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Abstract. Parkinson's disease is a chronic and progressive neurodegenerative disorder that 

affects movement. The clinical diagnosis for Parkinson's disease is made through 

neurological examination and imaging techniques like MRI and a DaT scan. So, the MRI 

Scan is used in this approach.  Traditional diagnostic approaches using MRI data often 

encounter challenges, including data scarcity, low image quality, and model overfitting. 

To overcome challenges, this approach uses GAN and CNN. GAN handles generating 

synthetic images and integrates with real images. The combined data is used as input for 

the CNN classifier for training, this model is named the GAN-CNN hybrid dual stream 

model. This model is capable of detecting the early stage of Parkinson’s and is more 

suitable than the other existing models, such as MobileNet, YOLOv7, and 1D-CNN. By 

leveraging synthetic data generation and deep learning classification, this model 

demonstrates improved performance on Parkinson's disease detection and performs well 

compared to existing systems, and the application of this model extends to real-world 

diagnostics, potentially enabling early and accurate detection of Parkinson's disease, 

thereby improving patient outcomes and treatment strategies. 

Keywords: Parkinson's Disease, Neurodegenerative Disorder, Movement Disorder, 

Clinical Diagnosis, MRI Scan, DaT Scans, CNN-GAN Hybrid Model, Early Stage 

Detection, Yolo, Ensemble Net, Swin Transformer, Accuracy (85%, 98%), F1 Scor, GAN-

CNN Hybrid Dual Stream. 

1 Introduction 

Parkinson's disease (PD) is a progressive, long-term, neurodegenerative disorder characterized 

by motor dysfunction due to the loss of dopaminergic neurons in the brain [1],[2]. The study 

aims at developing a GAN- CNN hybrid dual-stream model to enhance early detection of 

Parkinson disease from medical imaging data [3]. A hybrid approach leverage GANs to generate 

high-quality synthetic images and integrate these with real images to carry out training of a 

Convolutional Neural Network (CNN) which can improve the classification accuracy and 

robustness [4],[5]. In the present era, early detection of Parkinson's disease is very important 

due to its increasing incidence in the aging population and lack of effective biomarkers for early 

diagnosis [6,7]. In addition to that, a precise early diagnosis has the potential to significantly 

improve patient results with timely management and personalized treatment strategy [8,9,10]. 

This study demonstrates applicability to clinical diagnostics, will aid hospital decisions, is 

convenient for use in low-resource areas and could potentially be implemented within 

telemedicine platforms to extend remote evaluation. Furthermore, information obtained through 

this model may provide benefits for the general neurodegenerative research [11],[12],[13],[14]. 
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Diagnosis of Parkinson's disease: Most methods to date based on EEG, MRI, or imaging 

modalities. For instance, Siuly et al. proposed an architecture for the fusion of Wavelet 

Scattering Transform (WST) and AlexNet CNN for EEG classification [1]. Chatterjee and 

Bansal also developed a multimodal fusion technique that combined structural MRI (sMRI) and 

resting-state functional MRI (rs-fMRI) data for enhanced diagnostic sensitivity [2]. Another 

system by Chen et al. introduced CTFF-Net, a CNN-Transformer based interleaved encoder 

deep learning network for segmentation of gray matter nucleiSeg2 which achieved accuracy up 

to 89% [3]. In addition, Tassew et al. a software project for PDDS integrates YOLO for region 

of interest detection and UNET-based models for segmentation (4). While they offer valuable 

improvements, these methods are limited in their reliance on high quality data, computational 

inefficiency and poor generalization to other datasets [5], [6]. Additionally, many may be 

specific to a single modality and limit their reach in different medical scenarios [7]. 

