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Abstract. LOTUS-PARK, a novel metadata-driven machine learning framework for 

intelligent, real-time parking assistance in urban environments. Unlike most traditional 

systems that process images, LOTUS-PARK employs structured contextual data 

(temporal, spatial, environmental and vehicle related features) to derive predictions of 

parking occupancy and suggest the optimal parking locations. The ability of the proposed 

methodology to do multi-stage learning is evidence of its abilities by capturing both pattern 

recognition and temporal stability, in addition to its incorporation of a predictive 

GreenScore metric to model sustainability. Experiments performed on a custom generated 

urban parking dataset show that LOTUS-PARK outperforms baseline models (Logistic 

Regression and Random Forest) with 0.90 of accuracy, 0.88 of F1-score with a precision 

of 0.91. Moreover, the system has a strong capability of predicting eco-efficiency, as the 

GreenScore regression R² is 0.96 with an MSE of 0.002. Analysis of occupancy trends 

across variables such as days, hours, weather, and lighting conditions confirm the model's 

robustness and flexibility. LOTUS-PARK offers a sustainable and intelligent solution for 

optimizing smart mobility and urban parking with high predictive accuracy.  

Keywords: Intelligent Parking Systems; Machine Learning; Smart Mobility; Urban 

Parking Optimization; Sustainable Transportation 

1 Introduction  

Urbanization is very rapid and as a result the vehicle density is increasing and more and more 

pressure on the transportation infrastructure is growing in the metropolitan cities [1,2]. Drivers 

lost in search for available parking represent a considerable share of urban traffic congestion, 

which, aside from wastage of fuel and additional CO₂ emissions, has a negative influence on the 

overall efficiency of the urban mobility system [3-5]. Scholars of traditional smart parking 

solutions based on image processing, video surveillance or physical IoT sensors usually require 

substantial investments to the infrastructure, have limited scalability and the privacy and data 

reliability issues [6-9]. This incited the growth of interest in cost efficient, scalable and 

environmentally sustainable intelligent, metadata driven solutions to these limitations [10-12]. 
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LOTUS-PARK (Learning Optimized Temporal Urban Sustainability-aware Parking) is an 

intelligent urban parking assistance system that utilizes machine learning to predict real-time 

parking spot occupancy without relying on images or sensors. By analyzing structured 

metadata—such as timestamps, location coordinates, weather and lighting conditions, lot and 

vehicle types, and annotator identity—the system provides optimal parking recommendations. 

This approach aligns with smart city initiatives by prioritizing environmental goals, user privacy, 

and minimizing communication overhead. 

Unlike conventional classification based approach, LOTUS PARK entails the dual model 

pipeline that not only predicts occupancy status but also estimates a GreenScore, a sustainability 

metric depicting a parking behavior environmental impact. A regression module learns this score 

by measuring how well a given parking spot decreases search time and emissions. The proposed 

system outperformed baseline models such as Logistic Regression and Random Forest with an 

accuracy of 0.90, F1 score of 0.88 and precision of 0.91. LOTUS-PARK’s high accuracy for 

GreenScore prediction showed the prediction has an R² value of 0.96 and MSE just of 0.002, 

demonstrating robust predictive capability and eco-alignment. 

Temporal patterns, vehicle types and the environment influence the parking behavior. In late 

afternoon hours (16:00–18:00), occupations peaks appeared with weekends more congested. 

Furthermore, there seems to be a strong correlation between vehicle type and occupancy, and so 

one can further improve performance by providing vehicle specific guidance. Additionally, the 

ability of the system to adapt for lighting and weather conditions without the aid of any image 

data also configures it for real world smart city applications.  

1.1 The key contributions Include: 

• A machine learning architecture controlled by metadata for parking occupancy prediction 

and sustainability evaluation. 

• Gated study on the development of the GreenScore metric as a measure for environmental 

efficiency in parking decision making. 

• Development of a high-dimensional simulated urban parking dataset with contextual 

labels for model training and evaluation. 

• Insightful correlation and trend analysis across time, location, environmental conditions, 

and lot characteristics. 

 The future sections of the paper are distributed as :Section II: describes related work and 

locates LOTUS-PARK within the landscape of intelligent parking systems. Section III: details 

the dataset construction, feature dimensions, and simulation strategies. Section IV: describes the 

proposed methodology and outlines the architectural framework in detail. Section V: covers the 

experimental setup, evaluation metrics, and baseline comparisons. In Section VI: discusses the 

key results such as occupancy trends, feature correlations. This paper concludes with Section VII: 

conclusions and future directions for deployment, scalability, integration with a real-time 

mobility platform. 



