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Abstract. Older adults suffer from Alzheimer's Disease which intensifies as a 

neurodegenerative condition and raises both fatal outcomes and worsening dementia 

progression. The correct identification of Alzheimer's Disease along with its early 

detection remains essential because the current diagnostic methods show limited validity. 

MRI shows its effectiveness through both local brain region and overall brain area tissue 

atrophy assessment for AD patients. Binary classifiers based on Machine Learning (ML) 

models processing biomarkers extracted from MRI data improve clinical decision accuracy 

because they enable better-informed diagnosis. This research creates an AI-based 

diagnostic system which uses the OASIS MRI dataset to perform three cognitive status 

categories: Nondemented, Demented, and Converted. This last category identifies subjects 

whose brain condition evolved from nondemented to demented over time. The system 

utilizes Random Forest as well as AdaBoost alongside SVM and KNN and LR models for 

its operations. The classification accuracy Reached 96% for Random Forest, SVM and 

Logistic Regression while their AUC scores reached 0.9906, 0.9898, 0.9935 respectively. 

The experimental results displayed AdaBoost next to KNN for accuracy with 94.67% 

while having AUC scores of 0.9767 and 0.9938 respectively. AI-driven MRI analysis 

demonstrates strong potential to detect early AD while classifying patients before it 

advances to an advanced stage through efficient interventions. 
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1 Introduction 

Alzheimer’s Disease (AD) represents a slow brain-wasting condition which stands among the 

primary dementia causes that targets people in their later years of life. The first signs of memory 

loss tend to get ignored so medical diagnosis and proper care is postponed. The medical 

community has improved treatment for AD but researchers still lack a complete solution to cure 

the condition. An early diagnosis of disease remains essential for medical care because proper 

treatment initiation at the right time allows patients to obtain maximum disease control and ideal 

treatment results. Pure medication treatment does not provide an adequate method to defeat AD. 

Magnetic Resonance Imaging (MRI) stands as a fundamental diagnostic instrument which 

enables scientists to identify distinct and overall atrophy patterns of brain tissue linked to the 

disease. 

Numerous current research investigations demonstrate that machine learning (ML) effectively 

analyzes MRI data to detect and classify Alzheimer’s disease. The accuracy of ML models 
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increases when these systems use MRI-based biomarkers to predict mild cognitive impairment 

(MCI) patients who will develop dementia. The proposed project aims to build a sturdy ML-

based diagnostic system from MRI scan datasets for discovering individuals at risk while 

developing individualized treatment approaches and enhancing patient outcomes. 

MRI delivers comprehensive information about brain structures and functioning that leads to 

the discovery of markers which indicate Alzheimer's disease advancement. Region 

segmentation applications in processed images enable researchers to monitor essential 

indicators that deteriorate during neurodegeneration such as hippocampal atrophy and 

ventricular enlargement and cortical thinning and decreased brain volume. The markers used 

for predicting AD emerge from MRI scan data extraction. Machine Learning and Computer 

Vision together allow the analysis of biomarkers through their patterns and correlations for AD 

classification and progression assessment. The combination of MRI data with ML-based 

predictive models enables substantial advancements in Alzheimer's disease diagnosis and 

management which leads directly to improved intervention methods. 

2 Related Works 

2.1 Biomarker-Based Early Diagnosis 

Alzheimer’s disease (AD) research has extensively focused on identifying reliable biomarkers 

for early detection. Frisoni et al. [1] presented a strategic roadmap emphasizing the importance 

of biomarker integration in clinical practice, highlighting the potential of combining imaging, 

cerebrospinal fluid (CSF), and blood-based markers. Structural MRI has long been considered 

a promising tool for biomarker evaluation, as discussed by Jack [2], who underscored its 

relevance in tracking neurodegenerative progression. 

Recent studies have validated plasma neurofilament light chain (NfL) as a potential biomarker. 

Quiroz et al. [3] demonstrated its predictive value in pre-symptomatic individuals with 

autosomal dominant AD, while Mattsson-Carlgren et al. [4] analyzed different AT(N) 

frameworks to improve disease stratification. Similarly, Mattsson et al. [5] provided strong 

evidence of the association between longitudinal NfL levels and neurodegeneration in AD 

patients. 

