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Abstract. The increasing volume of online movie content and the need to categorize and 

rate them requires an efficient recommendation system. To achieve this, Locality-Sensitive 

Hashing (LSH) and fuzzy matching (FM) are used in the recommendation system. The 

method of LSH is described, focusing on both user-based and item-based approaches. To 

achieve this, LSH schemes MinHash and SimHash are used, which use cosine similarity 

and resemblance similarity to compare data elements. Moreover, fuzzy matching 

techniques are used to accommodate the uncertainty in user ratings and preferences which 

improves the accuracy of recommendations. The movie recommendation system is trained 

on a real-world dataset. LSH and fuzzy matching algorithm have their advantages over 

other methods such as KNN and therefore are ideal for building real-time recommendation 

systems that can effectively address the challenges of big data and user preference 

dynamics. 

Keywords: Locality-Sensitive Hashing (LSH), Movie Recommendation System, 

Collaborative Filtering, fuzzy matching, MinHash,SimHash, cosine similarity, 

resemblance similarity, user preference dynamics, collaborative filtering, KNN alternative. 

1 Introduction 

There is a great demand for personalized recommendations, especially in areas like movies and 

e-commerce websites. A recommendation system is used to meet these demands, which usually 

uses KNN. However, there are several problems faced by recommendation systems such as the 

cold start problem, data sparsity, and the over-specialization problem. There exists a need to 

create a better recommendation system. We achieve this using LSH or Locality-Sensitive 

Hashing combined with fuzzy matching. 

LSH offers a highly efficient approach to approximate nearest neighbor search, a crucial step in 

Collaborative Filtering algorithms, which can be categorized into user-based and item-based. 

By mapping similar items or users to the same hash buckets, LSH drastically reduces the search 

space in comparison to KNN. We also see various LSH schemes such as SimHash and MinHash 

and their applications in recommendation systems. LSH has the increased benefit of privacy 

because the user data can be anatomized and processed through hash functions without revealing 

any sensitive information. 

Furthermore, to handle the uncertainties in user ratings and preferences, we try to incorporate 

fuzzy matching techniques into our movie recommendation system. The project is developed 

using Java. 
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2 Related works 

Qi et al. [1] discuss perfecting the trade-off between data privacy and recommendation accuracy 

without violating the Quality of Service. It improves privacy by creating less sensitive user 

indices for neighbor searches while still delivering accurate and tailored suggestions. 

Ayeteki et al. [2] introduce the concept of LSH to address scalability issues observed in 

neighborhood-based collaborative filtering in real-time applications. LSH effectively decreases 

the search space while allowing for real-time processing, further improving speed. Positive 

outlooks include better real-time efficiency, improved scalability with bigger datasets, and more 

consistent recommendation accuracy. Limitations include parameter sensitivity, the impact of 

data sparsity, and the possibility of overlooking recommendation novelty and diversity. 

Anwar et al. [3] dives into a comparison between two recommendation algorithms that use CF 

and KNN, addressing cold start problems and sparsity issues in recommender systems, followed 

by a detailed analysis. Upon addressing these problems, [3] offers selection recommendations 

validated by experiments on the MovieTrust dataset. 

Li et al. [4] talk about IKNN, an enhanced version of the KNN algorithm, and how 

recommendation systems using this algorithm tend to reduce data sparsity issues. IKNN offers 

better precision and accuracy in its recommendation process by using global effect factors and 

compression, validated by several experiments. Although it's easy to use and interpretable, it's 

deficient in scalability, and its evaluation is dataset-specific. 

Hu et al. [5] suggest privacy-protecting methods for federated recommendation systems. 

Scalability and efficiency for similarity computing in large-scale systems are guaranteed when 

employing LSH. However, it lacks emphasis on data freshness in large-scale systems. 

Lin et al. [6] explain the LSH methodology based on the collaborative recommendation method 

responsible for AI-driven recommender systems. Both privacy protection and calculation 

efficiency can be achieved. [6] mainly uses DisRecLSH, a type of LSH, and executes it in three 

phases: feature extraction, user indexing, and online recommendation. It enhances 

computational efficiency and provides collaboration among distributed data sources. However, 

issues might arise for sparse user-item interaction. 

Farahani et al. [7] use AUPRSLA, a method for adaptive personalized recommender systems. 

It uses learning automata for accurate recommendations, capturing user preferences. However, 

this might impact accuracy due to reliability and completeness issues. Additionally, scalability 

issues arise with an increase in new data, suggesting the need for parallel or distributed 

computing. 