2  Related Work 

The domain of intelligent parking systems has received a lot of attention owing to escalating 

problems of city congestion, resource wastage, and environmental degradation [13-15]. Existing 

solutions are mostly installed either as sensor-based system, vision-based detection, or data 

driven predictive model [16,17]. Some approaches are using sensor-based solutions like RFID, 

ultrasonic or infrared sensors [18,19] which provide real time status but need large hardware 

deployment and is not cost effective nor scalable. Camera feeds with convolutional neural 

networks (CNNs) are used in vision-based models for spot detection [20-24], but they are 

computationally intensive, environment dependable (i.e. the environment changes: such as 

lighting and occlusion), and bring privacy concerns [25]. 

The recent approaches involved machine learning–based prediction models which are grounded 

on historical occupancy data, time of day pattern and location information. For instance, various 

probabilistic models [26], decision trees [27] and hybrid deep learning methods [28] have been 

used to this end, for example, for forecasting in real time. The use of such models is normally 

predicated on the availability of large, annotated image datasets at hand or real time sensor 

streams, whereby they cannot be deployed in places with constrained infrastructure or budget. 

In addition, most of these approaches do not include metrics of sustainability or target the 

reduction of environmental impact, which is becoming increasingly important for future smart 

city endeavors [29]. 

Some emerging research tries to utilize contextual metadata (weather, time, GPS coordinates, 

etc) as features for predicting occupancy [30]. Unfortunately, they usually apply to a specific 

domain, lack generalization, or treat contextual features in an isolated fashion. Additionally, no 

existing system incorporates a learnable sustainability score such as a GreenScore to quantitate 

eco—efficiency of parking suggestions in terms of fuel savings and emission reductions. 

Because of these limitations, the novelty of the proposed LOTUSPARK framework is that it 

operates completely on structured data without requiring the use of sensors or visual data, 

guaranteeing scalability, privacy preservation, and low deployment costs. Unlike conventional 

classification only systems, LOTUS-PARK has dual model architecture that classifies 

occupancy and is associated with GreenScore regression so that it can recommend available and 

environmentally optimal parking spots. In addition, the proposed framework provides a new 

dataset of diverse metadata attributes including lighting conditions, lot types and types of 

vehicles which are typically overlooked in previous work. It is a significant improvement over 

the state of the art in parking prediction that is holistic and sustainability aware. 

While many improvements and innovations for predictive modeling and smart parking analytics 

have been made, we believe there is still a significant research gap; we are unaware of any 

solution that effectively integrates multi-dimensional metadata, environmental awareness, and 

real-time intelligent recommendation without the use of sensors or some kind of visual data. 

LOTUS-PARK closes this gap by providing an interpretable, deployable, and all-around 

comprehensive system for next-generation urban mobility infrastructure. 



3  Methodology 

LOTUS PARK (Learning-based Optimized Temporal Urban Spot Recommendation using 

PARKing Metadata) is a machine learning framework that predicts real-time urban parking 

availability using spatio-temporal and environmental metadata, including timestamps, weather, 

lighting, spatial coordinates, lot types, and historical occupancy patterns. It comprises four 

components: Contextual Feature Embedding, Temporal Behavior Encoder, Multi-Task 

Predictive Learning, and a Policy-Based Adaptive Recommendation Engine, each contributing 

to a robust and intelligent smart parking system. 

 

Fig 1. Proposed Framework Architecture. 

3.1 Metadata Dimensions 

Let each parking record 𝑥𝑡
𝑖 at time 𝑡 for parking spot 𝑖 be composed of the following metadata 

dimensions: 

Temporal features: 

ℎ𝑡 ∈ {0,1, … ,23} - Hour of the day and 𝑑𝑡 ∈ {0,1, … ,6} - Day of the week. 𝜏𝑡 ∈ ℝ2 - Periodic 

time encoding: sin⁡(
2𝜋ℎ𝑡

24
) , cos⁡(

2𝜋ℎ𝑡

24
) 

Environmental features: 𝑤𝑡 ∈ 𝒲 - Weather condition (Sunny, Rainy, etc.), 𝑙𝑡 ∈ ℒ - Lighting 

condition (Daylight, Night, etc.). Encoded as one-hot or learned embeddings: 𝑒𝑡
𝑒𝑛𝑣 =

Embed⁡(𝑤𝑡 , 𝑙𝑡) 



Spatial features: 𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ ℝ2 - Physical coordinates 

Optionally transformed via a spatial encoder: 𝑒𝑖
spatial 

= 𝜙(𝑠𝑖) ∈ ℝ𝑘 

Structural features: 𝑐𝑖 ∈ 𝒞 - Lot type (Mall, Street-side, Underground, etc.) 

