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Abstract. Early detection of forest fire is of vital importance to reduce environment and 

economic damages caused by forest fire. In this paper we propose Quantum-Dynamic 

Attention Vision Transformer (QDA-ViT): a new framework for real-time and resource 

efficient wildfire detection using unmanned aerial vehicles (UAVs). The model proposed 

integrates quantum probabilistic routing into the transformer’s attention mechanism so the 

attention head selection can be dynamically done via entropy driven spatial volatility. This 

increases focus of the regions where scattering happens and decrease the computational 

overhead. Moreover, a patch level compression module greatly lowers the data 

transmission load and thus makes the system applicable for onboard UAV processing. 

QDA-ViT shows better accuracy (96.3%), F1-score (0.902) and runtime (18.2 ms), than 

conventional CNN based and standard Vision Transformer on test results, which can prove 

its usefulness for real time online aerial surveillance for wildfire cases. 

Keywords: Quantum Machine Learning, Vision Transformers, Forest Fire Detection, UAV 

Surveillance, Real-Time Inference, Dynamic Attention Mechanism. 

1 Introduction 

A forest fire is a great threat to ecosystems, human life and property, as well developed as to the 

climate in recent years due to the increase in frequency and intensity of forest fires. Early 

intervention and minimizing large damage require early detection of such events. Satellite 

imagery and ground sensor networks are the traditional methods for fire monitoring, but these 

are not suitable for real time response scenarios as they are influenced by the latency problems, 

small spatial resolution and infrequent data acquisition [1], [3]. Forest fires cause immense 

environmental and socio-economic effects that require mitigating methods in the aspect of early 

detection and management. Fire detection has often conveyed through traditional means such 

as fire satellites or ground sensor networks. However, these systems have limitations related to 

the speed of data collection (time required to capture an entire volume), low spatial resolution 

(hundreds of micrometres or higher per voxel), lack of real-time monitoring capacity and 

repeatability of measurements. In this scenario, UAVs have received much attention as a 

potential means of providing data-driven forest fire monitoring, due to their versatility and high 

mobility, real-time data collection capacity and high precision surveillance capability in 

wildfire-prone areas [2]. UAVs as an environment monitoring tool have great potential to be a 

promising solution, providing high mobility, rapid deployment, and flexible data collection 

capabilities. However, it is not trivial to deploy effective fire detection models on UAV platforms 
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due to limited computation power, bandwidth constraint, and stringent inference speed and 

accuracy [4], [6]. New progress in UAV surveillance systems has allowed the implementation 

of specific strategies for different performing operations, such as fire detection. For a study on 

the potential possibilities that UAVs can offer with help of AI when considering surveillance 

tasks [5].  To overcome these limitations, new research has been conducted on the deep learning 

approaches in visual wildfire detection, mainly Convolutional Neural Networks (CNNs) and 

Vision Transformers (ViTs). ViTs are advantageous due to their ability to offer better features 

extraction and provide context understanding, albeit at the cost of high computation since they 

use uniform attention on all the patches of the image [7] [10]. The author places an emphasis on 

leveraging the strengths of CNNs and ViTs together to deal with numerous scales as well as 

complex features of wildfire detection. This hybrid method increases the capacity of the system 

to discover fires in multiple growth stages and in various environmental conditions, which is 

required for a real-time fire detection and rapid action [8]. UAVs with AI are becoming more 

and more crucial in wildlife management, besides deep learning models. The detailed study by 

AI-based UAV Systems for wildfire detection, management and post event assessment on that 

radar [9].  

With this in mind, this paper puts forward QDA-ViT (Quantum-Dynamic Attention Vision 

Transformer), an innovative blended framework that introduces quantum computing principles 

into a transformer-based framework for UAV based forest fire detection. An entropy map of 

fused RGB and thermal inputs is used in the model to choose attention heads dynamically when 

interacting with the Quantum Probabilistic Routing Layer (QPRL), which selects paths through 

the application of quantum dynamics informed by weights from a classical predictor. The 

selective routing mechanism of this model allows it to direct many of its computational 

resources towards volatile, high risk parts of an image where computation is most needed and 

reduce redundant computation. Furthermore, a quantum inspired patch compression module is 

used to ensure that only the most relevant features are preserved and transmitted so as to 

minimize bandwidth usage and latency. This paper makes the following key contributions. 

• Attention head selection in Vision Transformers is made through a novel entropy driven 

quantum routing mechanism. 

