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Abstract. Human action recognition in video is essential for numerous intelligent systems, 

ranging from surveillance to medical applications. In this contribution, we describe a 

comparative evaluation of four Deep Neural Networks (DNN) architectures intended to 

efficiently learn and recognize human actions: 3D Convolutional Neural Networks (3D 

CNN), 3D CNN with ResNet backbone, Inflated 3D ConvNet (I3D), and the Video Vision 

Transformer (ViViT). These architectures are compared in terms of how well they are 

capable of learning rich spatial-temporal representations needed to understand dynamic 

human activities. Through the examination of the performance and shortcomings of every 

design, this research offers insights into the developing scenario of video-based HAR and 

indicates the advantages of transformer-based attention mechanism over conventional 

convolutional methodologies. 

Keywords: Human Activity Recognition, 3D Convolutional Neural Network, ResNet, 
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1 Introduction 

Human Action Recognition (HAR) is a core Computer Vision (CV) task that deals with 

detecting and classifying human actions from video streams. HAR is an important task in 

numerous applications including security services, human-machine interaction, sports analytics, 

and health monitoring. The goal of HAR is to inspect spatial and temporal patterns in videos to 

effectively identify various human activities in complex environments. Pre-vision methods 

focused on HAR considerably relied on heuristically created features, such as motion trails, 

optical flows, and space-time interest points. Although older methods yielded acceptable 

success, the methods were weak in terms of robustness and scalability for scenarios in real- life 

applications because of their reliance on domain- specific heuristics as well as inferior 

generalization capacities. 

With increased use of DL, paradigm shifts have also occurred in methods of HAR. CNNs have 

played a crucial role in extracting spatial information from single frames, while 3D CNNs 

capture both spatial and short-term temporal behavior. CNN based approaches, though, tend to 

have difficulty modeling long-range temporal behavior, constraining their application to 

analyzing complicated or extended actions. Equally, RNNs and LSTM networks introduced 

sequence learning for videos but are plagued by vanishing gradients and heavy computational 

requirements for longer sequences. In the face of these challenges, recent breakthroughs in 
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attention-based models, especially Transformer architectures, have performed well on HAR 

tasks owing to their improved capacity to handle global temporal dependencies. These models 

take advantage of self-attention mechanisms to handle full sequences in parallel, alleviating 

many drawbacks of sequential traditional architectures. 

In this paper, we provide a thorough comparison of four recent models for video-based HAR: 

3D CNN, 3D CNN with ResNet backbone, Inflated 3D ConvNet (I3D), and the Video Vision 

Transformer (ViViT). These models are tested on the popular UCF101 dataset, which consists 

of around 13.32k videos across 101 classes. Our objective is to determine the merits and 

demerits of every architecture in learning spatial- temporal representations and precisely 

classifying hu- man actions. The comparative study seeks to gain insights into developing 

effective and scalable HAR systems for practical applications. 

2 Related works 

Human Action Recognition (HAR) has been increasingly focusing on due to its use in 

surveillance, health care, human-computer interaction, and smart environments. Researchers 

over the years have submitted different models in order to enhance HAR in spatial-temporal 

feature learning, robustness, and computational complexity. The literature has progressed from 

initial CNN-RNN hybrids to even more advanced attention-based models such as Transformers 

and generative models such as VAEs and Graph Convolutional Networks (GCNs). 

Early attempts at HAR with video were made using deep learning models where spatial or 

temporal learning was concentrated upon. Surek et al. [1] performed an extensive review on 

deep learning HAR methods that contrasted between basic CNN models and sophisticated 

neural models, demarcating their limitations and potentials over benchmarks. Babiker et al. [2] 

likewise discussed neural network structures for general human activity identification in 

everyday circumstances, especially within surveillance scenarios, but with respect to their 

functionality in basic activities of detection. 

One significant change came with the incorporation of spatiotemporal modeling. Wu et al. [3] 

offered an in-depth survey of deep learning-based HAR models, highlighting how temporal 

modeling using LSTM and CNN hybrids enhanced activity detection for untrimmed videos. 