Occupancy state: 𝑦𝑡
𝑖 ∈ {0,1} − Whether spot 𝑖 is occupied at time 𝑡 

3.2 Contextual Feature Embedding (CFE) 

The Contextual Feature Embedding (CFE) module in the proposed LOTUS-PARK framework 

is the first stage of the proposed framework that embeds raw structured metadata into a unified 

numerical representation for downstream learning. Since LOTUS-PARK is intended to run 

without the support of vision or sensor data, the quality and expressiveness of metadata 

embeddings are very important for performance of the model. Each data sample 𝑥𝑡
𝑖 corresponds 

to a single parking spot 𝑖 at time 𝑡, described by multiple feature categories: 

Temporal features: hour of day ℎ𝑡 ∈ {0,1, … ,23} and day of week 𝑑𝑡 ∈ {0,1, … ,6} 

Environmental features: weather condition 𝑤𝑡 ∈ 𝒲 and lighting condition 𝑙𝑡 ∈ ℒ 

Structural features: lot type 𝑐𝑖 ∈ 𝒞 

Spatial features: geographic coordinates 𝑠𝑖 = (𝑥𝑖 , 𝑦𝑖) ∈ ℝ2 

To capture the cyclical nature of time-based features, we apply periodic encodings for hour and 

weekday using sine and cosine transformations: 

𝜏𝑡 = [sin⁡(
2𝜋ℎ𝑡

24
) , cos⁡(

2𝜋ℎ𝑡

24
) , sin⁡(

2𝜋𝑑𝑡

7
) , cos⁡(

2𝜋𝑑𝑡

7
)]                                                                (1) 

Categorical features such as weather, lighting, and lot type are encoded via learnable embedding 

layers: 

𝑒𝑡
(𝑤)

⁡= Embed𝒲 ⁡(𝑤𝑡) ∈ ℝ𝑑𝑤

𝑒𝑡
(𝑙)

⁡= Embedℒ ⁡(𝑙𝑡) ∈ ℝ𝑑𝑙

𝑒𝑖
(𝑐)

⁡= Embed𝒞 ⁡(𝑐𝑖) ∈ ℝ𝑑𝑐

⁡                                                                                                 (2) 

For spatial encoding, we adopt one of two strategies depending on implementation preference: 

Continuous spatial encoding: raw coordinates are projected via a linear layer: 

𝑒𝑖
(𝑠)

= 𝑊𝑠𝑠𝑖 + 𝑏𝑠 , ⁡𝑒𝑖
(𝑠)

∈ ℝ𝑑𝑠                                                                                                          (3) 

Clustered spatial zones: locations are grouped using clustering (K-Means), and zone IDs are 

embedded: 



𝑧𝑖 = Cluster⁡(𝑠𝑖), ⁡𝑒𝑖
(𝑠)

= Embed𝒵 ⁡(𝑧𝑖)                                                                                      (4) 

All encoded features are concatenated into a unified context vector: 

𝐸𝑡
𝑖 = [𝜏𝑡∥∥𝑒𝑡

(𝑤)
∥∥𝑒𝑡

(𝑙)
∥∥𝑒𝑖

(𝑐)
∥∥𝑒𝑖

(𝑠)
] ∈ ℝ𝑑total                                                                                          (5) 

where ∥ denotes vector concatenation and 𝑑total  is the combined embedding dimensionality. This 

dense vector 𝐸𝑡
𝑖  serves as the input to the Temporal Behavior Encoder (TBE), which models 

sequential patterns in occupancy dynamics across time. 

3.3 Temporal Behavior Encoder (TBE) 

The second stage of LOTUS – PARK framework is the Temporal Behavior Encoder (TBE) which 

aims at capturing long range dependencies and evolving occupancy patterns at the granularity of 

individual parking spot. In contrast to the recurrent models that suffer from vanishing gradients 

and restricted context windows, the temporal self-attention of TBE based on a Transformer 

architecture allows the system to take full context of a complex urban dynamic that are influenced 

by time, environment and user behaviour. 