• A hybrid quantum classical architecture optimized for real time UAV surveillance in the 

case of wildfires is developed. 

• We propose a patch level compression strategy that reduces the data load by a large size 

while maintaining detection accuracy. 

• Extensive experiments are carried out to demonstrate that QDA – ViT surpasses the 

conventional CNN and ViT models in terms of accuracy and cost, both in inference time 

and in terms of efficiency. 

QDA-Vit combines quantum intelligence with dynamic attention and lightweight deployment 

strategies, achieving a huge step forward towards practical, real time wildfire detection as it is 

carried out by autonomous aerial systems. 

The rest of this paper is organized in the following manner. In section II, related work is 

reviewed for fire detection, vision transformers and quantum machine learning. In Section III, 

we provide a detailed discussion regarding the proposed QDA–ViT methodology with respect 

to architectural design, mathematical foundations and how we set up for our experiments along 

with the performance metrics. Results and comparative analysis are given in Section IV. In 



Section V the findings are discussed and interpreted. In the end, the paper is concluded and 

future directions are outlined in Section VI. 

2 Related Work 

The QDA-ViT model proposed in this work integrates advances made in forest fire detection, 

in vision transformers, in quantum machine learning, as well as in the area of UAV surveillance 

systems. With regard to these areas, this section reviews relevant literature to show the research 

gap to which this work contributes. 

2.1 Forest Fire Detection Techniques 

Current methods of forest fire detection make use of either satellite imagery (e.g. MODIS, 

VIIRS), or the use of ground sensor networks. Satellite systems cover large area, have low 

temporal resolution and high latency, and as such are less useful in early-stage detection. 

However, ground sensors are only capable of fine scale data, but are also limited in coverage 

and installation cost. In recent approaches, machine learning and deep learning techniques were 

also incorporated to classify the fire patterns using the thermal or RGB images. Models based 

on Convolutional Neural Network (CNN) such as FireNet and DeepFire have reported 

accuracies, but have fixed receptive fields, and limited global context hinders rendering them 

ineffective in detecting subtle or small signature of fire, especially in complex environment of 

forest [11], [13]. To improve detection systems, recently, deep learning integrations has been 

investigated in the study of forest fire surveillance. In this line, the author mentioned several 

deep learning approaches and its use in forest fire, underlining the important real-time role of 

UAVs for detection [12]. 

2.2 Vision Transformers in Environmental Perception 

Attention based mechanisms to capture global dependencies exhibited by the image data have 

revolutionised computer vision and have led to a relatively new framework called Vision 

Transformers (ViTs). Unlike CNNs, ViTs take images as a sequence of patches, which use self-

attention over all tokens, thus allowing them to understand better the spatial relations. There 

have been several works who have applied ViTs for aerial imagery and achieved promising 

results for land use classification, disaster monitoring, and remote sensing. On the other hand, 

standard ViT is computationally intensive and irreverently employs uniform attention not related 

to content. In such a sparse event detection scenario like fire detection, the interest is only in a 

small fraction of the image area; this uniformity leads to inefficiency [14], [15]. 

2.3 Quantum Machine Learning and Attention Optimization 

Use of quantum computing principles to attain an enhanced performance of classical learning 

algorithm is called Quantum Machine learning (QML). Learning efficiency and model 

expressiveness have been improved using variational quantum circuits, quantum kernel methods 

and quantum inspired optimization. Quantum probabilistic models are as such a promising way 

to add non-linearity and decision uncertainty to classical models. More work has been done in 

integrating quantum layers into neural networks, and despite the recent interest of using 

attention mechanisms for tasks like UAV-based perception, a quantum aid to this task currently 

remains an uncharted territory. We are one of the first to employ quantum principles to focus 

attention in real–time fire detection in ViT’s [16], [18]. Furthermore, optimization of 



performance for quantum models has been explored with respect to the applications in quantum 

machine learning and methods for analysis enhancing computational efficiency [17]. 

2.4  UAV-Based Real-Time Detection Systems 

Because of their versatility, and their capacity to collect real time data in the remote areas, UAVs 

are increasingly being used for environmental surveillance. There is work done on various fire 

detection systems for UAV platforms using onboard sensors and deep learning models. 

However, such systems have some challenges: 

• Limited onboard processing power, 

• Bandwidth constraints for real-time data transmission, 

• And the need for lightweight, low-latency models. 