Paleti et al. [8] introduce an ALS approach for mitigating the cold start problem in recommender 

systems, combining Louvain’s algorithm with alternating square factorization for effective 

recommendations. It helped improve prediction accuracy by reducing errors between actual and 

predicted data. However, it might result in poor performance due to missing item interactions, 

suggesting a need for collaborative filtering methods. Complexity can increase with an 

increasing number of users. 



 

Kumar et al. [9] use the DRWMR approach to enhance recommender systems by tackling data 

sparsity and the cold start problem through a two-phase process: neighbor formation and 

recommendation. DRWMR efficiently enhances recommendation precision and accuracy 

compared to other methods. Challenges remain with increasing items and data. 

Xu et al. [10] introduce an enhanced collaborative recommendation algorithm combining 

locality-sensitive hashing (LSH) and matrix factorization to improve efficiency and save user 

privacy. [10] use LSH for neighbor search, which leads to privacy by using hash values instead 

of plain data. It also predicts missing ratings to address data sparsity and uses neighborhood-

based collaborative filtering methods. The advantage of using the LSH method is that it speeds 

up the neighbor search and results in faster recommendations and increased accuracy. 

Shrivastava and Li [11] provide a comprehensive analysis of MinHash and SimHash and states 

why MinHash reigns supreme in neighbor search in binary data, especially in search 

applications. It demonstrates the higher retrieval accuracy and efficiency of MinHash over 

SimHash, particularly in high-similarity regions. 

Heidari et al. [12] explores recommender systems and categorizes them into content-based and 

collaborative filtering with their respective challenges and advantages. Matrix Factorization 

(MF), a model-based method, ensures accuracy but still faces challenges such as the cold start 

and sparsity. Existing methods lack addressing long-distance dependencies in data sequences. 

[12] propose using a deep learning-based method addressing sparsity and cold-start problems 

by integrating side information using self-attention with matrix factorization. The complexity 

of deep learning-based methods might be difficult in real-time practical implementation, 

specifically in resource-constrained environments. 

Harper et al. [13] The MovieLens dataset have been downloaded more than 140,000 times and 

have been cited in more than 7,500 scholarly articles MovieLens datasets are widely accepted 

as valid and reliable resources for scholarly research. Each dataset captures more than 17 years 

of data, allowing findings to include long-term trends and patterns in user behavior and 

recommendations. Within the context of recommendation systems, the datasets can be used to 

solve problems that are of interest to data scientists and data engineers alike, such as data 

summarization, discovery of patterns and relationships, and data visualization and exploration. 

As with all human assessments, ratings on movies are inherently subjective, which makes the 

MovieLens datasets ideal for the evaluation and enhancement of technologies that personalize. 

The datasets have had a large impact on teaching, research, and industry, including the creation 

of high-quality tools for teaching and learning, software systems, and commercial ventures 

(start-ups). 

Mao et al. [14] use fuzzy content matching to improve recommendation accuracy. It models 

user ratings and preferences using fuzzy numbers to handle uncertainty in user ratings, 

establishes relationships between item descriptors to help complete user profiles, and shows 

better performance on Yelp and MovieLens datasets. 

Jahanvi et al. [15] work compares Convolutional Neural Networks (CNNs) for the classification 

of skin cancer based on images from the HAM10000 dataset. It compares custom CNN and 

MobileNetV2 architectures with various optimization algorithms (Adam, Adagrad, SGD, 

Adadelta). Experiments indicate that MobileNetV2 with SGD has the highest accuracy, and this 

demonstrates deep learning's ability to enhance dermatological diagnosis. 



 

Murthy and Kavitha [16] studies on secure fuzzy keyword search on encrypted cloud data has 

been investigated recently using cryptographic indexing, encrypted data structures, similarity 

measures, and verifiability mechanisms for maintaining privacy. The research considers 

efficient search improvement, multi-keyword query support, and addressing security issues. The 

systems to be proposed need to achieve tradeoffs between security and performance with 

supporting accurate privacy-preserving search over sensitive information stored in clouds. 

Ramasamy et al. [17] provide a framework for pest identification in the Coconut Leaf Dataset 

using cost-sensitive learning, multi-class classification, and under sampling to address class 

imbalances. It uses ResNet-50 for the accurate detection of pests and evaluates the performance 

with metrics such as accuracy, precision, and F1 score. Future research should be on advanced 

architectures, ensemble learning, and real-world validation for enhanced pest identification in 

agriculture. 