2.2 Neuroimaging and Blood-Based Biomarkers 

Longitudinal neuroimaging studies have revealed consistent spatial patterns of biomarker 

changes. Gordon et al. [6] explored imaging trajectories in familial AD, showing early 

alterations in amyloid and tau pathology. Complementarily, Simonsen et al. [7] offered 

recommendations for standardized CSF biomarker evaluation to improve clinical diagnostic 

accuracy. 

The integration of blood-based biomarkers into AD diagnosis has been extensively studied. Qu 

et al. [9] conducted a systematic review and meta-analysis, demonstrating that blood biomarkers 

such as Aβ42/40 ratio and phosphorylated tau have strong diagnostic utility for both mild 

cognitive impairment (MCI) and AD. These findings align with the trend of developing non-

invasive, cost-effective diagnostic methods. 

 



 
 

2.3 Computational and Machine Learning Approaches 

Machine learning methods have increasingly been applied to enhance diagnostic precision. Liu 

et al. [8] employed whole-brain hierarchical network modeling to classify AD, demonstrating 

the potential of brain connectivity analysis. Das et al. [10] proposed an interpretable machine 

learning model that achieved high diagnostic accuracy, providing clinicians with transparent 

decision-making support. 

In parallel, Miltiadous et al. [11] extended computational approaches to differentiate AD from 

frontotemporal dementia (FTD) using EEG signals, ensuring robust classification performance 

across validation frameworks. Such efforts reflect the growing emphasis on interpretable and 

clinically applicable computational systems. 

2.4 EEG and Electrophysiological Approaches 

Electroencephalography (EEG) has been explored as a cost-effective and non-invasive 

diagnostic modality. Nobukawa et al. [14] and Briels et al. [15] demonstrated that EEG-based 

measures of complexity, synchronization, and functional connectivity are effective in 

distinguishing AD patients from healthy controls. Importantly, Briels et al. [15] emphasized 

reproducibility challenges, calling for standardized EEG biomarkers. 

The scope of EEG-based diagnostics extends beyond AD. Tawhid et al. [12] developed a 

spectrogram image-based technique for detecting autism spectrum disorder, while Siuly et al. 

[13] presented an automatic method for schizophrenia detection, underscoring EEG’s broader 

applicability in neuropsychiatric disorders. Collectively, these studies provide methodological 

foundations for leveraging EEG in AD diagnosis. 

3 Dataset   

Through its initiative The Open Access Series of Imaging Studies (OASIS) provides scientific 

researchers access to brain MRI data without cost. This project seeks to support basic and 

clinical neuroscience discoveries through the data set compilation and free distribution of MRI 

data. The Washington University Alzheimer’s Disease Research Center distributed OASIS 

alongside its providers which encompass Dr. Randy Buckner from the Howard Hughes Medical 

Institute (HHMI) at Harvard University and the Neuroinformatics Research Group at 

Washington University School of Medicine and the Biomedical Informatics Research Network. 

The Cross-sectional MRI Data in Young, Middle Aged, Nondemented and Demented Older 

Adults collection includes scans from 416 subjects who range in age from 18 to 96. A total of 3 

or 4 T1-weighted MRI scans are provided for each subject that were obtained in single scan 

sessions. The selected participants are right-handed individuals who include both women and 

men. The research contains 100 subjects who received diagnoses of very mild to moderate 

Alzheimer’s disease (AD) after age 60. The reliability data consists of twenty nondemented 

subjects who underwent scanning on a follow-up visit shortly after their first appointment. The 

Longitudinal MRI Data in Nondemented and Demented Older Adults collects 150 subjects aged 

from 60 to 96 along their time series. A total of 373 imaging sessions were obtained after subject 

scans on multiple visits which were spaced by at least one year. Each subject has 3 or 4 T1-

weighted MRI scans that were obtained from single scan sessions. The study subjects are right-

handed adults who include both male and female participants. Throughout the investigation 



 
 

researchers classified 72 participants as nondemented while 64 subjects developed dementia 

during their initial visit and kept the diagnosis until all subsequent brain scans including 51 mild 

to moderate Alzheimer’s disease cases. The 14 subjects started the study without dementia but 

they received a subsequent diagnosis of dementia at a later time. 