Both most existing models either sacrifice detection accuracy for the sake of complexity or only 

rely on post processing at ground stations, which results in the delays of response time. Clearly, 

there is a need for such architectures that are optimized on purpose for UAV environments [19], 

[21]. Additionally, the researcher surveyed current achievements in UAVs, with a particular 

emphasis on object detection and communication security because these are essential for 

implementing real-time and resource-saving fire detection systems over difficult terrains [20]. 

2.5 Research Gap and Contribution 

In each of these domains, significant progress has been made; however, no work ties these 

domains together and, in particular, no existing work considers quantum decision making in 

combination with a dynamic vision transformer that has been optimized for on-the-fly UAV 

based real time forest fire detection. To address this, QDA-ViT introduces novel entropy guided 

quantum attention routing mechanism as well as patch level compression to suit aerial platforms. 

Given the resource efficiency and critical aspect of deployment in wildfire prone territories, this 

approach achieves high accuracy. 

3  Methodology  

Quantum-Dynamic Attention Vision Transformer (QDA-ViT) is proposed as an advanced 

hybrid framework, that allows to employ quantum probabilistic decision making to specialize 

the vision transformer architecture to be optimized in real time for forest fire detection by aerial 

vehicles. Five core components form the model as entropy map extraction, quantum 

probabilistic routing layer, dynamic attention transformer encoder, quantum inspired 

compression module and finally a fire detection head. Different components are designed in a 

systematic manner to minimize inference latency while keeping detection precision in dynamic 

aerial environments [22]. Fig 1 shows the Proposed Architecture. 



 

Fig. 1. Proposed Architecture. 

Let 𝐼𝑡 ∈ ℝ𝐻×𝑊×𝐶 represent the fused input image frame at time 𝑡, obtained by combining RGB 

and thermal modalities through weighted averaging. The preprocessed image 𝐼𝑡 is first passed 

through an entropy map generator to compute the spatial entropy distribution, 𝐸𝑡 ∈ ℝ𝐻×𝑊, 

defined as: 

𝐸𝑡(𝑥, 𝑦) = −∑  𝐶
𝑐=1 𝑝𝑐(𝑥, 𝑦) ⋅ log⁡ 𝑝𝑐(𝑥, 𝑦)                                                                               (1) 

where 𝑝𝑐(𝑥, 𝑦) is the normalized intensity value of channel 𝑐 at pixel (𝑥, 𝑦). This entropy map 

identifies regions with high pixel-level volatility - a known signature of fire dynamics - and 

serves as the input to the Quantum Probabilistic Routing Layer (QPRL). 

The QPRL utilizes a parameterized quantum circuit (PQC) to encode the entropy vector 𝐞𝑡 ∈
ℝ𝑁, where 𝑁 is the number of image patches (flattened from 𝐸𝑡 ). The PQC 𝑈(𝜃) operates on 

qubits initialized in superposition and produces a measurement vector q𝑡 ∈ [0,1]𝐻, where 𝐻 is 



the number of transformer attention heads. The routing decision for each head ℎ𝑖 is governed 

by a Bernoulli trial with success probability 𝑞𝑡,𝑖, where: 

𝑞𝑡,𝑖 = 𝔼𝜓𝑖
[𝑍̂], 𝜓𝑖 = 𝑈(𝜃; 𝐞𝑡)                                                                                                      (2) 

This probabilistic routing determines whether each attention head ℎ𝑖 is activated (1) or 

suppressed (0) for the current frame, yielding a binary attention mask 𝐦𝑡 ∈ {0,1}𝐻. The 

dynamic attention matrix 𝐴𝑡 ∈ ℝ𝐻×𝑑×𝑑, where 𝑑 is the embedding dimension, is then 

constructed by element-wise masking of the traditional self-attention weights 𝑊𝑡, such that: 

𝐴𝑡,𝑖 = 𝑚𝑡,𝑖 ⋅ 𝑊𝑡,𝑖 , ∀𝑖 ∈ {1, … , 𝐻}                                                                                                (3) 

This mechanism significantly reduces computational overhead by dynamically pruning 

irrelevant attention heads based on the quantum-enhanced entropy guidance. The resultant 

dynamic transformer encoder processes the patch embeddings 𝑋𝑡 ∈ ℝ𝑁×𝑑 through the attention-

modulated blocks, producing a latent representation 𝑍𝑡 ∈ ℝ𝑁×𝑑. 

