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Abstract. Access to safe and clean drinking water is a global issue, especially in 

developing countries. Traditional water testing methods are always slow, costly and not 

available in remote areas. To overcome this limitation, we proposed Explainable AI 

based Water Quality Prediction System which uses machine learning and explainable 

models to classify whether the water is drinkable or not. We used a dataset which 

contains 3000 water samples, each sample contained six core parameters: pH, Turbidity 

(NTU), Chlorides (mg/L), Dissolved Solids (mg/L), Alkalinity (as CaCO3) and Fluorides 

(mg/L). While preprocessing we converted the categorical values into numerical values 

and applied normalization using StandardScaler. Several classification algorithms were 

developed and evaluated, including Random Forest, Logistic Regression, K-Nearest 

Neighbors (KNN), Decision Tree, Gaussian Naïve Bayes and Support Vector Machine 

(SVM). Furthermore, dimensionality reduction was performed using Linear Discriminant 

Analysis (LDA), with performance comparisons made before and after reduction. For 

model interpretability and trust, explainable AI techniques such as LIME and SHAP 

were utilized to highlight feature importance as well as provide insight into the decision 

process. The proposed system is highly accurate and interpretable and is therefore 

suitable for implementation in real-world, resource-constrained environments where 

accurate and interpretable water quality prediction is key to public health.  

Keywords: Water Quality, Explainable AI (XAI), Machine Learning, SHAP, LIME, 

Potability Prediction, Dimensionality Reduction, Linear Discriminant Analysis (LDA), 

Classification Algorithms. 

1 Introduction 

Clean and safe drinking water is a basic requirement for public health and sustainable 

development. Nevertheless, water pollution is a major issue in most areas of the world, 

particularly in rural and underdeveloped areas. Conventional water quality analysis methods 

are usually expensive, time-consuming and laboratory facility-dependent and hence unsuitable 

for extensive applications. Machine learning has become a useful tool for predicting water 

quality from chemical parameters in recent years. However, the "black box" character of most 

ML models restricts user trust and interpretability. This paper introduces an Explainable AI-

based Water Quality Prediction System that not only predicts water potability but also 

provides transparency through explainability tools like LIME and SHAP. By employing a set 

of 3000 samples against six important parameters, we can develop a model that is interpretable 

and accurate, which would be perfect to be used in actual, low-resource settings.  
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Fig. 1. Comparing Traditional Machine Learning with xAI's Explainable Approach. 

Fig 1 contrasts old-school machine learning (left), where decisions might leave users 

scratching their heads, with xAI's fresh approach (right). xAI’s explainable model and friendly 

interface help users easily grasp why choices are made, building trust and confidence. 

The remaining parts of this paper is organized as follows: Part II describes related work, Part 

III describes the methodology, Part IV shows the results and analysis and Part V concludes the 

study with future work. 

2 Related works 

Decision Trees, XGBoost, SHAP, LIME is used in previous work for interpreting machine 

learning methods and explainable AI methods applied to water quality forecasting considering 

accuracy and interpretability of results maintaining public health significance. Alipio [1] refers 

to some of the machine learning and ensemble learning research, encompasses domains such 

as cost-sensitive techniques for sentiment analysis and soft voting for a single class. It refers to 

Think Speak and Scikit-learn for Machine Learning. 

Muhammad I'tikaf Khoirul Haq [2] tried to classify water drinkability using machine learning 

which is Decision Tree and Naïve Bayes. Decision Tree produces 97.22% of right guesses 

which is much bigger than Naive Bayes 62.53% and therefore the work in classification water 

quality can be done by using Decision Tree. 

Reading this XAI literature in depth, as reviewed by Saša Brdnik [3] there is a lot on the 

tipping point, especially when we look at the growing interest into healthcare. The roadblocks 

the critics and better explainability nominees are arguing about now, is how to create a 

standard process for evaluating these tools, which SHAP, LIME tend to be leading. Future 



work the key areas of Ethical concerns and User-centred design onto OPDs that have been 

presented as opportunities for future works to further extend the research. 