Additional advancements saw hybrid CNN-LSTM architectures introduced that effectively 

learned spatial patterns through CNNs and sequential motion using RNNs [7]. Following 

generative modeling, Sharma et al. [4] surveyed the use of VAEs and other deep architectures 

for HAR on benchmark video datasets. These generative approaches were especially effective 

in semi- supervised settings where labeled data is scarce. The application of residual learning, 

as utilized in ResNet-based HAR models, brought tremendous improvements in the depth of 

feature extraction and gradient flow. Mihanpour et al. [8] applied a ResNet–DB- LSTM hybrid, 

demonstrating how deeper spatial features and bidirectional temporal modeling enhanced 

recognition accuracy. 

To deal with issues of real-time performance, Archana and Hareesh [10] suggested a ResNet 



 
 
 

 

 

 

 

blended with 3D CNNs for rapid and trustworthy HAR. The integration of temporal and spatial 

modeling within one architecture was effective for on-the-fly classification of actions. With the 

emergence of attention mechanisms, Transformer-based models have accelerated HAR 

significantly. Arnab et al.’s [11] ViViT model is one of the significant milestones, which uses 

pure attention- based processing across video sequences to capture global spatial-temporal 

dependencies. This beats regular CNNs and RNNs, especially in the case of long- range 

temporal context capture. 

Other deep learning-oriented HAR systems have been concerned with domain-specific 

applications. Sathya et al. [5] , for instance, proposed an intelligent surveillance system based 

on real-time action recognition using deep learning, combining CNNs and optimization methods 

for field deployment. Khurana and Kushwaha [7] also highlighted the importance of DL for 

HAR in video surveillances, surveying several architectures and their flexibility in challenging 

environments.Graph-based approaches have also come into existence, concentrating on human 

pose estimation and skeleton information. Ahmad et al. [6] gave an overview of GCNs for HAR, 

showing how they excel at modeling human joint correspondence and motion dynamics. 

Recently, R. D. R. and P. C. J. [9] suggested models like Inception-v4 for HAR, which sought 

to balance depth and computational cost. Such models utilized sophisticated CNN architectures 

for real-world video action classification with high accuracy.Some Other recent developments 

in human activity recognition (HAR) have shown the strength of deep learning models in 

extracting intricate spatiotemporal patterns from video data. Ullah et al. [12] carried out a 

thorough systematic literature review comparing different deep neural networks for HAR, 

discussing trends, challenges, and performance measures across architectures. Zaidi et al. [13] 

discussed the use of deep learning to identify suspicious human actions from surveillance 

footage with a focus on the impact of precise HAR systems in public safety in real life. Sun et 

al. [14] presented an end-to-end approach to the Convolutional LSTM model and its ability to 

capture temporal dependencies to improve robust activity recognition. 

In brief, the HAR field has evolved from early CNN-RNN hybrids [2], [3], [7] to strong 

generative models [4], [6], Transformer-based networks [11] and real-time efficient 

solutions [5],[8], [10] . Comparative analysis in our work compares four top-performing 

models 3D CNN, 3D CNN ResNet, I3D, and ViViT on the demanding UCF101 dataset. In this 

exploration, we seek to point out the performance-complexity-temporal modeling capability 

trade-offs in present deep learning techniques for HAR. 

3 Methodology 

This research explores and compares the performance of four deep learning models for HAR on 

the UCF101 video dataset. The selected model’s 3D CNN, 3D CNN ResNet, (I3D) and 

(ViViT)are chosen due to their varied capabilities in spatial-temporal feature extraction. The 

methodology includes the following steps: data preprocessing, model architectures and 

evaluation. 



 
 
 

 

 

 

 

3.1 Preprocessing 

Preprocessing is an important step in transforming raw video data of the UCF101 dataset into a 

deep learning model-friendly format. First, the structure of the dataset is used to parse both 

video paths and related class labels, in which every subdirectory contains a distinct human 

action. These video paths and labels are arranged into NumPy arrays and divided into train-test 

sets with an 80:20 ratio to provide strong model evaluation. For every video, a fixed number of 

frames are sampled at regular intervals, namely every 15 frames, to capture significant temporal 

dynamics while maintaining the data size reasonable. The frame extraction is done using 

OpenCV, where a random initial point is chosen in every video, followed by sequential sampling 

of frames. If the number of frames needed is more than the available frames, then zero-padding 

is applied to ensure uniformity. The frames are then converted from BGR to RGB format and 

resized to 224×224 pixels using TensorFlow utilities. To augment the learning process, all the 

frames are normalized in the [0,1] range and then sent through a FrameGenerator class that 

produces pairs of frame sequences and their respective class labels. These pairs are used in 

TensorFlow’s tf.data. Dataset API, with some optimizations added in the form of caching for 

efficiency, shuffling to introduce randomness, and prefetching to allow asynchronous data 

loading. Lastly, the preprocessed frame sequences are grouped into batches ideally of size 32 

and thus creating a uniform input shape of type (batch size, frames, height, width, channels) 

which is acceptable for inputting into models. 