Let ℰ𝑡
𝑖 = {𝐸𝑡−𝑛

𝑖 , … , 𝐸𝑡−1
𝑖 , 𝐸𝑡

𝑖} be a temporal window of context embeddings for spot 𝑖, where each 

𝐸𝑡−𝑗
𝑖 ∈ ℝ𝑑𝑑+𝑡𝑎𝑙  is obtained from the Contextual Feature Embedding (CFE) module. This 

sequence represents the recent historical metadata context over the past 𝑛  time steps. The 

Transformer encoder runs a multi head self-attention modelling a dependence between all-time 

steps, in such a way making the network learn the relationships between metadata events ( 

repeated patterns at different weather conditions or at different time slots). The input sequence is 

augmented with positional encodings to avoid discarding ordering. 

𝐸̃𝑡−𝑗
𝑖 = 𝐸𝑡−𝑗

𝑖 + PosEnc⁡(𝑗), ⁡∀𝑗 ∈ {0, … , 𝑛}                                                                                   (6) 

Let ℰ̃𝑡
𝑖 = {𝐸̃𝑡−𝑛

𝑖 , … , 𝐸̃𝑡
𝑖} be the resulting input sequence. The Transformer encoder processes this 

sequence as: 

𝑍𝑡
𝑖 =  TransformerEncoder (𝜀𝑡

𝑖) ∈ ℝ𝑑                                                                                             (7) 

where 𝑍𝑡
𝑖  is a fixed-length latent representation summarizing the temporal occupancy behavior 

of spot 𝑖 up to time 𝑡. 

The Transformer Encoder consists of 𝐿 layers, each composed of: 

Multi-head self-attention: 

 Attention (𝑄, 𝐾, 𝑉) = softmax⁡(
𝑄𝐾⊤

√𝑑𝑘
) 𝑉                                                                                      (8) 

where 𝑄,𝐾, 𝑉 are the query, key, and value projections of the input sequence, and 𝑑𝑘  is the 

dimensionality of the keys. 



Position-wise feedforward networks (FFN): 

FFN⁡(𝑥) = max(0, 𝑥𝑊1 + 𝑏1)𝑊2 + 𝑏2                                                                                       (9) 

Residual connections and layer normalization after each sub-layer. 

The output 𝑍𝑡
𝑖  encodes the current behavioral context of parking spot 𝑖 and is passed to the Multi-

Task Prediction Head (MTP) for occupancy forecasting, hotspot classification, and GreenScore 

prediction. 

3.4 Multi-Task Prediction Head (MTP) 

The third core component of LOTUS–PARK architecture is used known as the Multitask 

Prediction Head (MTP). For this, it can take advantage of the latent behavioral encoding 𝑍𝑡
𝑖 ∈

ℝ𝑑 generated by the Temporal Behavior Encoder (TBE) and create behavioral propagation tasks 

about real-time parking optimization. The model is expected to learn jointly three interrelated 

outputs: (1) future occupancy status, (2) demand hotspot classification and (3) sustainability score 

(GreenScore). In this multi-task learning setting, the proposed framework's generalization ability 

is boosted and richer supervision signals for training are obtainable. 

3.4.1 Occupancy Prediction 

The first task is to predict whether parking spot 𝑖 will be occupied at a future time step 𝑡 + 𝑘, 

where 𝑘 is a user-defined forecasting horizon (5, 10, or 15 minutes). This is framed as a binary 

classification problem, where the probability of the spot being occupied is computed via a 

sigmoid activation: 

𝑦̂𝑜𝑐𝑐
𝑖 (𝑡 + 𝑘) = 𝜎(𝑊𝑜𝑐𝑐𝑍𝑡

𝑖 + 𝑏𝑜𝑐𝑐)                                                                                                (10) 

where 𝑊𝑜𝑐𝑐 ∈ ℝ1×𝑑 and 𝑏𝑜𝑐𝑐 ∈ ℝ are learnable parameters, and 𝜎(⋅) is the sigmoid function. 

3.4.2 Hotspot Classification 

The second task belongs to demand class which is either low, medium, or high according to recent 

occupancy history and environmental conditions. For traffic and urban planning application, this 

is useful. We consider this a multi classification task and model this using a softmax function. 

𝑦̂ℎ𝑜𝑡
𝑖 = Softmax⁡(𝑊ℎ𝑜𝑡𝑍𝑡

𝑖 + 𝑏ℎ𝑜𝑡)                                                                                              (11) 

where 𝑊hot ∈ ℝ𝐶×𝑑 , 𝑏hot ∈ ℝ𝐶 , and 𝐶 is the number of demand classes. 