Water data of India was analysed by Bura Vijay Kumar [4] but without any scaling. Methods: 

This study was based on various methods such as CD RennaiScaled (re-mapping scale or re-

scaling a pattern), Water Original Data UR, Luler, Min Max, Max Abs, Data RMS (Re- 

Moving of mean square) Wavelet and Wielkenscaler & L1Columnar. Water drink ability 

classification, Comparison of xgboost and random forest classifiers. XGBoost performed 

better with an accuracy of 87.22% as opposed to Random Forest whose accuracy was 61.11%. 

However, the XGBoost performed well in predicting water quality and handling the 

assumptions about relationships between the variables, giving good results. 

Yusuf Husain [5] describes water pollution and the effects of contamination on health, writer 

with a quote that receives an approximate 2.5 million deaths/year. Topic It requires using new 

ways to be analyze and classify the quality of water. Some by literature review and 

Exploratory data analysis. Mehul Patel [6] envisions machine learning with not the original 

but rather just 20 features to predict water potability. F1-score of XGBoost: 0.9798 (highest) 

This study sets an example of typical water quality management where data preprocessing and 

model performance are emphasized. 

In [7], Reem Alnaqeb compares ML models in predicting water potability where the 

LightGBM got 99.74% accuracy. Taken from an 8000-sample dataset, the discovery 

emphasized the crucial role of safe drinking water in public health and suggested that future 

research should be based on expanded data sets. Be it the machine learning prediction models 

build for water potability [8] by Aditya Kumar Mohapatra with 67% accuracy. The maximum 

difference has been observed in TDS and pH. Water resource management and public health 

are studied under the guidance of data-driven analysis. 

In explainable AI, Trisna Ari Roshinta [9] does a comparison of LIME and SHAP with LIME 

excelling for its local explanations and efficiency while SHAP gives the global insights and 

stability. Depending on requirement whether we need quick results or stable, full blown 

feature importance analysis. Hasan: Machine learning classifier models for drinking water 

quality monitoring – comparing of the accuracy  [10]. The related parameters that need to be 

focused are Turbidity, TDS and pH which would be major approach for efficiency and health 

security for water quality monitoring. 

Julliet Kirui [11], used an Indian Government data and trained machine learning models 

targeting a house-level prediction of drinking water quality. The maximum accuracy which a 

XGBoost model could provide was 95.12% and it shows how these models can effectively be 

used in public health water quality monitoring applications. 

Pongiannan R.K. [12] proposed the development of machine learning (ML)approach for real-

time monitoring and prediction system of water quality using major parameters pH, Turbidity, 

Hardness etc. The water quality classification based on RF provides the excellent accuracy 

also because RF which is the ultimate promoter for environmental sustainability as well as 

public health monitoring. 2 Case study: forecasting water potability El-Bacha Rachid [13] 

explores predictive models for water potability with the help of machine learning techniques. 

The work demonstrates the promise of machine learning for making water quality prediction 

models more robust. 



Productivity: Hybrid machine learning models are proposed by J. Biju [14] that integrate 

multiple algorithms and increase the rate of water quality prediction, which in turn provide 

greater accuracy and efficiency to monitor unsafe drinking water. V. Sreekumar [15], has 

shown a survey of different machine learning models for water potability prediction that 

describes the major significance of machine learning in management systems related to water. 

3 Methodology 

This section introduces the planned methodology of an Explainable AI-Based Water Quality 

Forecasting System. The process is divided into five important steps: data preprocessing, 

model selection, training and optimizing, applying explainable AI methods and performance 

evaluation. It aims at predictively determining potability in water accurately and defining 

model decision transparency through explainable AI models like SHAP and LIME. 

 

Fig. 2. Flow diagram of the proposed methodology. 

Fig 2 illustrates the complete pipeline of the Explainable AI-Based Water Quality Prediction 

System. It begins with the gathering of six major water quality measurements. Data are 

preprocessed through techniques such as missing value treatment and normalization. 