3.2 Model Architecture 

In this section, we discuss four deep learning architectures that illustrate the progression and 

effectiveness of deep learning architectures in HAR. 

3.2.1 3D CNN 

The 3D Convolutional Neural Network (3D CNN) architecture implemented in this study is a 

sequential model designed to effectively capture spatiotemporal features from video sequences. 

The input to the model is a video clip consisting of 10 consecutive frames, each of resolution 

224×224 with 3 color channels, resulting in an input shape of (10, 224, 224, 3). The architecture 

begins with a 3D convolutional layer comprising 32 filters with a kernel size of 3×3×3, using 

the ReLU activation function and same padding to preserve spatial and temporal dimensions. 

This is followed by a 3D max pooling layer to reduce dimensionality and a batch normalization 

layer to stabilize and accelerate training. 

Subsequent layers follow a similar pattern, progressively increasing the number of filters to 64 

and 128 in the next two convolutional blocks. Each block includes a Conv3D layer, a 

MaxPooling3D layer, and Batch Normalization to ensure robust learning. These layers help the 

model extract complex motion and appearance features across frames by performing 

convolution operations in three dimensions height, width, and time. 

After the feature extraction layers, a Global Average Pooling 3D layer is applied to flatten the 

3D feature maps into a 1D vector, summarizing the spatial-temporal information. This is 



 
 
 

 

 

 

 

followed by a fully connected dense layer with 256 neurons and ReLU activation, along with a 

dropout layer (dropout rate = 0.5) to mitigate overfitting. Finally, the model concludes with a 

dense output layer consisting of 101 neurons and a softmax activation function to classify each 

input sequence into one of the 101 action classes from the UCF101 dataset. This architecture 

strikes a balance between computational efficiency and feature richness, making it a suitable 

baseline for action recognition tasks in video data. Fig. 1 shows the 3D CNN Architecture. 

 

Fig. 1. 3D CNN Architecture. 

3.2.2 3D CNN Resnet 

The architecture used for human activity recognition in [10] is based on a 3D CNN, motivated 

by the ResNet architecture and augmented with Squeeze-and-Excitation (SE) blocks to enhance 

its capacity to learn intricate features. The network accepts an input of 10 consecutive frames, 

each resized to 224×224 pixels with 3 RGB channels, yielding an input shape of (10, 224, 224, 

3). The first layer is a 3D convolution with 64 filters of size 7 as the kernel, batch normalization, 

a ReLU activation, and a max pooling layer with stride 2. 

The central part of the model consists of a sequence of residual blocks, with each block having 



 
 
 

 

 

 

 

two 3D convolutional layers, batch normalization, and ReLU activation. SE blocks are 

optionally inserted before every residual block to refine feature representation. These blocks 

make use of global average pooling and fully connected layers to learn channel-wise relation- 

ships and adaptively recalibrate feature maps. Fig. 2 shows the 3D CNN Resnet Architecture. 

 

Fig. 2. 3D CNN Resnet Architecture. 

As the network becomes deeper, the number of filters doubles from 64 to 1024 to capture 

hierarchical spatial and temporal features. Each residual block also includes shortcut 

connections to promote gradient flow and counter problems such as vanishing gradients. 

Following the stack of residual blocks is a global average pooling layer that shrinks the high-

dimensional feature map into a 1D vector and then feeds it through fully connected layers with 

dropout used to prevent overfitting. 

The last output layer employs a SoftMax activation function to generate probability distributions 

over 101 action categories. The model is trained with the Adam optimizer with weight decay, 

sparse categorical cross-entropy as the loss function, and accuracy as the main evaluation 

metric. Early stopping on the training loss is used to prevent overtraining. This 3D CNN 

structure, based on ResNet and augmented with SE blocks, efficiently extracts both spatial and 

temporal information and is thus highly appropriate for action recognition tasks. 