3.4.3 GreenScore Regression 

The third task refers to a regression problem to estimate a sustainability aware GreenScore of 

each spot. The score takes into account factors like how much emissions are predicted to be saved 

with a shorter search time, walking distance to the destination and what the current demand is 

exerting. 



The predicted GreenScore is computed as: 

𝑦̂green 
𝑖 = 𝑊green 𝑍𝑡

𝑖 + 𝑏green                                                                                                              (12) 

where 𝑊green ∈ ℝ1×𝑑 , 𝑏green ∈ ℝ, and the output is a continuous scalar value. 

3.4.4 Joint Loss Function 

To train all three tasks simultaneously, we define a composite loss function presented below and 

summarized in Table 1: 

ℒtotal = 𝜆1 ⋅ ℒ𝑜𝑐𝑐 + 𝜆2 ⋅ ℒhot + 𝜆3 ⋅ ℒgreen                                                                                           (13) 

where: 

ℒoce  is the binary cross-entropy loss for occupancy prediction, ℒhot  is the categorical cross-

entropy loss for hotspot classification, ℒgreen  is the mean squared error (MSE) loss for 

GreenScore prediction and  𝜆1, 𝜆2, 𝜆3 are scalar hyperparameters controlling the weight of each 

task 

Table 1. Functional Summary. 

Output Type Equation 

Occupancy Binary 
𝑦̂𝑜𝑐𝑥
𝑖 (𝑡 + 𝑘) − 𝜎(𝑊𝑜𝑥𝑍𝑡

𝑖

+ 𝑏𝑜𝑐𝑥) 

Hotspot 

Class 
Multi-class 

𝑦̂hat 
𝑖 − Softmax⁡(𝑊hot 𝑍𝑡

𝑖

+ 𝑏hat ) 

GreenScore Regression 𝑦̂green 
𝑖 −𝑊green 𝑍𝑡

𝑖 + 𝑏green  

 

Multi-Task Prediction Head allows LOTUS-PARK to generate a rich and diverse set of outputs 

from the shared latent state supporting not only availability prediction but also environmental 

impact modelling and demand aware recommendation as well. 

3.5 PolicyNet: Adaptive Spot Recommendation Module 

The last component of LOTUS-PARK architecture is PolicyNet, a decision-making module that 

chooses and ranks the best parking spot at time 𝑡 for a user, using the output prediction of Multi-

task Prediction Head (MTP). PolicyNet learns a contextual, reward driven decision policy 

balancing between availability, proximity, user preferences, as well as sustainability in a real-

world sensible manner. 

3.5.1 State Representation 

At each time step 𝑡𝑡  for every candidate parking spot 𝑖 ∈ 𝒮𝑡 , we construct a state vector 𝑠𝑡
𝑖 

composed of the model predictions and user-defined metadata: 



𝑠𝑡
𝑖 = [𝑦̂𝑜𝑐𝑐

𝑖 , 𝑦̂hot 
𝑖 , 𝑦̂green 

𝑖 , 𝑈fit 
𝑖 ]                                                                                                       (14) 

Where: 

𝑦̂𝑜𝑐𝑐
𝑖 ∈ [0,1] : predicted probability of the spot being available 

𝑦̂hot 
𝑖 ∈ ℝ𝐶  : softmax probabilities for demand class 

𝑦̂green 
𝑖 ∈ ℝ : predicted GreenScore 

𝑈𝑓𝑖𝑡
𝑖 ∈ ℝ : user preference score (e.g, shaded spot, close to entrance) 

This state 𝑠𝑡
𝑖 summarizes the decision context for spot 𝑖 at time 𝑡. 

3.5.2 Ranking Function 

PolicyNet ranks each spot using a weighted utility function: 

Score⁡(𝑠𝑡
𝑖) = 𝛼 ⋅ 𝑦̂𝑜𝑐𝑒

𝑖 + 𝛽 ⋅ 𝑈𝑓𝑖𝑡
𝑖 + 𝛾 ⋅ 𝑦̂green 

𝑖                                                                               (15) 

Where: 

𝛼, 𝛽, 𝛾 ∈ ℝ are scalar weights (fixed or learnable) 

The score reflects a tradeoff between availability, personalization, and sustainability The top-

ranked spot is then recommended to the user: 

𝑎𝑡
∗ = arg⁡max

𝑖∈𝒮𝑡
 Score⁡(𝑠𝑡

𝑖)                                                                                                            (16) 

3.5.2 Reinforcement Learning Formulation 

To improve recommendations over time, the PolicyNet can be trained via reinforcement learning 