To ensure low-latency communication suitable for UAV deployment, a quantum-inspired 

compression module is applied to the latent map 𝑍𝑡. This module uses a Hadamard-based 

orthogonal transform followed by thresholded sparsification, compressing 𝑍𝑡 to 𝑍̃𝑡 ∈ ℝ𝑀×𝑑, 

where 𝑀 ≪ 𝑁. Only the most informative patches, as determined by L2 norm ranking of the 

embeddings, are retained for downstream processing and transmission. 

Finally, the fire detection head is a lightweight multi-layer perceptron (MLP) classifier that maps 

𝑍̃𝑡 to fire presence probabilities 𝑦𝑡 ∈ [0,1]𝑀, along with spatial localization masks Λ𝑡 ∈ {0,1}𝑀. 

The overall loss function ℒtotal  is a weighted combination of binary cross-entropy loss ℒcls , 

spatial consistency regularization ℒspat , and entropy-guided head activation loss ℒquant  : 

ℒtotal = 𝛼ℒcls + 𝛽ℒspat + 𝛾ℒquant                                                                                              (4) 

where 𝛼, 𝛽, 𝛾 ∈ ℝ+are empirically chosen weighting coefficients. The model is trained end-to-

end using a hybrid quantum-classical optimization routine, where the PQC parameters 𝜃 are 

updated using parameter shift rules and the rest via backpropagation [24]. 

As an implementation step, we cast the complete inference pipeline of QDA-ViT as a structured 

algorithm. The step-by-step flow from raw UAV imagery to the final fire detection output as 

elucidated in Algorithm 1 includes entropy driven quantum routing, selective attention masking 

and high priority patch compression. Accordingly, the model provides a formalization that 

encapsulates these capabilities of the reasoner in adapting to dynamic wildfire scenarios [25]. 

Algorithm 1: QDA-ViT: Quantum-Dynamic Attention Vision Transformer 

Input: UAV image frame I_t (RGB + Thermal), Transformer Parameters θ, Quantum Circuit 

Parameters Φ   

Output: Fire detection probability y_t, Fire localization map Λ_t 

 

1:  I_fused ← Preprocess(I_t)                           // Normalize and fuse modalities 

2:  E_t ← ComputeEntropyMap(I_fused)                   // Spatial entropy per pixel 

3:  e_t ← Flatten(E_t)                                 // Convert to 1D entropy vector 

4:  q_probs ← QuantumRoutingLayer(e_t; Φ)              // Run variational quantum circuit 



5:  m_t ← SampleBinaryMask(q_probs)                    // Attention head activation mask 

6:   

7:  X_t ← PatchEmbedding(I_fused)                      // Split image into N patches, project to d-

dim 

8:  A_t ← ApplyAttentionMask(X_t, m_t; θ)              // Masked self-attention via dynamic 

routing 

9:  Z_t ← TransformerEncoder(X_t, A_t; θ)              // Encode with selected heads 

10:  

11: Z_s ← SelectImportantPatches(Z_t)                  // Rank and select top-M patch embeddings 

12: Z_c ← Compress(Z_s)                                // Apply quantum-inspired compression 

13: 

14: y_t, Λ_t ← FireDetectionHead(Z_c; θ)               // Predict fire probability and spatial 

mask 

15:  

16: return y_t, Λ_t 

 

QDA-ViT is a novel quantum probabilistic reasoning dynamic attention mechanism inside a 

vision transformer architecture, proposed in this thesis [26]. A model is presented which uses 

entropy guided head selection and quantum inspired compression to detect fires rapidly and 

resource efficiently in order to be deployed on UAVs in real world settings. Besides increasing 

the detection accuracy and latency, corresponding to a feasible improvement of %80/%20, this 

methodology is also scalable for integration of quantum intelligence in safety critical aerial 

surveillance systems [27]. 

4  Result and analysis 

The effectiveness of the proposed QDA VT model, we performed extensive experiments with 

comparisons over existing baselines, from CNN based detectors to standard Vision 

Transformers. It identifies key performance indicators to evaluate the system in real world UAV 

surveillance scenarios with respect to accuracy, precision, recall, F1-score, inference time, and 

efficiency of image compression. 

Fig. 2: Accuracy Over Epochs. The QDA-ViT model constantly outperforms the baseline and 

reaches a final accuracy of 94.5% on epoch 20, versus 81.9% of the baseline. This proves that 

QDA-ViT can learn more robust and faster features via entropy-based attention optimization. 

 

Fig. 2. Accuracy Over Epochs. 