 



 
 
 

 

 

 

 

3.2.3 Inflated 3D ConvNet 

Aside from the 3D CNN ResNet, this work also reviews an Inflated 3D ConvNet (I3D) 

architecture similar to the work in [17], to improve video-based human activity recognition. The 

I3D model inflates regular 2D convolutional filters to 3D, allowing the network to extract both 

spatial and temporal information from a sequence of video frames. The model input is 10 frames 

of a video each of resolution 112×112 pixels with three color channels, giving an input shape of 

(10, 112, 112, 3). The model starts with a 3D convolutional layer with 64 filters and kernel size 

(7,7,7), followed by batch normalization and application of the ReLU activation function. It is 

further applied to max pooling in order to decrease the spatial dimensions. 

The network goes on to include a few convolutional blocks and then gets into the middle of the 

structure - Inception modules. Such modules include more than one concurrent convolutional 

route: a 1×1×1 convolution, a 3×3×3 convolution that is preceeded by a 1×1×1 dimensionality 

reduction, a 5×5×5 convolution pathway similarly preceded by a 1×1×1 convolution, and a 

pooling pathway post-proceeded with a projection convolution. These paths are concatenated to 

enable the model to simultaneously process features of various scales and complexities. The 

architecture consists of a sequence of such inception modules, with progressively larger filter 

sizes to increasingly learn higher-level spatiotemporal features. Max pooling is placed 

strategically to decrease spatial and temporal dimensions without losing important feature 

information. 

Following the inception blocks, the model performs global average pooling to compress the 

feature maps, then a dense layer with 512 units and ReLU activation. For regularization against 

overfitting, dropout is used. A softmax output layer finally predicts probabilities over 101 

activity classes. The I3D model architecture by integrating the best of convolutional feature 

extraction along with multiscale spatiotemporal processing is well suited for action recognition 

in video data. Fig. 3 shows the Inflated 3D ConvNet Architecture. 

 

Fig. 3. Inflated 3D ConvNet Architecture. 



 
 
 

 

 

 

 

3.2.4 Video Vision Transformer 

The Video Vision Transformer model [11] borrows the success of Vision Transformers to video 

understanding by projecting their ability to process spatiotemporal data. The model accepts as 

input a sequence of video composed of several consecutive frames and starts by splitting these 

frames into smaller spatiotemporal patches, which are embedded into token representations. 

Every token is augmented with positional and token embeddings to preserve spatial and 

temporal structure. A classification token ([CLS]) is added to the beginning of the sequence for 

global information aggregation across the video. 

These tokens are then passed into a basic Transformer Encoder architecture that consists of 

stacked layers (L) of multi-head self-attention and feed-forward neural networks wrapped with 

layer normalization and residual connections. At each encoder block, the model computes multi-

head dot-product attention to enable the capture of advanced interdependencies across both time 

and space. Through this attention process, the model gains an insight into motion and object 

interaction along the length of the video. Fig. 4 shows the   ViViT Architecture. 

 

Fig. 4.  ViViT Architecture. 

Finally, the last output for the [CLS] token, after going through the encoder stack, is fed into a 

Multi-Layer Perceptron (MLP) head that projects the high-level features into the target output 

classes. This allows ViViT to learn video-rich, contextually aware representations purely 



 
 
 

 

 

 

 

through attention without depending on the classical convolutions or recurrent architecture, a 

very effective replacement for video classification 

4 Experimental Observations 

For evaluating our model, we use various metrics that play a key role in determining how model 

performs on testing data. Among the numerous evaluation metrics available, we focus on some 

of the most commonly used: accuracy, precision, and recall. 

4.1 Accuracy 

Accuracy measures how frequently a model makes correct predictions, and it is determined 

using a specific formula. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇.𝑃+𝑇.𝑁

𝑇.𝑃+𝑇.𝑁+𝐹.𝑃+𝐹.𝑁
                                                                                                     (1) 

4.2 Precision 

Precision indicates the fraction of predicted positive cases that are truly positive. It is calculated 

using the formula: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇.𝑃

𝑇.𝑃+𝐹.𝑃
                                                                                                                  (2) 

4.3 Recall 

Recall, also referred to as sensitivity or the true positive rate, represents the percentage of actual 

positive cases that the model correctly identified: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇.𝑃

𝑇.𝑃+𝐹.𝑁
                                                                                                                         (3) 

5 Results and Discussion 

We evaluated the models using metrics such as accuracy, precision, recall and Loss in table 1. 