 

The GAN-CNN hybrid model offers a solution to circumvent these limitations by utilising 

synthetic data generation, limiting the reliance on large volumes of quality data and diversifying 

the training population [15]. When mixing GAN generated imaging and real data, the 

classification by CNN is more stable and accurate [6], [7]. Compared with existing methods, 

which are based on one modality or generalize different imaging modalities, our model has the 

ability of coping with poor medical image quality and keeping a high classification accuracy 

[4]. The model learns from a broad range of features and enhances its generalization / reliability 

by utilizing two streams (synthetic data, real-world data) [5], [6]. And notably, as stated in the 

abstract, it outperforms even state of the art models showing how well such a system can operate 

in actual diagnostic situations [7]. This is especially imperative in the context of early detection 

where early and precise diagnosis can dramatically impact upon treatment outcome as well as 

patient quality of life [8]. 

 

There are several advantages of the hybrid dual-stream GAN-CNN framework compared to 

existing systems. It improves generalization as it exploits the GANs to generate diverse 

synthetic data, preventing overfitting and increasing robustness [1], [2]. Second, by augmenting 

synthetic images with real ones during the training of the CNN [3,4], it greatly enhances the 

classification accuracy. The third point is that, the dual-stream structure in the model allows for 

concurrent processing of real and synthetical data and thus facilitates feature extraction [5]. The 

fourth advantage is that the model architecture of our approach requires significantly less 

computational resources, compared to the Transformer-based systems and can thus be 

implemented effectively even in clinically resource-limited settings [6]. The model's robustness 

to noise but also its performance on images from a variety of datasets name it such an attractive 

candidate which might be used in practice, for example, diagnosis in resource-restricted areas, 

integration into telemedicine initiatives as well as researches for the other neurodegenerative 

diseases [7],[8]. 

2 Related Work 
 

Siuly et al. described an alternative approach using EEG for PDD on 2024, in Computers in 

Biology and Medicine. It concatenates the WST to represent the EEG time-series in time-

frequency and a Convolutional Neural Network (CNN) built on AlexNet architecture for 

classification. This framework can capture the subtle details in EEG signals very well, and hence 

also the complex patterns associated with PD. It also indicates critical brain regions for the 



identification of PD. However, the performance of the model largely depends on the availability 

of good quality EEG data and model's reliance on some EEG channels such as AF4, AFz minds 

would limit its generalization ability, [1]. 

This method was also applied further in 2024 by Indranath Chatterjee and Videsha Bansal to 

improve diagnosis of PD using the sMRI and rs-fMRI data (independent work as well, 

Experimental Gerontology) [24]. The approach proposed contains i) Segmentation of the 

imaging data into localized regions, ii) Extraction of features iii) Representation learning using 

our CNN iv) Dimensionality reduction using PCA and v) A FFNN for Classification. The 

Diagnosis Is More Accurate and the Major PD-Related Brain Regions Are Easy to Identify by 

Integrating sMRI and rs-fMRI Data Nevertheless, the model provides classifications that are 

only 75% accurate thereof, which maybe not considered very high for some clinicians and could 

limit its wider applicability due to further reliance on both sMRI and rs-fMRI features [6]. 

In 2024, Hongyi Chen et al., presented their study for brain MRI with focus on segmenting PD-

related deep gray matter nuclei using CTFF-Net, a deep network designed to perform automated 

segmentation. The network adopts an interleaved encoder consisting of CNN-Transformer and 

feature fusion module, and a symmetrical boundary attention module structure in the decoder to 

enhance segmentation accuracy. Problems such as appearance changes, poor tissue contrasts, 

and small size of deep gray matter nuclei are addressed with this approach. The deep architecture 

of this method can result in the higher computational expense even though it has strong capacity 

for accurate segmentation and cross-dataset generalizability over multi-center clinical, public 

data [2]. 

A paper in Biomedical Signal Processing and Control in 2023 by Tewodros Megabiaw Tassew 

et al. The final work, Parkinson's Disease Diagnosis Software (PDDS) was able to detect and 

segment deep brain regions from MRI (and DaTScan) images automatically based on images, 

using a deep learning approach. The software uses YOLO for object and region of interest (ROI) 

detection, as well as an ensemble of UNETs for segmentation. The personalized U-Net model 

has slightly below the segmentation performance while achieving high mean Average Precision 

(mAP) values and mean IOU intersection of MRI and DaTScan images, which would limit 

scalability by human labeling region of interest [7]. 