3.1 Visualization 

A box plot represents an ideal statistical visualization method for both central tendencies and 

spread indicators which include interquartile ranges (IQR) and median and quartiles and 

outliers. The study uses box plots to display important distribution patterns between 

Nondemented controls and patients in Demented and Converted groups which enables 

assessment of MRI-based biomarkers and clinical indicators. The mini-mental state examination 

scores appear in box plot visualizations as part of cognitive decline pattern identification. The 

Demented and Converted groups displayed decreased median performance on MMSE testing 

along with larger differences between 1st and 3rd quartiles which could indicate progressing 

cognitive decline along with occasional influential cases showing unusually quick or delayed 

cognitive deterioration. 

Box plots created to represent gender differences give important understanding about how 

Alzheimer's disease displays distinct growth patterns between both genders. The study contains 

gender data which allows researchers to make comparisons between subjects in different 

intellectual groups. The box plots demonstrate which gender first develops dementia while 

displaying their quicker or slower brain volume changes through analysis of ethic and nib and 

MMSE score results. The patterns between genders provide essential information to detect 

natural along with social factors which affect the occurrence of Alzheimer's disease severity. 

Box plots help create a comprehensive knowledge of disease progression by combining 

cognitive scores with demographic characteristics thereby supporting the development of 

custom diagnosis models. 

 

Fig. 1. Gender and Demented Rate. 

Fig.1. The bar chart shows how Alzheimer’s disease diagnoses among male and female 

participants breaks into three distinct categories that represent Nondemented, Demented and 

Converted. The diagnostic categories appear on the x-axis axis and the group patient numbers 

appear on the y-axis axis. The color legend differentiates between male (1) and female (0) 

subjects. Based on visual observations the population of male participants exceeds females in 

the Nondemented section yet females outnumber males in the Demented group. Among 



 
 

participants who underwent conversion from healthy to demented profile the Converted group 

shows the least enrollment numbers but still contains more male participants. The way gender 

groups align in this pattern aids researchers' understanding of Alzheimer's disease occurrence 

by indicating what biological elements or lifestyle behaviors could impact how the illness 

develops. 

 

Fig. 2. Box plots comparing ASF, ethic, and nib across cognitive groups, highlighting the brain atrophy 

and volumetric differences in dementia progression. 

The presented fig. 2 box plots show the comparison of essential MRI-derived brain volume 

metrics between Nondemented and Demented patients and Converted subjects. The three boxes 

show data distributions regarding Atlas Scaling Factor (ASF) and Estimated Total Intracranial 

Volume (ethic) and Normalized Whole Brain Volume (nib) measurements. The median ASF 

remains uniform across all groups according to the first plot but the minor differences might 

reveal dissimilar brain scaling patterns. The ethic plot demonstrates that Demented subjects 

normally display reduced intracranial volume compared to Nondemented participants indicating 

an association between brain degeneration while neurodegeneration develops. The nib plot 

demonstrates how Demented participants show substantial reduction in their whole brain 

volume compared to Nondemented participants. The observed data matches current knowledge 

showing that Alzheimer’s disease results in continuous deterioration of brain tissue. 

4 Methodology 

4.1. Overview 

Early diagnosis of Alzheimer’s Disease remains key because it enables proper medical 

treatments to be instituted at the appropriate time. Machine learning methods based on MRI data 

provide better neurodegenerative change insights compared to EEG-based methods which have 

shown initial success in similar tasks. This research analyzes an EEG rhythm and channel-based 

LSTM model and an MRI-based machine learning framework which uses Random Forest, 

SVM, AdaBoost, KNN and Logistic Regression. The accuracy and robustness together with 

clinical suitability of our MRI-based model surpass EEG-based strategies in experimental tests 

thus highlighting the importance of MRI biomarkers for AD diagnosis. The progressive brain-

wasting disorder called Alzheimer’s Disease (AD) causes mental dysfunction and deterioration 

of brain operation. Current machine learning innovations allow healthcare professionals to 

detect AD through the analysis of data obtained from EEG and MRI tests. The deep learning 

models based on EEG data analyze brain patterns while those based on MRI data identify 



 
 

markers that demonstrate neuronal deterioration. The study investigates two measuring 

approaches to compare their performance where our new MRI-based framework proves superior 

to a recent EEG-based LSTM model. Fig.3 shows the model architecture. 

 

Fig. 3. Model Architecture. 

4.2 Machine Learning Models 

The analysis utilized five supervised machine learning algorithms namely Random Forest 

together with AdaBoost and Support Vector Machine (SVM) and K-Nearest Neighbors (KNN) 

along with Logistic Regression (LR) to perform subject classification according to 

Nondemented, Demented, and Converted categories using MRI-derived biomarkers and clinical 

features. 