Shaik et al. [18] explore using deep learning models such as EfficientNetB2 and ResNet for the 

early detection of Alzheimer’s disease based on MRI scans. SMOTE and data augmentation 

helped to handle class imbalance to improve accuracy. The paper concludes that, in complexity 

and performance, EfficientNetB2 is the most efficient model and recommends more research 

into larger, uniform datasets that could generalize these methods in neurodegenerative disorder 

diagnosis. 

3 Methodology 

The movie recommendation system developed in this paper combines features of both 

collaborative filtering and locality-sensitive hashing algorithms to provide accurate movie 

recommendations with minimal search time. The process starts with data loading and data pre-

processing which involves transforming and cleaning the data. The data set containing the user 

IDs, movie IDs, and the corresponding rating given is loaded from the CSV files and is stored 

in the Hashmap. Specifically, it makes it easier to review data and changes as the need arises in 

the standard format. Then the movie names are read from the other CSV file into another 

HashMap so that the movie names can be quickly accessed by their IDs. 

MovieLens dataset is a complete set of user ratings and movie attributes and descriptions needed 

to create a recommendation system. Containing more than 20 million ratings from 138000 users 

on 27000 movies, it represents a large data set that can be used to develop efficient and scalable 

recommendation algorithms. 

The dataset comprises two main components: 

ratings.csv: It contains user-movie ratings with the fields: unique user and movie ids, rating 

given by the user id and the time the rating was given in Unix timestamp format. The ratings 

provide the foundation for building the user-item matrix that is used in collaborative filtering 

approaches. 

movies.csv: Here, each movie is identified by the unique ID, the movie title, and the list of 

genres separated by commas. In this way, using movie IDs for further referencing and matching 

the IDs with movie titles and genres makes it easier for the user to navigate the recommendations 

in the context of movie titles. 



 

Key characteristics of the dataset include: 

Sparsity: Because the number of movies is so large and the rating data is dense which means 

that users generally rate only a small subset of the total set of movies. The sparsity reduces the 

amount of empty space in the matrix and improves both storage and computation. 

Temporal Aspect: Despite the fact that timestamps enable time-related analysis and 

recommendation strategies called temporal strategies, including trends or seasonal 

recommendations, this feature is not employed in our current work. But it opens the possibilities 

for the improvement of the recommendation systems in the future. 

MoviesLens data set was used to generate this user-item matrix. The 2-tuple or matrix is a user-

item matrix where the cell represents what value user U has given to item i, thus allowing us to 

make a finer analysis of how users interact with the items.  

The basis of the recommendation system is the sparse user-item matrix based on previous users' 

interactions with items. This matrix focuses more on the users, as it reflects on the ratings given 

by the users with respect to the movies. While generating recommendations, the first step 

involves creating LSH signatures for the users.  

Computing similarities for high-dimensional data is an optimization problem, here LSH is used 

as an optimal method to estimate similarities between the two data points. In the given user-

item matrix, multiple hash functions are applied to derive totally different signatures for various 

users so that the ratings of similar users can be distinguished. 

For time series data, different approaches for address matching are accounted for variations and 

noise in the user entry. This means that irrespective of the number of characters the user fails to 

type, or the typo mistakes the user may make in a movie title, the database can accurately 

highlight the right movie. After selecting a movie, the system finds the other individuals who 

have watched the same movie and rates it above a given rating point, after which it gives the 

user the list of recommended movies based on the individual's preferences. 

Recommendations derived are based on the data of movies other users with similar interests to 

the given movie liked. From these ratings, the system determines scores of corresponding 

movies to help in sorting and generating the preferable recommendations. This form of 

collaborative filtering works on the following principle:  

• \\ If two users A and B both liked the same movie, A would like what B likes, or in this 

case, A would rate other movies that B rated highly.  

Finally, the obtained results are presented to the user who receives the list of movies that could 

be considered relevant for him. 

3.1 System Architecture 

The system architecture is depicted in fig 1: 



 

 

Fig. 1. Schematic Flow. 