Nikita Aggarwal et al. demonstrated a multiclass classification in SWEDD scans belonging to 

PD and non-PD classes using 1-D CNN classifier with data augmentation method in their 

Biomedical Signal Processing and Control paper [26], which was an extended version of the 

work presented in REST. The paper addresses class imbalance issues and provides feature-wise 

data analysis in depth. The 1-D CNN model exhibits satisfactory performance in all classes, but 

the paper [8] does not explicitly mention the vulnerabilities of this method. 

In 2025, in a paper published under Biomedical Signal Processing and Control Esra Yüzgeç and 

Fatih Özyurt started working to propose using Vision Transformer (ViT) models for wave, spiral 

images written by hand for PD classification. The proposed approach in our study combined the 

ViT models with ElasticNet for feature selection and other machine learning classifiers to 

perform better and faster than conventional deep learning classifiers. But the study authors do 

not compare this method to others state-of-the-art in the literature [5]. 

 



Nour El Houda BoulkrinatEt Al. tested the use of pre-trained CNN models MobileNet, 

ResNet50, AlexNet, VGG19 and InceptionV3— to predict PD based on MRIs in a study 

conducted by Procedia Computer Science in 2024. This method exploits data preprocessing 

operations for better image quality, and compares several models on the NTUA dataset. While 

it outscores on related work, the recall, precision and F1 values obtained were not satisfying as 

well as the high computational cost of BCNN model [9]. 

In 2023, Santhosh Kumar B. et al., published a Multimedia Tools and Applications paper based 

on OAssis-DL for PD classification using MRI images For feature extraction, the model 

employs frost filtering, local optimal oriented descriptor (LOOP) and discrete wavelet transform 

(DWletT) along with hunter-prey optimization method for classification. While the 

methodology effectively merges these modalities for feature extraction, no limitations of this 

proposed methodology were explicitly listed in [10]. 

Nada R. Yousif et al., J Ambient Intell Human Comput, 2023 Generic-templated framework for 

PD diagnosis from handwritten images and/or voice signals. The study uses pre-trained CNNs 

of handwritten images as well as machine-learning algorithms for voice signals, introducing an 

innovative voice segmentation algorithm. These results are admittedly better than many other 

state-of-the-art techniques, but have the cost of high learning time and processing [11]. 

Erik Dzotsenidze & al, 2022 In an IFAC Papers on Line study, the authors proposed in 

generative adversarial networks (GANs) for generating digital drawing tests from PD patients 

and healthy controls to solve the issue of a data shortage in computer-aided diagnosis [38]. The 

research presented the results of traditional data augmentation techniques on PD classification 

with CNNs across four different GAN architectures. While images from GAN were much better 

than the classical augmentation methods in any case, the small set of labelled data makes deep 

learning implementation on clinical imaging quite challenging [12]. 

Hajer Khachnaoui et al., IEEE Access in 2023 applied CNNs to diagnose PD using SPECT 

DATSCAN images, which was the main focus of this study. The research employs pre-trained 

models EfficientNet-B0 and MobileNet-V2 and a customized CNN architecture, which they 

fine-tune to diagnose PD [4]. 

In Zhang et al.'s 2024 Connection Science paper, we present a deep learning model based on 

dual GAN with pyramid attention network for the early AD detection. They used Generative 

Adversarial Networks (GAN) to synthesize MRI images and Convolutional Neural Networks 

(CNN) for scanning identifying spatial patterns. The methodologies used are Dual Generative 

Adversarial Network (GANs), Pyramid Attention Networks, and Convolutional Neural 

Networks (CNNs). Conclusion: Our model achieved the high accuracy percentage of 99.67 and 

98.76 in classification MRI scan which outperformed than other state-of-the-art approaches. 