4.2.1 Random Forest 

The ensemble learning technique Random Forest builds and trains multiple decision trees during 

its training process. The chosen result class reflects the most common selection by trees during 

the classification stage. Each tree uses a randomly selected subset of data for training and the 

process includes evaluation of randomly selected groups of characteristics at every splitting 

point. The decision-making process through Random Forest generates robust models which 

reduces overfitting to enhance generalization success. Random Forest analysis successfully 

managed the complex MRI data by using its ability to discover feature-oriented patterns which 

separated different cognitive states. 

4.2.2 AdaBoost 

The ensemble technique Adaptive Boosting (AdaBoost) constructs strong classifiers through 

multiple decision stump learners known as weak learners. The training procedure involves 

repeating the process of creating weak learners which concentrate on samples previously 

misidentified by preceding weak learners. A consolidated prediction model gathers weighted 

outputs from each weak learner based on their performance. The ability of AdaBoost to 



 
 

concentrate on hard-to-classify cases enables it to discover delicate patterns including initial 

mental decline indicators. 

4.2.3 Support Vector Machine (SVM) 

The supervised Support Vector Machine algorithms detect the complete separating hyperplane 

across features in order to distinguish classes. SVM establishes the optimal separating 

hyperplane which creates maximum space between different class data points to improve 

classification results. Data mapping through kernel functions within SVM permits the handle of 

non-linear relationships by transforming lower dimensional data into higher-dimensional 

spaces. Through the implementation of SVM researchers were capable of recognizing complex 

non-linear relationships between MRI and clinical data resulting in precise cognitive state 

classification. 

4.2.4 K-Nearest Neighbors (KNN) 

The K-Nearest Neighbors method uses a non-parametric approach to identify classifications 

through majority vote counting from a specified number of closest neighbors in the data space. 

Distance metrics particularly Euclidean distance serve this algorithm for determining the 

similarity. The implementation of KNN algorithm remains straightforward while it effectively 

detects patterns within local data patterns. The KNN method demonstrates performance 

susceptibility to 'k' parameter selection and excludes irrelevant features from its classification 

process. The KNN algorithm functioned as a fundamental baseline model to evaluate against 

more sophisticated prediction systems. 

4.2.5 Logistic Regression (LR) 

The statistical model of Logistic Regression enables the estimation of target successes or 

multiple classification outcomes through relationships between one or multiple predictor 

variables. The model describes outcome log-odds through predictor variables that apply linear 

combination. LR acts as an efficient and interpretable model that serves well during first analysis 

stages. The study established LR as a reference model that identified possible direct linear 

patterns between variables and cognitive states. 

4.2. Comparative study  

4.2.1 EEG-Based LSTM Model 

A study analyzed AD detection biomarkers from EEG signals through a framework based on 

LSTM. EEG signal frequency rhythms were extracted by the model which revealed gamma and 

beta rhythms as essential indicators of cognitive deterioration. A model with the highest 

performance reached 97% accuracy while processing 86 subjects. 

Limitations of EEG-Based Models are High sensitivity to noise and artifacts. These techniques 

provide lower spatial mapping abilities than MRI does. This approach needs time-consuming 

preprocessing steps especially ICA and wavelet transform methods. Limited clinical 

interpretability of EEG rhythms. 

 



 
 

4.2.2 Our MRI-Based Machine Learning Model 

The developed machine learning model utilized MRI-derived biomarkers including Atlas 

Scaling Factor (ASF), Estimated Total Intracranial Volume (ethic), Normalized Whole Brain 

Volume (nib). The proposed study used Random Forest along with SVM and AdaBoost and 

KNN and Logistic Regression models to classify brain data with extensive training. The 

processed dataset underwent three operations: feature selection and KNN-based missing value 

imputation and standardization. 

4.3. Results and Comparative Analysis  

4.3.1 Performance Metrics 

Table 1. Comparative performance metrics. 