3.1.1 Data Loading and Preprocessing: 

The most effective solution to read the data input is to use the CSVReader from the OpenCSV 

library to read the ratings and the movie titles from the CSV files. The actual ratings are stored 

in a HashMap along with the unique ID for the user and the IDs of the movie it relates to; the 

keys are arrays containing the unique user ID for each entry and the actual ratings are the value 

that make it easier to manipulate the data for access. Movies for a catalogue are stored in a 

HashMap format improving the retrieval of a specific movie name given the movie ID. 

3.1.2 User-Item Matrix: 

A 2-dimensional array is used to capture the user ratings on movies which is in the form of a 

sparse matrix. It consists of a cross-tabulation with the users as the first dimension and movies 

as the second dimension (where the latter highlights the ratings that different users have assigned 

to different movies). While building the matrix, across the rows of the matrix, it first becomes 



 

a nested HashMap where the key is a user number and the value is another HashMap where the 

keys are the movie number and the value is the rating. 

3.1.3 Locality-Sensitive Hashing (LSH): 

This is done for each user to create its specific set of different LSH signatures with respect to 

each hash function applied to the user-item matrix in order to increase the likelihood of collision 

between similar users or items. These signatures help in identifying other similar-minded users 

or those who share the same preferences within a short span of time. These signatures are stored 

in HashMap having the user ID as the keys and the list of hash values as the value of that key. 

3.1.4 Fuzzy Matching 

As for the search terms for movie titles, the Fuzzy Search library is used as a tool for handling 

minor changes in the titles. This is helpful to search for a movie and connect it to the prospective 

listener even in the case when entering of the name is incorrect or contains only a part of it. 

Another class named FuzzyMatcher is added, which is the main body to find out the optimal 

match for the given input and to do the main fuzzy matching. 

3.1.5 Recommendation Engine 

In the event that a specific movie fades from the memory of the system at the fuzzy matching 

stage of the system, then highly rated users who have seeded this specific picture are also found. 

After that, it gathers a list containing the movies that these users liked and calculates similarity 

based on the provided ratings. 

If there are many more movies to be rated, the system maintains a pending movies list and 

recommends the movies according to the highest value of the score achieved here in the context 

of the top recommended movies ranking. 

3.2 Framework 

The project is implemented in Java and IDE used is Eclipse. 

The main libraries and Tools are: 

Open CSV: It is used for reading and writing CSV files which simples the process of loading 

ratings and movie titles from file. 

Fuzzy Wuzzy: This library is used for fuzzy string matching to account for variations and 

inaccuracies in user input while searching for movie titles. 

Java Collection Framework: Used extensively for data storage and manipulation in particular 

through Hash Maps and Array Lists for efficient data retrieval and storage. 

It is modular and is extensible in which integration of additional features is easy. The use of 

interfaces and abstract classes enables flexibility and reusability of code components. To 

visualize through bar graphs and plots, Matplotlib and Seaborn has been used, extracting data 

from a Pandas Data frame. 



 

Matplotlib is an important library of data visualization in Python and it is used in various 

research and industry applications. 

Seaborn is a Python data visualization library based on matplotlib. It provides a high-level 

interface for drawing attractive and informative statistical graphics, which can visualize 

relationships and distributions and can work well with Pandas data frame. 

3.3 LSH Signature Generation 

Let u be the set of users. M be the set of Movies. Ru, m be the rating given by user u to movie m. 

H be the number of hash functions. su be the LSH signature for user u. 

3.3.1 Initialize Signature 

For each user u € U initialize their signature su as a list of H elements, each initialized to the 

maximum possible integer value: 

 𝑠𝑢  =  [MAX_INT, MAX_INT, … MAX_INT]                                                                              (1) 

3.3.2 Hashing 

For each user u € U and each movie m € M where Ru, m is not null: 

Generate a random hash value hu, m using a hash function hi (where i is the index of the hash 

function in the signature): 

ℎ𝑢,   𝑚  =  ℎ𝑖(𝑢, 𝑚)                                                                                                                           (2) 

Update the corresponding element in the signature su with the minimum value between the 

current value and the hash value: 

𝑠𝑢[𝑖]  =  𝑚𝑖𝑛(𝑠𝑢[𝑖], ℎ𝑚,𝑛)                                                                                                                (3) 

3.3.3 Final Signature 

After iterating through all users and movies, the final signature su for each user u will contain 

the minimum hash values for all movies rated. 

4 Results and Discussion 

4.1 Analysis of MovieLens Dataset 

The distribution is described as a long tail, where some movies are rated often while many films 

are rated rarely because a number of people tend to give limited ratings to them. 