(RL). In this setting: 

State: 𝑠𝑡
𝑖 - current prediction-based vector 

Action: 𝑎𝑡 ∈ 𝒮𝑡 - select a parking spot 

Reward: 

𝑅𝑡 = {

+1,  if user parks in recommended spot 

0,  if user ignores recommendation 

−1,  if recommendation was inaccurate (spot was occupied) 

⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡(17) 

Policy: 𝜋𝜃(𝑠𝑡
𝑖) — a neural network trained to maximize expected cumulative reward: 



𝜃 ← 𝜃 + 𝜂 ⋅ ∇𝜃𝔼𝜋𝜃
[𝑅𝑡]                                                                                                              (18) 

Here, 𝜃 are the policy parameters presented in Table 2 and 𝜂 is the learning rate. This allows 

LOTUS-PARK to adapt over time to changing user behavior, seasonal dynamics, and urban 

parking trends. 

Table 2. Functional Summary. 

Component Description 

Input 
Prediction vector + user 

preference 

Output 
Ranked list of parking 

spots 

Method 
Utility-based scoring + 

RL-based policy learning 

Optimization 

Balance between 

availability, user fit, 

sustainability 

Learning Signal 

Real-time feedback from 

user action (reward 

function) 

 The PolicyNet module of LOTUS-PARK supports online adaptation. Over time, as more 

feedback is gathered about whether the users accepted the recommended spots, the policy 

network can be retrained gradually (or periodically) to increase accuracy and responsiveness in 

decision making. 

3.6 Algorithm : LOTUS-PARK – Metadata-Driven Parking Spot Recommendation 

Input 

Metadata 𝐷 = {𝑥𝑖
𝑖},  

Time window 𝐻,  

Policy function 𝜋,  

Task weights 𝜆1, 𝜆2, 𝜆𝑠 
Output: 

Recommended parking spot 𝑎𝑖
∗ 

Process 

For each parking spot 𝑖 ∈ 𝑆 do 

1 For each time step 𝑡 do 

2 Encode time features: 𝜏2 ← Time Encoding (𝑥𝑖
𝑖) 



3 Embed categorical features: foat ← Embed⁡(𝑥𝑡
𝑖) 

4 Encode spatial features: espatial - Spatial Fincoding 

(𝑥𝑖
2) 

5 Concatenate: 𝐸𝑡
𝑖 ← [𝜏𝑡 , 𝑒cat , 𝜖spatisid ] 

6 End for 

7 Create sequence 𝐸man 
𝑖 ← {𝐸𝑡−𝐻+1

𝑖 , … , 𝐸𝑖
𝑖} 

8 Generate temporal representation: 𝑍𝑡
𝑖 +  Transformer 

Eincoder (𝐸mop 
𝑖 ) 

9 Predict occupancy: 𝑦̂𝑜𝑥
𝑖 + 𝜎(𝑊𝛼<𝑛𝑍𝑡

𝑖 + 𝑏𝑜𝑥) 

10 Predict hotspot class: 𝑦̂hot 
𝑖 + Softmax⁡(𝑊hat 𝑍𝑡

𝑖 + bhees 

⁡𝑖) 

End for 

Compute recommendation: 𝑎𝑡
∗ ← 𝜋(𝑠𝑡

1, 𝜎𝑡
2, … , 𝑠𝑖

𝑁) 

Return 𝑎𝑡
∗ 

 

Training: 

17. While not converged do 

        18. Compute total loss: 

ℰtrid ← 𝜆1 ⋅ BCE + 𝜆2 ⋅ CE + 𝜆3 ⋅ MSE 

19 Update model parameters via backpropagation 

20 If using reinforcement learning: update 𝜋  based an 

reward 𝑅𝑒 

    End while 

 

 

LOTUS-PARK is designed to integrate to model complex urban parking dynamics from models 

learned historically from metadata in space, time and context. The framework synergistically 



combines multi task learning with an utility driven decision policy to achieve a balance between 

these objectives. The resulting system is scalable, does not require vision, and is applicable in 

modern smart city infrastructure where knowledge about metadata and topology is more 

accessible to the system than visual observations. 

4 Implementation Details 

4.1 Dataset Construction 

A custom metadata presented in Table 3 based parking dataset for training and evaluation of 

LOTUS-PARK framework was simulated with real world urban conditions. The dataset 

comprises of time stamped, structured entries regarding a parking spot, including its 

environmental and spatial context, without requiring a visual input. One row is a parking spot at 

one of the time. It holds 200 entries of parking spot time series each of which consists of multiple 

time intervals. Realistic urban dynamics are represented including varying demand, lighting 

conditions, etcs as data synthetically generated and manually annotated accordingly. 