Dimensionality reduction and feature separability are done through optional Linear 

Discriminant Analysis (LDA). Preprocessed data are employed to train machine learning 

classifiers. The best classifier is selected based on the performance metric. Finally, 

explainability techniques such as SHAP and LIME are applied to explain predictions in the 

model, resulting in an explainable and trustworthy system for water potability prediction. 



 

Fig. 3. Model Explainability Subsystem. 

Fig 3 focuses on the explainability component of the system. A test input sample is passed 

through the trained model, producing a prediction on water potability. To explain the decision, 

LIME and SHAP techniques are used. LIME provides local explanations by approximating the 

model around a specific prediction, while SHAP offers a global perspective on feature 

contributions. These insights are visualized and presented to the user, increasing trust and 

understanding of how the model reaches its decisions. 

3.1 Data Collection 

A dataset comprising 3000 water samples was prepared for this study. Each sample contained 

six key physicochemical features relevant to water quality assessment: 

• pH - Indicates the acidity or alkalinity of the water. 

• Turbidity (NTU) - Measures the cloudiness caused by suspended solids. 

• Chlorides (mg/L) - It is the content of chlorine derived compounds. 

• Dissolved Solids (mg/L) - Refers to the number of suspended particles. 

• Alkalinity (as CaCO3) (mg/L) - Is the water's buffering capacity. 

• Fluorides (mg/L) - They can impact health at higher levels water potability. 

The target variable is binary, pointing out if the water is potable (1) or not potable (0). 

3.2 Data Preprocessing 

Careful preprocessing is critical to increase the predictive validity and accuracy of AI models. 

The following preprocessing methods were implemented in the obtained water quality dataset: 

3.2.1 Handling Missing Values 

Missing values samples were removed to preserve the integrity and coherence of the dataset. 

 

 



3.2.2 Feature Scaling 

All the features (pH, Turbidity, Chlorides, Dissolved Solids, Alkalinity and Fluorides) were 

normalized to a unified range through Min-Max normalization within the [0,1] range to 

enhance learning efficiency. 

3.2.3 Outlier Removal 

Major feature outliers were handled utilizing the IQR method to minimize the impact of 

outlier details regarding the training process. 

3.2.4 Train-Test Split 

Data split into 80% train and 20% test to get an impartial verdict of the model performance. 

3.3 Model Selection: Learning Water Quality Patterns 

3.3.1 Random Forest Classifier 

A strong ensemble model that builds many decision trees and merges them to improve 

accurate and does not overfit. It is also suitable for nonlinear relationships as well as robust to 

noisy data. 

3.3.2 Logistic Regression 

A simple linear model but a very effective binary classifier, which can be used to find the 

impact of one feature on potability. 

3.3.3 K-Nearest Neighbors (KNN) 

A non-parametric method which categorizes the water samples based on likeness with 

characteristics of the 'k' nearest points. It is efficient and easy when there are non-linear 

decision boundaries. 

3.3.4 Decision Tree Classifier 

Data partitioning through tree model feature threshold values to generate human-readable 

rules for potability prediction. It's great for interpreting decision paths. and feature importance. 

3.3.5 Gaussian Naïve Bayes 

A probabilistic classifier that forecasts feature independence and is of a Gaussian distribution. 

It is a very efficient and scalable solution for real-time calculations. 

3.3.6 SVM 

A robust model that determines the optimal hyperplane to differentiate potable and non-

potable samples. It is capable of handling high-dimensional data and when there is distinct 

margin separation.  



All the models were compared to determine which one has predictive power on the water 

quality data set. The combination of various algorithms allows for a high-dimensional analysis 

of the data and it indicates to us which models best capture the underlying patterns between 

water quality parameters. 

3.4 Dimensionality Reduction 

For better classification performance and easier visualization, Linear Discriminant Analysis 

(LDA) was employed to decrease dimensionality. LDA projects the features into a lower-

dimensional space with maximum class separability. 

• LDA enabled identification of latent class distributions and eliminated noise caused 

by redundant features. 

• Model performance was tested prior to and subsequent to the use of LDA to assess its 

impact. 