When used, this saves time and data, increases the quality of the images and can be added to the 

ADNI-missing data. The model is also capable of identifying the presence of an artifact in a 

scan and supporting scans; facilitating cross-modality transformations for simpler analysis 

Nonetheless, the paper does not explicitly mention disadvantages, e.g., dependency to MR 

images or required image prepositioning [3]. 

 



This review article, Sharma et al., Multimedia Tools and Applications (2024), delivers a 

comprehensive view of the concept of GANs and different types, limitations, and applications 

of GANs. The paper details many GAN Algorithms such as Base GAN, WGAN, Semi-GAN, 

C-Gan, LS-Gan, Bigan, Ac-Gan, InfoGAN, Seq Gan, BEGAN, Stack Gan, 

SRganCycleGAnSphereGAN. The paper is focused on GAN usages in various domain i.e. NLP, 

architecture design, text-to-image etc., 3d object generation, sound to image and future 

predicting of an individual based on their past operations. They give some insights of why critic 

is based on IS and FID metrics. This is not a sensible criticism because this paper is only a 

review and does not have actual negative consequences, except to describe the common pitfalls 

of GANs, including training difficulties, data processing conflicts, system instability,and 

spurious predictions. This also expose defects in GAN detetion tools [ 13]. 

In 2021, Alankrita Aggarwal, Mamta Mittal, Gopi Battineni employed their examination of how 

GANs Work and Where they can be Used in real-time Businesses through the International 

Journal of Information Management Data Insights. They study adversarial principle methods, 

deep learning generative models, and network theory simulations in the work. Springer 

NatureImage: Springer NatureDisclaimer:xThis paper does not provide insights on an algorithm 

but explains future prospects in GAN models. In this study, we highlight the applications of 

GANs on industry fields, adversarial learning approaches and promising directions as being 

future trends for GAN-based technologies. A major limitation of the review is that it only 

includes research papers from 2016–2020, potentially missing out on recent advances in GAN 

architectures [14]. 

Huan Liu et al. A dual-stream generative adversarial network for zero-shot learning via domain 

mapping regularization (2020) Information Sciences The model uses conditional GANs and 

improved WGAN and has a dual-stream generator, consisting of the cross-modal visual 

generation unit, and another semantic reconstruction unit. With the three terms: backbone 

consistency loss for between class variability, stochastic dispersion loss for within-class 

diversity and reconstruction loss for semantic correspondence. Our method significantly 

improves the supervised learning robust throughout with neither information decay nor show 

catastrophic forgetting, also outperforms other techniques by consistently achieving 4.7% 

accuracy and 3.0% map increment. Although it saves more human information than the cycle-

CLSWGAN [15], yet, it could not excel at a certain grade of distortion against the ground-real 

truth confusion matrix. 

3 Proposed System 

The system employed a GAN-CNN hybrid dual-stream model to improve Parkinson's disease 

(PD) detection using synthetic data generation and a compact CNN classifier. The architecture 

has three major components: A Generative Adversarial Network (GAN) to counter data scarcity 

and generate synthetic MRI images, a Convolutional Neural Network (CNN) used for feature 

classification and extraction, and a Dual-Stream Integration module that combines real and 

synthetically generated images to enhance the robustness of classifiers. The inputs are MRI 

(T1W, fMRI) images, and the output is a classified label (PD/Healthy). The used dataset is the 

Taowu Parkinson's Disease Dataset, provided by the National Institute for Research and 

Development in Informatics, which contains 4.1 GB of data in the form of 161 files of 40 

subjects (20 PD patients and 20 healthy controls) in NIfTI and BIDS format. 



Preprocessing techniques include resizing the images to (64,64) pixels, normalization, data 

augmentation (random rotation and horizontal flipping), skull stripping, and converting to 

PyTorch Tensor. The dataset is divided into 80% for training (240 images) and 20% for testing 

(60 images), with the following features extracted: texture patterns, edge structures, grayscale 

intensity variation, spatial coherence, and disease-related patterns. 