Table 3. Input Features. 

Feature Type Description Format 

Timestamp Time of capture Hour, Day 

Weather Condition Weather at time t Categorical 

Lighting Condition 
Lighting level (e.g., 

Night, Day) 
Categorical 

Lot Type 
Type of lot (e.g., Mall, 

Street) 
Categorical 

Coordinates X, Y spatial location Numerical 

Spot ID Unique identifier Integer 

Occupied Spot availability status 
Binary 

(Label) 

 Encoded either directly or using spatial clustering, coordinates are encoded and encoded 

features using learnable embedding layers with all categorical features. The occupancy prediction 

at time 𝑡+𝑘 serves as the target label for the main task while auxiliary labels for hotspot 

classification and sustainability scoring are used. 

4.2  Model Implementation 

The implementation of LOTUS-PARK is in Python and PyTorch with a modular architecture. 

• It also allows the Transformer Encoder to process a window of 𝐻=15 historical time steps. 

• Embeddings are shared across the dataset and each spot is modeled individually. 

• The multi–task prediction head is responsible for making binary classification, multi–

class classification, and regression predictions at the same time. 



• A lightweight policy function evaluates the utility scores and picks the best spot for each 

time step. 

The data is split for 80 to train and 20 to test. Adam optimizer is used to train all models with a 

batch size of 64 and early stopping based on validation loss. 

5 Result and Discussion 

In order to evaluate the LOTUS PARK framework, a number of key performance metric were 

analyzed, such as accuracy, F1 score, precision, mean squared error (MSE), GreenScore 

regression performance and model comparison with baselines, i.e., Random Forest and Logistic 

Regression. Furthermore, occupancy trends and environmental correlation were analyzed for 

probing into parking behavior. Results obtained are summarized in the following sections. 

5.1 Comparative Analysis of Model Performance 

As part of validating the effectiveness of LOTUS – PARK, we compared the performance of 

LOTUS- PARK to two baseline traditional models as presented in Fig 2, 3, 4 and Table 4: 

Random Forest and Logistic Regression. Fig 2 and table  shows the results indicating that 

LOTUS-PARK with the accuracy of 0.90 is better than Random Forest (0.97) and Logistic 

Regression (0.80) at identifying the diseases. Random Forest had a slightly higher accuracy with 

tendency of overfitting while LOTUS-PARK has maintained the balance in generalization. 

LOTUS-PARK exhibits similar behavior as calculated by the F1-score: it was better (0.88) than 

Logistic Regression (0.89), but worse than Random Forest (0.99), which indicates that it does as 

good as job at discriminating between true positives and true negatives. With regard to precision, 

LOTUS-PARK achieved 0.91 and has demonstrated its robustness to predict accurate occupancy 

instances. 

Table 4. Comparative Analysis. 

Model Accuracy 
F1-

Score 
Precision 

Random Forest 0.97 0.99 0.97 

Logistic Regression 0.80 0.89 0.84 

LOTUS-PARK 0.90 0.88 0.91 

 

5.2 GreenScore Prediction and Environmental Impact 

LOTUS-PARK is a key innovation in that it predicts GreenScore as shown in Fig 2, a measure 

of sustainability due to reduction in vehicle search time and fuel consumption. Fig 2 reveals an 

R² of 0.96 of regression plot which is a sign of alignment between predictions of model and actual 

GreenScores. This was also shown by the low MSE of 0.002. This indicates LOTUS-PARK can 

be employed efficiently for ecofriendly parking recommendation. 



 

Fig. 2. Green Score Regression Performance. 

5.3  Occupancy Trends Across Time and Location 

Variation in occupancy as shown in Fig 3, 4, and 5 rate with respect to different temporal and 

spatial factors was analytically studied. To illustrate, high occupancy trend hourly proves to have 

maximum demand experienced from 16:00 - 18:00, thus demonstrating rush hour congestion. 

Occupancy rate of the day of the week shows that weekends (Saturday & Sunday) have less 

parking demand than weekdays. Optimizing predictive parking strategies is aided by such insight. 

 

Fig. 3. Hourly Occupancy Rate. 



 

Fig. 4. Lot Occupancy Across the Week. 

 

Fig. 5. Lot Occupancy Rate. 