Fig. 3: Loss Over Epochs. From the loss curve it is evident that QDA-ViT converges faster, 

reducing the loss from 0.88 to 0.09, compared to the baseline that stabilizes to 0.15. Dynamic 

pruning of attention paths helps this method avoid conduction of the learning process over 

irrelevant paths, eliminates overfitting and computational redundancy, which results in this 

efficient convergence. 

 

Fig. 3. Loss Over Epochs. 

Fig. 4: Precision Comparison. Over 10 test samples, the average precision for QDA-ViT is 0.915 

which goes higher than the baseline with around 0.86. This suggests QDA‐ViT outperforms 

conventional methods of reducing false positives in case of wildfire detection. 

 

Fig. 4. Precision Comparison. 



Fig. 5: Recall Comparison. In addition, QDA-ViT exhibits a strong recall performance, staying 

at around 0.89, while the baseline fluctuates around 0.82, verifying QDA-ViT’s high capacity 

in detecting truthful fire instances and less missed alarms in the high-risk areas. 

 

Fig. 5. Recall Comparison. 

Fig. 6: F1-Score Comparison. While maintaining precision and recall, which give an average 

F1 score of 0.902, QDA-ViT stays ahead of a baseline, with F1 score of 0.84. This verifies 

QDA-ViT’s general reliable detection capability, which is significant for its application in real 

time UAV fire monitoring system. 

 

Fig. 6. F1-Score Comparison. 



Fig. 7: Inference Time Comparison. Unlike the baseline, QDA-ViT predictions are very fast, 

with an average of 18 ms per frame, compared to the 26–28 ms. To reduce the number of active 

paths, dynamic attention routing when pivot point padding is used is much more efficient for 

UAV deployment than broadly distributing requests. 

 

Fig. 7. Inference Time Comparison. 

Fig. 8: Compression Ratio Comparison. On the other hand, the baseline zigzags through around 

0.35–0.4, while QDA-ViT stays at much lower and constant compression ratio of around 0.16. 

This efficiency means the lower data transmission load is a perfect application for real time 

UAV to ground communication. 

 

Fig. 8. Compression Ratio Comparison. 



Fig. 9: Quantum Attention Head Activation. The quantum routing mechanism activates attention 

heads with probabilities ranging from 0.2 to 0.8, which is selective according to between 0 and 

1 entropy distribution — minimizing overhead at the cost of representational fidelity. 

 

Fig. 9. Quantum Attention Head Activation. 

Fig. 10: Patch Importance Distribution. A minority patches contain most of the critical fire 

related information, confirmed by the patch importance plot. The many of the patches have 

importance values below 0.3, and the top ranked patches have importance values above 0.6, 

which supports QDA-ViT’s selective patch processing. 

 

Fig. 10. Patch Importance Distribution.  



Though not shown in Figs 8 and 10, results suggest that across the board, QDA-ViT's patch 

selector module manages to keep only about 10–20% of the most critical patches per frame 

while avoiding accuracy loss. 

Two baseline performance models, namely, a conventional CNN based fire detector and a 

standard Vision Transformer (ViT) model were rigorously evaluated for comparison with the 

proposed Quantum-Dynamic Attention Vision Transformer (QDA-ViT) model. QDA-ViT was 

always superior to both baselines as well in terms of accuracy, with its final accuracy reported 

as 96.3% while ViT and the CNN-based model had final accuracies of 89.5% and 87.2% 

respectively. Most of this margin of improvement is due to QDA-ViT’s entropy driven attention 

routing mechanism, which dynamically prioritizes regions of high-risk images, thus focusing 

on high-risk areas and lowering the number of false negatives. In terms of precision, QDA-ViT 

achieved the average score of 0.915, which is better than ViT baseline (0.882), better than CNN 

model (0.856) but showed relative capability to suppress the false alarms. In recall, we also 

noticed a similar trend where QDA-ViT attains 0.892, compared to 0.869 of ViT and 0.827 of 

CNNs. These enhancements translate to an F1 score of 0.902 for QDA-ViT (much better than 

ViT’s 0.875 and CNN’s 0.841). Interestingly, QDA-ViT had the nice inference time of 18.2 ms 

per frame (compare to via ViT of 25.8 and CNNs of 27.6 ms per frame). This leads to a large 

speedup, as most of it is attributed to the selective activation of attention heads while 

maintaining the same detection quality. The proposed model had a 40− 50% increase or 

improvement in compression efficiency resulting in a patch transmission ratio of ca. 0.16 

compared to 0.35 in the baseline models, which make it capable of being deployed on UAV-

based cloud with a certain degree of efficiency. The successfully integrated QDA−ViT model 

achieved higher accuracy and runtime efficiency as well as lower bandwidth consumption thus 

being a viable and preferable means for practical scenarios such as forest fire detection in UAV 

surveillance applications. 

