference in an all-encompassing

manner. However, the recommender system uses a large portion of resources.

In terms of the similarity search, we employed LSH and, thus, reduced the computation time

regarding recommendations. So, it can be concluded it is feasible to provide real-time prediction

and recommendation even if a large amount of data is involved. The output of our approach is

shown in fig 3.

Fig. 3. Recommendation for Dune (1984).

5 Conclusion

In this paper, it is observed that the application of fuzzy matching, collaborative filtering, and

LSH, the recommendation system for the movie has proved to be an effective way of

recommending movies. The applied methodology proved suitable for the management of the

large amount of data, for the integration of the variations of the user input, and for the real-time

context of the recommendations. This type of fuzzy matching used in the system's

recommendation algorithm helped identify movies correctly based on inputs from the users.

The application of the LSH for the similarity searches showed an increase in the operation's

scalability and efficiency where it made it possible to recommend large amounts of data and a

large number of users. The use of the above techniques helped in the formulation of the

recommendation system that was at the same time optimal in terms of accuracy and performance

since it offered appropriate recommendations based on user's behaviors and choices of movies.

References

[1] L. Qi, X. Wang, X. Xu, W. Dou, and S. Li, “Privacy-aware cross platform service

recommendation based on enhanced locality-sensitive hashing,” IEEE Transactions on Network

Science and Engineering,vol. 8, no. 2, pp. 1145–1153, 2020.

[2] A. M. Aytekin and T. Aytekin, “Real-time recommendation with locality sensitive hashing,”

Journal of Intelligent Information Systems, vol. 53, pp. 1–26, 2019.

[3] T. Anwar, V. Uma, M. I. Hussain, and M. Pantula, “Collaborative filtering and knn based

recommendation to overcome cold start and sparsity issues: A comparative analysis,”

Multimedia tools and applications,vol. 81, no. 25, pp. 35693–35711, 2022.

[4] B. Li, S. Wan, H. Xia, and F. Qian, “The research for recommendation system based on

improved knn algorithm,” in 2020 IEEE International Conference on Advances in Electrical

Engineering and Computer Applications (AEECA), pp. 796–798, IEEE, 2020.

[5] H. Hu, G. Dobbie, Z. Salcic, M. Liu, J. Zhang, and X. Zhang, “A locality sensitive hashing-

based approach for federated recommender system,” in 2020 20th IEEE/ACM International

Symposium on Cluster, Cloud and Internet Computing (CCGRID), pp. 836–842, IEEE, 2020.

[6] W. Lin, X. Zhou, L. Sun, L. Qi, S.-B. Tsai, Y. Yang, H. Liu, H. Kou, and L. Kong, “A locality-

sensitive hashing based collaborative recommendation method for responsible ai driven

recommender systems,” IEEE Transactions on Artificial Intelligence, 2024.

[7] M. G. Farahani, J. A. Torkestani, and M. Rahmani, “Dynamic user profile for adaptive

personalized recommender system using learning automata,” Multimedia Tools and

Applications, vol. 83, no. 17, pp. 49905–49925, 2024.

[8] L. Paleti, P. Radha Krishna, and J. Murthy, “Approaching the cold-start problem using

community detection based alternating least square factorization in recommendation systems,”

Evolutionary Intelligence,vol. 14, pp. 835–849, 2021.

[9] S. Kumar, V. K. Chauhan, D. Upadhyay, S. Singh, and P. Tripathi,“Enhancing recommender

systems to alleviate data sparsity and the cold start problem,” in 2023 12th International

Conference on System Modeling & Advancement in Research Trends (SMART), pp. 486–

491,IEEE, 2023.

[10] J. Xu, X. Li, H. Wang, H.-N. Dai, and S. Meng, “Lsh-based collaborative recommendation

method with privacy-preservation,” in 2020 IEEE 13th International Conference on Cloud

Computing (CLOUD), pp. 566–573, IEEE, 2020.

[11] A. Shrivastava and P. Li, “In defense of minhash over simhash,” in Artificial intelligence and

statistics, pp. 886–894, PMLR, 2014.

[12] N. Heidari, P. Moradi, and A. Koochari, “An attention-based deep learning method for solving

the cold-start and sparsity issues of recommender systems,” Knowledge-Based Systems, vol.

256, p. 109835, 2022.

[13] F. M. Harper and J. A. Konstan, “The movielens datasets: History and context,” Acm

transactions on interactive intelligent systems (tiis), vol. 5, no. 4, pp. 1–19, 2015.

[14] M. Mao, J. Lu, G. Zhang, and J. Zhang, “A fuzzy content matching-based e-commerce

recommendation approach,” in 2015 IEEE International Conference on Fuzzy Systems (FUZZ-

IEEE), pp. 1–8, 2015.

[15] S. Murthy and C. Kavitha, “Preserving data privacy in cloud using homomorphic encryption,”

in 2019 3rd International conference on Electronics, Communication and Aerospace Technology

(ICECA), pp. 1131–1135, IEEE, 2019.

[16] M. Jahnavi, K. Haritha, R. Gowtham, and S. M. Rajgopal, “Secure fuzzy keyword search in

cloud computing using levenshtein distance and cryptographic indexing,” in 2024 5th

International Conference on Data Intelligence and Cognitive Informatics (ICDICI), pp. 41–45,

IEEE,2024.

[17] G. Ramasamy, M. Gurupriya, C. S. Vasavi, and B. Karthikeyan, “A cost-sensitive learning

approach with multi-class classification and undersampling techniques for pest identification in

the coconut leaf dataset,” in 2024 3rd International Conference on Artificial Intelligence For

Internet of Things (AIIoT), pp. 1–5, IEEE, May 2024.

[18] B. A. Shaik, M. V. Narayani, A. R. Manikanta, N. R. Durupudi,T. V. Reddy, and G.

Ramaswamy, “Comparative analysis of multi-class classification deep network for mri images

using ml-based augmentation technique,” in Challenges in Information, Communication and

Computing Technology, pp. 443–448, CRC Press, 2025.