3.1 Generative Adversarial Network (GAN) Module  

The GAN module solves the problem of data insufficiency by creating artificial medical images 

to complement the available dataset, making the training set balanced and diverse. The two main 

components are: 

●  Generator: Given a random noise vector of dimensions 100 and outputs synthetic images 

that are very much like realistic medical images. The generator uses fully connected layers 

with ReLU activations, topped with a Tanh activation for scaling outputs within the range 

of -1 and 1.  

The generation step can be described mathematically as: 

                        𝐺(𝑧) = 𝑇𝑎𝑛ℎ(𝑊4(𝑅𝑒𝐿𝑈(𝑊3(𝑅𝑒𝐿𝑈(𝑊2(𝑅𝑒𝐿𝑈(𝑊1𝑧)))))))                          (1) 

Where (W_i) are the weights, and ReLU and Tanh are the activation functions. 

● Discriminator: Checks input images to see if they are real or not, distinguishing between real 

and fake images. It consists of fully connected layers with Leaky ReLU activations and an 

ending Sigmoid activation to provide a probability score.  

The discriminator function can be expressed as: 

                                 𝐷(𝑥) = 𝜎(𝑊3(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊2(𝐿𝑒𝑎𝑘𝑦𝑅𝑒𝐿𝑈(𝑊1𝑥)))))                          (2) 

where (sigma/ σ) is the Sigmoid activation function. 

The GAN training involves alternating optimization of the generator and discriminator with the 

following objectives: 

                                          𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠: 𝐿𝐺 = −𝑙𝑜𝑔(𝐷(𝐺(𝑧)))                                        (3) 

 

                       𝐷𝑖𝑠𝑐𝑟𝑖𝑚𝑖𝑛𝑎𝑡𝑜𝑟 𝐿𝑜𝑠𝑠: 𝐿𝐷 = −𝐸[𝑙𝑜𝑔𝐷(𝑥)] − 𝐸[𝑙𝑜𝑔(1 − 𝐷(𝐺(𝑧)))]                  (4) 

3.2 Convolutional Neural Network (CNN) Classifier Module  

This module outputs a classification of input images as Parkinson's disease stages or as healthy 

controls. Its architecture comprises:  



● Feature Extraction Layers: A sequence of convolutional layers with ReLU activations and 

max-pooling operations to obtain spatial features: 

                                                𝐹(𝑥) = 𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝑅𝑒𝐿𝑈(𝑊 ∗ 𝑥 + 𝑏))                                         (5) 

where (W) and (b) are convolutional filters and biases, respectively. 

●  Fully Connected and Flattening Layers: Feature maps that are extracted are flattened and 

then fed into fully connected layers to be classified finally: 

                                                          𝑦 = 𝑊𝑓𝐹(𝑥) + 𝑏𝑓                                                           (6) 

The CNN is trained with Binary Cross-Entropy Loss for binary classification problems: 

                               𝐿𝐶 = −𝑁1𝑖 = 1∑𝑁[𝑦𝑖𝑙𝑜𝑔(𝑦^𝑖) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦^𝑖)]                      (7) 

3.3 Dual-Stream Integration Module  

This module combines real and GAN-generated images into a single training pipeline to 

improve the classifier's robustness and generalization. The procedure includes: 

●  Combining Real and Synthetic Images: Blending real and synthetic images to create a large 

dataset: 

                                              𝑋𝑐𝑜𝑚𝑏𝑖𝑛𝑒𝑑 = [𝑋𝑟𝑒𝑎𝑙, 𝑋𝑠𝑦𝑛𝑡ℎ𝑒𝑡𝑖𝑐]                                         (8) 

●  Label Assignment: Preserving labels for real images and assigning corresponding labels to 

synthetic images. 

●  Classifier Training: Training the classifier on this combined dataset to avoid overfitting and 

enhance generalization. 

3.4 Workflow and Training Process  

1.   Data Preparation: Resize medical images by applying normalization and data 

augmentation methods (e.g., horizontal flip, random rotation). 

 

2.  GAN Training: Train the discriminator and generator in an iterative process until 

equilibrium is reached. 

 

3.   Synthetic Data Generation: Use the trained generator to generate more images, 

increasing the dataset. 