Better interpretability of the model and small improvements in performance were revealed by 

the results, especially for algorithms to be impacted by the complexity of the feature space. 

3.5 Explainable AI: Improving Transparency and Trust 

In order to explain the model’s predictions and understanding of feature contributions, we 

used explainability methods as described below: 

3.5.1 Explainability Using SHAP 

SHAP values were calculated to provide each feature’s contribution towards specific 

predictions, global and local explanation.  For further enhancing model interpretability, 

SHapley Additive exPlanations (SHAP) was used on the Logistic Regression model. SHAP 

provides a single feature contribution score through approximating each feature's contribution 

to the model output using game theory principles.  

3.5.2 Mathematical Formulation of SHAP 

SHAP distributes the importance value to each feature by dividing the prediction equally 

among the features. It is cooperative game theory-based and the explanation model is provided 

by: 

𝑓(𝑥) = 𝜙0 + ∑ 𝜙𝑖
𝑀
𝑖=1                                                                                                                 (1) 

Where 𝑓(𝑥) is the model's output for instance 𝑥, 𝜙0 is the expected value of the model output 

and 𝜙𝑖 represents the contribution of feature 𝑖. 

Each 𝜙𝑖 is computed as: 

𝜙𝑖 = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!𝑠⊆𝐹∖{𝑖} [𝑓𝑆∪{𝑖}(𝑥𝑆∪{𝑖}) − 𝑓𝑆(𝑥𝑆)]                                                                (2) 



Here, 𝑆 is any feature subset other than 𝑖, 𝐹 is the universe of all features and 𝑓𝑆 is the model 

learned from feature subset 𝑆. This definition ensures a fair contribution attribution of every 

feature to the global prediction. 

3.6 LIME 

LIME was employed to produce local explanations of about specific predictions by 

approximating the model with an interpretable, simpler surrogate model. 

3.6.1 Feature Importance Visualization 

Graphical feature influence representations (summary plots and dependency plots) were 

created to enable decision-makers and domain experts to comprehend model behavior. 

3.6.2 Explainability Using LIME 

To enhance transparency, the Local Interpretable Model-agnostic Explanations (LIME) 

framework was applied to the Logistic Regression model. LIME output is supplied in below 

fig 5 and 4. 

3.6.3 Mathematical Formulation of LIME 

LIME estimates the actual complex model 𝑓 through a more conveniently explainable simple 

model 𝑔 within a neighborhood around a specific example instance 𝑥. The intention here is to 

achieve the lowest for the objective function below 

𝑎𝑟𝑔 𝑚𝑖𝑛
𝑔 ∈ 𝐺

 ℒ(𝑓, 𝑔, 𝜋𝑥) + 𝛺(𝑔)                                                                                                    (3)  

 Here, 𝑓 is the complex model, 𝑔 is an interpretable model (e.g., linear), 𝐺 is the class of such 

models, ℒ is a loss function that measures how closely 𝑔 approximates 𝑓 near 𝑥, πₓ is a 

proximity function that gives weights to instances near 𝑥 and Ω (𝑔) is a regularization term 

that ensures 𝑔 remains simple and interpretable. 

4 Results and Evaluation 

The proposed system was evaluated using multiple machine learning classifiers to predict 

water potability. Each model was tested both before and after applying Linear Discriminant 

Analysis (LDA) for dimensionality reduction. The comparison of classification accuracy is 

presented in Table 1. 

4.1 Performance Evaluation 

To assess the effectiveness and credibility of our system, we employed standard metrics: 

4.2 Accuracy 

Estimates the ratio of correctly predicted potable and non-potable samples. The blend of 

accurate forecasts and open explanations makes our system a dependable tool for water rural 

quality monitoring and decision-making urban environments. 



Table 1. Accuracy Comparison of Models Before and After Dimensionality Reduction. 