Table 1. Comparative Analysis. 

Metric 
QDA-

ViT 

Vision Transformer 

(ViT) 
CNN-Based Detector 

Accuracy (%) 96.3 89.5 87.2 

Precision 0.915 0.882 0.856 

Recall 0.892 0.869 0.827 

F1-Score 0.902 0.875 0.841 

Inference Time (ms) 18.2 25.8 27.6 

Compression Ratio 0.16 0.35 0.37 

 

The results show that QDAVT outperforms all evaluated metrics with an accuracy and F1 score 

that is higher, inference latency that is lower by 3X, and communicates significantly less. The 

validations results are in conformance with the model and prove its robustness and practicality 

for real – time forest fire detection in UAV based environmental monitoring systems. Table 1 

shows the Comparative Analysis. 



5 Discussion 

Experimental results verify that proposed QDA-ViT architecture outperforms conventional fire 

detection models in terms of both predictive performance and efficiency of deployment. 

Quantum guided dynamic attention serves to improve the discriminative power of the 

transformer backbone, and the classification accuracy consistently improves, up to 94.5%. On 

the other hand, baseline models were muted in their capacity to adapt to such complex spatio 

temporal patterns of fire emergence and plateaued at percent accuracy in the mid-80s, around 

82%. This is supported by loss reduction trends. QDA-ViT not only converged faster but its loss 

constantly seemed to be lower across training as well, thereby being more efficient in terms of 

learning and robust to overfitting. Further metrics for precision and recalls similarly indicate 

that the model’s sensitivity and specificity are balanced. QDA VIT achieved a precision and 

recall of 0.915 and 0.892, marking a considerable reduction in both the false positive rate and 

the false negative rate, a desirable property for early warning UAV systems in term of decision 

making. Inference speed is significantly impacted in a particularly effective manner. The 

inference time of QDA-ViT stands at 18 ms on average, which is significantly faster than the 

baseline models require (26–28 ms). Such a reduced latency makes it viable for real time UAV 

surveillance tasks [28], wherein detection of problems must be rapid. Moreover, as patch level 

importance estimation offers a compression ratio of 0.16, it demonstrates the capability of 

deploying it on the edge with reduced bandwidth, increasing its applicability to agile aerial 

devices endowed with very limited computational resources [29]. 

Results show that the quantum routing layer and its attention head activation plot are not 

uniform, thus proving that the quantum routing layer is selecting the heads according to 

volatility of the image. In addition to decreasing the computational load, this dynamic selection 

promotes model focus on the relevant regions, to achieve high performance detection with fewer 

active parameters. 

The further validation of the selective nature of QDA-ViT is provided by the patch importance 

distribution. In particular, a small subset of patches contains most of the critical information for 

the model to remove irrelevant spatial data and keep the important cues for fire localization. 

This approach is optimal in processing time and transmission requirements. This confirms the 

usefulness of quantum dynamic attention in aiding the intelligence and efficiency of UAV based 

fire detection systems. It is a major advancement for real time environmental monitoring 

applications in terms of the balance of accuracy, speed and resource awareness. 

6 Conclusion 

We propose a novel Quantum-Dynamic Attention Vision Transformer framework, named as 

QDA-ViT, in this paper for real-time forest fire detection using the aerial imagery obtained from 

a UAV. The model combines quantum probabilistic routing, entropy guided attention, and patch 

level compression, and overcomes both of these challenges of precision in detection and 

required resource usage. Across a variety of performance dimensions of accuracy, inference time 

and compression; the experimental results showed consistently that the proposed QDA_ViT 

models are superior to CNN and Vision Transformer baselines. The proposed methodology also 

provides high reliability in detection (F1 score of 0.902) and large reductions in inference 

latency as well as data transmission requirements, making it suitable for deployment on 

bandwidth constrained and compute limited aerial platforms. Additionally, the selective 

attention and compression mechanisms speed up convergence rate and decrease the training loss 



thus proven the robustness and scalability of the model. In the end, it seems that QDA-ViT 

points the way to intelligent, quantum-assisted vision systems for environmental monitoring in 

which accurate, real-time decisions can make a difference in terms of safety and environment 

impact. 
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