 

4.   CNN Training: Train the CNN classifier on the combined dataset of synthetic and real 

images using early stopping to prevent overfitting. 

 



5.   Evaluation: Model performance can be measured based on metrics, including accuracy, 

precision, recall, F1-score, and loss. 

 

 

Fig. 1. GAN-Augmented CNN Pipeline for Enhanced Parkinson’s Stage Detection from MRI Data. 

Through the combination of these modules, the system provides a solid and scalable solution 

for detecting Parkinson's disease, resolving issues regarding data availability, model 

generalization, and diagnostic accuracy. Fig 1 shows GAN-Augmented CNN Pipeline for 

Enhanced Parkinson’s Stage Detection from MRI Data. 

4 Result and Discussions 

4.1 Critique of the Suggested Dual-Stream GAN-CNN Model 

The envisioned dual-stream hybrid model of GAN-CNN was tested with 300 images related to 

Parkinson's disease and trained for 100 epochs. The performance metrics were evaluated by 



using the prime metrics of accuracy, precision, recall, F1-score, and confusion matrices. Table 

1 shows Comparison table of Existing Models. 

Table 1. Comparison Table of Existing Models. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Model comparison chart. 

The contribution of GAN-generated synthetic data greatly enhanced the classifier's 

effectiveness in identifying Parkinson's disease across various stages of the disease, particularly 

in initial stages, as conventional models always lag behind here. The fig 2 shows Model 

comparison chart. The 100-epoch model showed better performance, resulting in the following 

evaluation metrics: 

● Accuracy (PD): 99% 

Model Accuracy Precision Recall 
F1-

Score 

LRE-MMF 75 81 65 88 

Efficient net -B0 

Mobilenet-V2 
98 99 99 99 

Zebra 99.61 98.96 98.72 99.41 

Mobile Net 98.7 64.92 65 64.97 

YOLOv 7x 95 98 89 93 

1D-CNN 96.05 94.08 96.55 95.3 
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● Precision (PD): 98% 

● Recall (PD): 100% 

● F1-score (PD): 98.99% 

                                   𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦(𝑃𝐷) =
𝑇𝑃𝑃𝐷+𝑇𝑁𝑃𝐷  

𝑇𝑃𝑃𝐷+𝑇𝑁𝑃𝐷+𝐹𝑃𝑃𝐷+𝐹𝑁𝑃𝐷 
                                   (9) 

                                             𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝐷) =
𝑇𝑃𝑃𝐷

𝑇𝑃𝑃𝐷+𝐹𝑃𝑃𝐷 
                                           (10) 

                                                  𝑅𝑒𝑐𝑎𝑙𝑙(𝑃𝐷) =
𝑇𝑃𝑃𝐷

𝑇𝑃𝑃𝐷+𝐹𝑁𝑃𝐷 
                                            (11) 

                                          𝐹1𝑠𝑐𝑜𝑟𝑒(𝑃𝐷) = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝐷)∗𝑅𝑒𝑐𝑎𝑙𝑙(𝑃𝐷)

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑃𝐷)+𝑟𝑒𝑐𝑎𝑙𝑙(𝑃𝐷)
                         (12) 

Where, 

𝑇𝑃𝑃𝐷 = 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝑇𝑁𝑃𝐷 = 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

𝐹𝑃𝑃𝐷 = 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒  

𝐹𝑁𝑃𝐷 = 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒  

These outcomes suggest that the model generalized well over both synthetic and real datasets 

and achieved a high classification accuracy. The utilization of synthetic data not only enlarged 

the training set but also made the classifier better capable of separating faint patterns suggestive 

of early-stage Parkinson's disease. 

4.2 Comparison with Current Models 

The performance of the proposed model was compared with a number of state-of-the-art models, 

such as Mobile Net, LRE-MMF,1D-CNN, BCNN, Zebra, and YOLO-based models. The 

comparison identifies the better accuracy and generalization ability of the proposed model. 