Top-rated films: Some movies may have as many as 120,000 ratings, possibly due to being 

box office hits or indie movies with a huge following. 



 

Long tail: Most movies receive low ratings, indicating a large population of relatively unknown 

or specific films. This distribution implies that a small percentage of content attracts most 

consumers, a trend observed in digital platforms. 

Power users: A few users rate a large number of movies, with the most active user having rated 

over 12,000 movies. These users contribute significantly to the system's data. 

Casual users: Many users contribute minimally, with only a few ratings. However, their 

contributions collectively affect the overall volume of ratings. 

Movie rating: scores provide an idea of a movie's quality. 

 

Fig. 2. Distribution of the rating score in logarithmic scale. 

Bimodal distribution: Ratings are distributed with two major humps, indicating two groups of 

active and positive respondents as shown in fig 2. The highest frequency is at 4.0, suggesting a 

positive skew in ratings. Low extreme ratings of 0.5,1 and 1.5 are less frequent, suggesting users 

are reluctant to give the lowest scores unless thoroughly dissatisfied. 

4.2 Comparison between LSH and KNN + CF for Recommendation Systems 

4.2.1 Scalability and Real-time Performance 

KNN and CF suffer from scalability issues as computational complexity increases linearly with 

the increase in the size of the dataset, making it impractical for large datasets. 

LSH addresses the scalability problem by hashing items into buckets such that similar items 

have a higher probability of being mapped to the same bucket, which significantly reduces the 

search space. 



 

4.2.2 Accuracy and Diversity 

KNN and CF provide accurate recommendations; however, the movies they recommend might 

lack diversity. While this might be important in recommendation engines that back up e-

commerce and dating apps, this might hinder a user from discovering new items. 

LSH's hashing techniques balance accuracy and diversity, ensuring that a wider variety of items 

are recommended across all users, keeping the recommendations fresh and exciting. 

4.2.3 Computational Efficiency 

CF + KNN involve extensive similarity computation, making them less efficient for real-time 

recommendations. 

LSH uses hashing techniques to approximate nearest neighbors, reducing the need for extensive 

similarity computations, making it more efficient and faster than CF-based algorithms, and thus 

more suitable for real-time applications. 

4.3. Our Approach 

The findings of the effectiveness of the proposed Movie recommendation system appeared quite 

encouraging in terms of accuracy and time complexity. The fuzzy matching algorithm was also 

apt in operation when interpreting appropriate user inputs with slight errors as it would ensure 

the appropriate movie was chosen amidst similar movie titles. This made the use easier because 

the input from the users could be in any format and the program would have to adapt to that 

format. 

The system achieved satisfactory results and guaranteed fast generation of user signatures and 

subsequent similarity searches by employing the LSH technique, thus decreasing the real-time 

computational process many times compared to conventional approaches. In this manner, the 

recommendation process was made very fast but yet very efficient and accurate. It has also been 

deduced that the recommendation produced by the system is quite appropriate and in proximity 

to the user's tastes, thereby revealing how efficient collaborative filtering is alongside LSH. Fig 

3 show the Recommendation for Dune (1984) 

From the rating data, the user-item matrix allowed the system to study the user's similarities and 

combine the presented ratings to optimize these recommendations. This was ensured as it 

allowed for the assessment of user's behavior and their preference in an all-encompassing 

manner. However, the recommender system uses a large portion of resources. 

In terms of the similarity search, we employed LSH and, thus, reduced the computation time 

regarding recommendations. So, it can be concluded it is feasible to provide real-time prediction 

and recommendation even if a large amount of data is involved. The output of our approach is 

shown in fig 3. 



 

 

Fig. 3. Recommendation for Dune (1984). 

5 Conclusion 

In this paper, it is observed that the application of fuzzy matching, collaborative filtering, and 

LSH, the recommendation system for the movie has proved to be an effective way of 

recommending movies. The applied methodology proved suitable for the management of the 

large amount of data, for the integration of the variations of the user input, and for the real-time 

context of the recommendations. This type of fuzzy matching used in the system's 

recommendation algorithm helped identify movies correctly based on inputs from the users. 

The application of the LSH for the similarity searches showed an increase in the operation's 

scalability and efficiency where it made it possible to recommend large amounts of data and a 

large number of users. The use of the above techniques helped in the formulation of the 

recommendation system that was at the same time optimal in terms of accuracy and performance 

since it offered appropriate recommendations based on user's behaviors and choices of movies. 
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