Fig 5 to 12 show how well each model worked by displaying their accuracy and error (loss). 

These include results for 3D CNN ResNet (Figs. 5–6), I3D (Figs. 7–8), 3D CNN (Figs. 9–10), 

and ViViT (Figs. 11–12). 

Table 1: Performance Comparison of HAR models. 

Method Accuracy Precision Recall Loss 

3D CNN 91.04% 0.91 0.90 0.43 



 
 
 

 

 

 

 

3D CNN ResNet 94.02% 0.93 0.92 0.34 

Inflated 3D ConvNet 86.07% 0.83 0.85 1.23 

Video Vision Transformer 95.62% 0.94 0.93 0.24 

 

Fig. 5.  Accuracy of 3D CNN Resnet. 

Fig. 6. Loss of 3D CNN Resnet. 

 

Fig. 7. Accuracy of I3D. 



 
 
 

 

 

 

 

 

Fig. 8. Loss of I3D. 

 

           Fig. 9. Accuracy of 3D CNN . 

  

Fig. 10. Loss of 3D CNN. 



 
 
 

 

 

 

 

 

Fig. 11.  Accuracy of ViViT. 

                           Fig. 12. Loss of ViViT. 

5.1 Comparison of Models 

The systematic evaluation provided valuable insights into the strengths and limitations of each 

model which are summarized in Table 2. 



 
 
 

 

 

 

 

Table 2. Summary of Deep Learning Methods for HAR. 

Method 
Model 

Architecture 
Accuracy Scalability 

Feature 

Extraction 
Limitations 

3D CNN 

(Proposed 

baseline) 

3D 

Convolutional 

Layers with 

Max Pooling 

and Dropout 

layers. 

Low 

Accuracy 

compared to 

Advanced 

Methods like 

Transformers 

and 3D CNN 

Resnet. 

Low 

Accuracy 

compared to 

Inflated 3D 

ConvNet. 

Low to 

moderate 

Efficient in 

capturing 

Spatiotemporal 

Features 

Struggles with 

complex Tasks. 

3D CNN 

Resnet 

[10] 

3D CNN with 

Residual 

connection. 

High 

Accuracy 

and Recall 

compared to 

3D CNN and 

I3D 

Convnet. 

Low to 

moderate. 

Improved due 

to Residual 

connections 

Computationally 

Expensive, 

Limited ability 

to capture long-

range 

dependencies. 

Inflated 3D 

ConvNet 

[15] 

Leverages 

pretrained 

ImageNet 

models for 

Strong 

Feature 

initialization. 

Low 

Accuracy 

compared to 

other 

methods. 

Moderate 

Improved 

Motion 

understanding 

due to the use 

of Dual-

Stream input. 

Computationally 

expensive due to 

dual input 

streams. 

 

Video 

Vision 

Transformer 

[11] 

Transformer 

High 

Accuracy 

compared to 

above listed 

methods. 

High 

Efficient 

learning due to 

capability to 

capture long-

range 

dependencies 

with self -

attention. 

High 

computational 

cost, large 

datasets for 

optimal 

performance, 

slower training. 

6 Conclusion  

This comparative study highlights a clear evolution from traditional models like 3D CNN to 

more advanced approaches such as Video Vision Transformer. While 3D CNN provides a strong 

baseline with relatively low complexity, it struggles to match the accuracy and recall of more 

sophisticated models like 3D CNN ResNet and I3D, which incorporate residual connections and 

pretrained features to improve learning. The Video Vision Transformer emerges as the most 



 
 
 

 

 

 

 

effective model, achieving the best results in all key metrics, though it is computationally more 

expensive. 

In conclusion, the progression from 3D CNN (base model) to ViViT (advanced model) 

demonstrates how incorporating residual connections, pretrained networks, and attention 

mechanisms can lead to significant performance gains, especially for complex tasks like human 

action recognition in video data. However, the trade-off between model performance and 

computational resources must be considered when choosing the optimal model for deployment. 
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