The suggested dual-stream architecture significantly outperformed the current CNN models in 

accuracy and F1-score, indicating its capacity to learn useful features from the merged real and 

synthetic data. The use of GAN-generated images proved to be critical in solving the issue of 

data scarcity, resulting in improved feature learning and better classification accuracy. The fig 

3 shows confusion matrix. 

 



 

Fig. 3. Confusion Matrix. 

4.3 Early Detection Capabilities 

Early identification is critical to better outcomes in the management of Parkinson's disease. The 

model presented is effective to recognize the early-stage Parkinson’s disease compare with 

common models in which cannot achieve their objectives since they trained theirs network in 

inadequate training datasets with small distinctions in early-stage medical images. Dual-stream 

integration enabled the model to learn from augmented data which can be more sensitive to 

early features of PD. The capability of this application can have a huge effect on clinical 

diagnosis since it provides the means to act early. 

4.4 Analysis of Confusion Matrix 

Analysis of confusion matrix also revealed a significant reduction in false positive and false 

negative comparing to other CNN-based methods. This indicates that the proposed model is 

reliable and can seldom make mistakes, especially for early detection. Results demonstrate 

good classifying performance in all the four stages of PD. 

4.5 Benefits and Clinical Significance 

The double-stream GAN-CNN model has several benefits: 

●  Stronger Generalization: The synthetic and real data trained a strong model that 

generalized well to unseen data. 

 

● Less Overfitting: Overfitting risks were decreased through the utilization of both early 

stopping and dropout layers despite the relatively small size of the dataset. 

 

● More Diverse Data: Synthetic image generation from GANs provided great help in data 

augmentation, which enlarges training set and can improve the classification performance. 

 



● Clinical Applicability: The model is highly accurate and sensitive and may be used as a 

legitimate clinical tool, especially for early detection and follow-up to monitor the 

progress. 

The proposed GAN-CNN hybrid model is found to perform better than state of the art models 

in the detection of PD. Its ability to distinguish early-stage Parkinson’s disease with high 

accuracy is of significant clinical value and has the possibility to improve patient outcomes 

through early treatment and diagnosis.  

5 Conclusion 

METHOD: A new Dual-Stream GAN-CNN hybrid model was presented for detection PD for the 

early intervention and to deal with data shortage and imbalance by Daofu Gong and Fanfan He. 

The extension to GANs allowed the addition of generated images to the training set greatly 

increasing the performance and robustness of the classifier. The model achieved an accuracy of 

99.2% above the Mobile Net, LRE-MMF, 1D-CNN, BCNN, Zebra, and YOLO models. This 

indicates its effectiveness in detecting early stages of Parkison's disease which are important for 

early intervention and for better patient care. 

The mingling of real and simulated data in a two-stream framework furthered generalization and 

prevented overfitting and responded to substantially sparse data with good performance. This 

study provides evidence of the potential of hybrid models in clinical diagnosis and reveals a 

scalable solution for automatic identification of Parkinson's disease. 

6 Future Enhancements 

A   number   of  potential avenues   for   enhancement   and   expansion can   be used to improve 

on existing results: 

1. Adding Multi-Modal Data: Introducing multi-modal data like fMRI, DTI, and genetic 

data to the model might improve diagnostic reliability. 

2. Design of a Real-Time Diagnostic System: Designing a real-time diagnosis tool with an 

easy-to-use interface would facilitate clinicians to produce quick and reliable diagnoses. 

3. Application of Domain Adaptation and Transfer Learning: Using domain adaptation 

methods would enhance the model's ability to generalize across datasets from multiple 

clinical environments. 

4. Model Interpretability Enhancement: The addition of explain ability techniques, such as 

attention maps or Grad-CAM, would enable an understanding of how the model makes 

its predictions, instilling more trust in automated diagnosis. 

5. Disease Progression Analysis: Longitudinal analysis of data would provide more in-depth 

insight into disease progression and enable more tailored treatment planning. 

6. Validation on Larger and More Diverse Datasets: Additional validation on larger, more 

diverse datasets across several clinical centers would provide more generalizability and 

stability to the model. 
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