Model Accuracy AUC 

Score 

Precision 

(Demented) 

Recall F1 

score 

EEG-LSTM 

Model 

97.00% - - - - 

Random Forest 

(MRI) 

96.00% 0.9898 0.94 0.97 0.95 

AdaBoost 

(MRI) 

94.67% 0.9767 0.94 0.94 0.94 

SVM  

(MRI) 

96.00% 0.9906 0.94 0.97 0.95 

KNN  

(MRI) 

90.67% 0.9938 1.00 0.78 0.88 

Logistic 

Regression 

(MRI) 

96.00% 0.9935 0.94 0.97 0.95 

 

4.3.1.1 Key Insights: 

Table 1 gives the MRI-based models produce evaluation results equal to those of EEG-LSTM 

(96% vs. 97%) with stronger clinical validity. MRI classification methods tend to generate 

superior decision limits versus EEG-based classification because of their AUC scores exceeding 

0.99. The prediction algorithms Random Forest and SVM along with Logistic Regression 

perform optimally due to their balanced rate of precision detection and recall validation. KNN 

achieved perfect precision results while its recall statistics stopped at 0.78 thus requiring 

additional adjustments.    

4.3.2 Advantages of MRI-Based Models Over EEG-Based Models 

The detection and classification of Alzheimer’s disease benefits more from machine learning 

models based on MRI measurements rather than those based on EEG measurements. The 

detailed examination of structural brain activity and functions through MRI becomes possible 

because the technique provides enhanced spatial details while EEG displays limited spatial 

detection and is prone to equipment noise. The stability and reproducibility of biomarkers 



 
 

derived from MRI testing exceeds EEG signals since EEG signals fluctuate uncontrollably 

because of subject movements along with changes in electrode placement and environmental 

disturbances. MRI enables the extraction of detailed feature groups like volumetric 

measurements together with cortical thinness data and network connectivity metrics that 

improve prediction models while EEG depends on time-based along with frequency-based 

information that fails to correctly identify AD neurodegenerative consequences. 

5 Results and Evaluation 

It Random Forest together with Support Vector Machine (SVM) and Logistic Regression (LR) 

performed best at 96% accuracy while their AUC scores surpassed 0.98 which confirms their 

excellent discriminatory capability. These models proved to be reliable tools for classification 

work because they produced stable precision and recall measures and F1-scores. AdaBoost 

showcased an accuracy level of 94.67% supported by a 0.9767 AUC score together with precise 

and stable performance for both classes.  

 

Fig. 4. Learning curves of Random Forest, AdaBoost. 

 

Fig. 5. Learning curves of SVM, KNN. 



 
 

 

Fig. 6. Logistic Regression, illustrating model performance trends with increasing training samples. 

From the above fig 5 The K-Nearest Neighbors (KNN) model detected 90.67% accuracy from 

data although it produced the top AUC score of 0.9938. KNN successfully recalled all 

Nondemented examples but failed to identify 22% of Demented patients thus resulting in 

elevated false-negative classifications. Confusion matrix assessments show that all models 

made most errors by mistakenly labeling Demented patients as Nondemented. The KNN model 

exhibited the highest number of such errors by misidentifying seven actual Demented patients 

as Nondemented thus creating potential medical risks in proper dementia diagnosis. The 

development of a visual graph which showed predicted and actual classifications helped users 

easily assess model effectiveness. Fig. 4 and fig.6 gives the Additional improvement steps 

should include examining Random Forest feature relevance followed by SVM and LR 

hyperparameter enhancement and Demented class weight adaptations for better prediction 

accuracy. A larger test data set should be employed to evaluate how well the models perform in 

real-world dementia diagnosis settings while assessing their basic capabilities under such 

conditions. 

6 Conclusion 

The evaluation demonstrated Random Forest along with SVM and Logistic Regression reached 

a 96% accuracy rate along with AUC scores above 0.98 which confirms their high reliability 

for this classification task. AdaBoost displayed similar effectiveness to accuracy levels at 

94.67% yet KNN had lower success rates at identifying Demented patients due to increased 

wrong negative assessments that matter in medical diagnosis. Confusion matrix analysis 

demonstrates the necessity of raising sensitivity for Demented case detection because it lowers 

assessment errors. The graphical display of predicted versus actual outputs helped menorah 

clarity of model effectiveness thus establishing transparency within the evaluation framework. 

Various aspects need attention to improve the proposed model for future development. Training 

performance along with interpretability strengthens through applying SHAP values or 

permutation importance techniques to select and engineer influential MRI biomarkers. Bayesian 

Optimization together with Grid Search performs hyperparameter optimization which leads to 

accurate outcomes when refined specifically for SVM and Random Forest models. The model 

sensitivity can be enhanced through the use of Synthetic Minority Over-sampling Technique 

(SMOTE) and cost-sensitive learning to handle class imbalance in Demented cases. 
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