Algorithm Accuracy After LDA 

Random Forest Classifier 0.93 0.87 

KNN (Minkowski) 

KNN (Manhattan) 

KNN (Euclidean) 

0.86 

0.85 

0.86 

0.906 

0.905 

0.906 

Decision Tree (Entropy) 

Decision Tree (Gini) 

0.80 

0.81 

0.81 

0.81 

Gaussian Naive Bayes 0.97 0.91 

Support Vector Machine (SVM) 0.90 0.94 

Logistic Regression 0.94 0.945 

 

Table 1 depicts classification accuracies of varying machine learning algorithms prior to 

application of dimension reduction. KNeighborsClassifier and Logistic Regression exhibit 

improved post-reduction accuracy, with Logistic Regression with the highest score (0.945). 

4.3 Performance Insights 

From the results, it is evident that: 

• The Gaussian Naive Bayes was the most accurate before dimensionality reduction 

(97%). 

• Logistic Regression performed best after dimensionality reduction, with precision of 

94.5%. 

• K-Nearest Neighbors (KNN) algorithms, especially with Minkowski and Euclidean 

distances, showed improved accuracy following LDA, over the 90% threshold. 

• Most models showed either a slight improvement or stable performance after LDA, 

suggesting that dimensionality reduction retained essential feature characteristics. 

 

Fig. 4. Feature values used for LIME interpretation. 



 

Fig. 5. LIME explanation showing feature contributions for classification. 

Fig 4 and 5 present one example of interpretability using LIME. The example was classified 

as drinkable with 83% confidence. The key positive factors contributing to classification were 

Turbidity (>10), Fluorides (>1.37) and Chlorides (>395). High pH, Alkalinity and Dissolved 

Solids had a negative impact on classification. 

 

Fig. 6. SHAP summary plot of global feature importance for all predictions. 

Fig 6 is a SHAP summary plot that shows global importance of all features for each 

prediction. Turbidity, Fluorides and Chlorides were the most positively influencing the model 

output for potability classification. The presence of Alkalinity and Dissolved Solids at high 

levels negatively affected the classification outcome. 

Adding SHAP explanations strengthens LIME by providing global and local interpretability, 

making it easier to increase trust and transparency in model decisions. 

 



5 Future Work 

The above explainable AI-based water quality prediction system has numerous avenues 

through which it can be extended. One of the most promising ones may be to use deep 

learning-based models such as Convolutional Neural Networks (CNNs) or Recurrent Neural 

Networks (RNNs) to identify complex patterns from high-dimensional or temporal water 

quality data that can in turn result in better classification accuracy. The second path is 

deployment of the model on real applications on Internet of Things (IoT) devices on cloud or 

edge computing. This would be real-time and ongoing monitoring of water quality in rural and 

urban settings. From an interpretability standpoint, an ensemble strategy that employs more 

than one explainability method (e.g., LIME and SHAP) can yield stronger and more complete 

insights, particularly in high-stakes application domains where model explainability is 

necessary. Aside from that, integration of user or expert input into the system within the 

framework of an active learning loop can help the model build and improve itself on a 

continuous basis in the long run. Finally, we can add seasonally changing and geographically 

distributed water quality samples to the dataset to further generalize and make the system 

robust and allow more efficient largescale deployment in heterogeneous environments. 

6 Conclusion 

This study hypothesized an Explainable AI-based Water Quality Prediction System that could 

forecast water as potable or not potable using physicochemical characteristics. A 3000-sample 

dataset with six water quality parameters of significant impact was experimented with various 

machine learning classifiers like Random Forest, Logistic Regression, K-Nearest Neighbors, 

Decision Tree, Gaussian Naïve Bayes and Support Vector Machine. Use of Linear 

Discriminant Analysis (LDA) enhanced classification performance and interpretability of 

features. Additionally, explainable AI methods like SHAP and LIME were employed to 

enhance model interpretability by emphasizing feature contributions to point and overall 

predictions. The suggested system achieves high accuracy without compromising 

interpretability and is therefore deployable to real-world resource-constrained settings. The 

system is data-driven and flexible in decision-making for water safety and holds promise for 

application in scalable and reliable environmental monitoring. 
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