5.4 Impact of Weather and Lighting Conditions on Occupancy 

The weather and the lighting conditions have a significant impact the parking occupancy (Fig 6). 

The highest occupancy rates (above 90%) were observed under "Cloudy - Shadow" and "Sunny 

- Daylight" conditions, while "Snowy - Dusk" had the lowest occupancy (50%), suggesting that 

adverse weather impacts parking patterns. 



 

Fig. 6. Occupancy Distribution Across Weather and Lighting Conditions. 

5.5  Temporal Stability of Parking Spots 

Fig 7 shows the parking stability, the standard deviation of the occupancy amount for each 

parking spot was evaluated. Fig 3 displays the corresponding histogram which shows many spots 

have highly consistent occupancy (low variance) and a few spots highly fluctuate. These indicate 

some locations which are predictable and somewhere adaptive type of recommendation strategy 

is required. 

 

Fig. 7. Temporal Stability of Parking Spots. 

5.6 Model Robustness:  ROC Curve 

The ROC (Fig 8) curve secondly, displays an AUC score of 1.00, implying that LOTUS-PARK 

possessed excellent discriminatory power between occupied and vacant spots. 



 

Fig. 8.  LOTUS-PARK ROC Curve. 

5.7 Feature Correlation Insights 

One can see from the confusion matrix for LOTUS-PARK (Fig 9) that the model has high true 

positive and true negative rates. It proves to be robust because it only observes a small amount 

of misclassified instances. The ROC curve secondly, displays an AUC score of 1.00, implying 

that LOTUS-PARK possessed excellent discriminatory power between occupied and vacant 

spots. 

 

Fig. 9.  Feature Correlation Matrix. 

LOTUS-PARK framework outperformed traditional models with the accuracy of 0.90 and F1-

score of 0.88. We were able to achieve an R² of 0.96 for the GreenScore prediction based on 

sustainability. The analysis of occupancy pattern, environmental effects, and feature correlation 

also gave me useful insights in improving parking efficiency. These results verify that LOTUS-

PARK is an accurate, sustainable, and practical metadata-driven intelligent parking solution. 

5.8  Discussion  

Relating to the LOTUS PARK framework, the results clearly show its potential in working out 

the real time urban parking challenges in the metadata driven intelligent and sustainable manner. 



LOTUS-PARK shows better performance than traditional baselines (i.e., Logistic Regression) 

with high prediction accuracy of 0.90, F1-score of 0.88 and precision of 0.91; however, it 

maintains competitive performance comparable to Random Forest that typically overfits. The 

framework is validated through the use of its GreenScore regression to predict eco-efficiency 

(R²=0.96, MSE = 0.002) and the strong alignment between predicted and actual environmental 

impact. The analysis on occupancy behavior shows that there are peak congestions during the 

late afternoons (16:00–18:00) and more demand on weekends, and contextual factors like 

weather and lighting have meaningful impacts on parking behaviour—occupancy is highest 

under sunny and cloudy days. ROC curve with AUC = 1.00 and minimal misclassifications in 

the confusion matrix affirm LOTUS-PARK’s robustness and reliability. Its innovation is in the 

integration of spatial and temporal patterns along with sustainability indicator factors that makes 

it a highly adaptive, intelligent solution for urban parking systems and smart mobility 

infrastructures. 

6 Conclusion 

LOTUS-PARK, a new machine learning based parking assistance framework for real time urban 

environments was presented that uses structured metadata instead of image based inputs for the 

system observations. An integration of spatial, temporal, environmental, and contextual features 

to build an intelligent occupancy prediction and sustainability estimation system has been 

proposed, which turned out to be highly effective. The framework has achieved best accuracy of 

0.90, F1 score of 0.88, and precision of 0.91 and outperformed classical models with better 

generalization. By GreenScore, it has the strong potential for sustainable smart city deployments 

with its ability to predict environmental efficiency (R² = 0.96, MSE = 0.002). Throughout, the 

system’s contextual awareness and adaptability were validated through in depth analysis of 

occupancy behavior over hourly, weekly, weather, lighting and lot type dimensions. Furthermore, 

implicit in the developed models lie insights into the correlation of the demand for parking, 

including the meaningful relationships between demand, vehicle type, and environmental 

conditions. In sum, LOTUS-PARK has demonstrated an ability to become a cost effective, 

scalable, robust and eco intelligent solution to be deployed on urban smart mobility 

infrastructures in order to improve parking efficiency, mitigate traffic congestion caused by 

parking, and support advanced urban planning. 
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