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Abstract. The exponential rise of digital transactions through Unified Payments Interface 

(UPI) kind of platforms, fraud detection has become very important but challenging. Most 

of the existing systems need to rely on correlation-based models and depend on centralized 

data aggregation that are limited with their scalability, interpretability and privacy. We 

propose CauFedFormer, a hybrid approach that combines sequential transformer models, 

UPI causal inference techniques, and federated learning for UPI fraud detection. Temporal 

behaviour anomaly capture, causally relevant features recovery, and distributed training 

with privacy preservation are present in the model. Experimental results show that 

CauFedFormer can reach precision of 86%, recall of 82%, F1-score of 84%, ROC-AUC 

of 93% and outperforms traditional baselines, including logistic regression and standalone 

transformer models. In addition, CauFedFormer proposes interpretable fraud risk score 

with confidentiality constraint. It thus makes for a promising candidate to be deployed in 

secure and scalable digital transaction ecosystems. 

Keywords: UPI Fraud Detection, Causal Inference, Federated Learning, Transformer 

Networks, Secure Digital Transactions, Explainable AI 

1 Introduction 

The spectacular phenomenon of digital payment systems, bringing to the future with unmatched 

speed of execution, convenience and accessibility, has been rapidly proliferating since the turn 

of the century [1][2]. Out of these, the most popular platform seems to be the Unified Payments 

Interface (UPI) in regions like India and somewhere billons of peer to peer and merchant 

transaction takes place on a monthly basis [3][4]. But this increased level of digital financial 

activity has also added up with fraudulent activities that include phishing and social engineering 

attacks to synthetic identity fraud [5][6]. The traditional fraud detection systems, which 

basically utilize static rule engines or correlation-driven machine learning models, are not able 

to detect sophisticated patterns of frauds in a real time manner [7][8]. Approaches to centralized 

data processing to deal with privacy and regulations concerns that are emerging to protect the 

user privacy [9] [10]. 
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Detecting fraud in the era of modern digital transactions is a challenge that comes with a few 

key challenges [11] [12]. First, it must be able to capture temporality and sequential movement 

of user behaviour that are often present in the form of slight time-based deviation that must point 

to fraud. Second, it must go beyond correlation and utilize causal relationships to identify, as 

anomalies, the only actionable behavioural changes, and not false positives [13] [14]. Second, 

it must guarantee privacy preservation, i.e., it should not reveal the private user data when 

collaborating with another financial institution for fraud detection [15] [16]. Lastly, it needs to 

be explainable, giving readily explainable interpretations of why a transaction is flagged in order 

to gain user trust and to prevent regulatory standard infringement [17] [18]. 

In order to tackle these challenges, we introduce CauFedFormer, a new hybrid framework that 

uses sequential transformer models, causal inference and federated learning and achieves robust, 

scalable and privacy preserving UPI fraud detection. Behavioural anomalies are modelled from 

the user transaction sequences using a transformer encoder, causality inference is applied to 

identify the features that drive fake patterns, and federated learning is employed for 

collaborative model training among distributed data sources without raw data aggregation. In a 

nutshell, our contributed are as follow: 

• To address complex user behaviour at sequential times, we develop a sequential anomaly 

detection module based on transformer architectures. 

• To make the model better interpretable and robust to spurious correlation, we integrate causal 

inference mechanism to estimate the causal impact of transaction features. 

• To do that we implement a federated learning framework which enables training of fraud 

detection models across decentralized financial entities without compromising on user data 

privacy. 

• Extensive experiments are conducted to show that CauFedFormer achieves substantial 

improvement on the precision, recall, F1-score, and ROC-AUC over the baseline and 

existing models. 

In this way, we provide a holistic understanding of the importance of the individual components 

(sequential, causal and federated) on the overall system performance. 

The rest of the paper is structured as follows. Section II discusses related work. Section III 

details the proposed methodology. Results and analysis are given in Section IV. In Section V we 

discuss, and in Section VI we conclude the paper with some future directions. 

2 Related Work 

With development of fraudulent activities in digital payment systems, this research area is 

active. In this section, we summarize previous works in solving the problem in each of key 

dimensions of the solution proposed in this thesis: fraud detection using machine learning, 

sequential modelling for financial anomalies, causal inference in fraud analysis, and federated 

learning for privacy preserving AI. 

2.1 Fraud Detection Using Machine Learning 

Two challenges of traditional fraud detection systems include rule-based systems, which are 

human engineered thresholds and expert defined patterns [19]. But these static systems are 

already way too easily fooled by angry adaptive fraudsters. Therefore, more and more machine 

learning (ML) models are being applied, from logistic regression, decision trees, support vector 



machines to ensemble methods of random forests and gradient boosting models, etc. [20] [21]. 

However, these methods offer better adaptability and automation yet mostly deal with 

correlation without considering the temporal dynamics or being interpretable. 

2.2 Sequential Modelling for Financial Anomalies 

Recent advances for sequential behaviour of transaction activities include Hidden Markov 

Model (HMM), Long Short-Term Memory (LSTM) network and Gated Recurrent Unit (GRU) 

[22] [23]. The goal of these models is to capture temporal dependencies because fraudulent 

transactions tend to appear in deviation of normal behavioural sequences. Despite this, however, 

recurrent neural networks have issues dealing with the vanishing gradients as well as modelling 

of long-term dependencies. Recent Transformer architectures with self-attention [24] have 

emerged as a nice alternative for sequence modelling, while there is not much research on 

financial fraud detection with it. 

2.3 Causal Inference in Fraud Analysis 

Machine learning models can detect the signals that a fraud might have, but they lack 

explanations as to why a transaction is suspicious. To separate true causality from mere 

correlation, recent studies have started to apply causal inference techniques (i.e., structural 

causal models (SCM) and causal forests) to the financial domains as discussed in [25]. These 

approaches have great potential for more explainable and robust fraud detection methods, but 

applying them in isolation from a behavioural model prevents a potential approach for fraud 

detection in the real-world dynamic environment of UPI [26]. 

2.4 Federated Learning for Privacy-Preserving Fraud Detection 

With a need for optimal data privacy conditions becoming more and more important due to 

regulations like GDPR and India’s Data Protection Bill, there has been a surge in interest for 

decentralized learning paradigms. Federated Learning (FL) [27] facilitates multiple (e.g., banks, 

mobile apps) clients to collaboratively train a global model with no raw data being exchanged 

between clients. The applications of FL in credit card transaction and mobile banking fraud 

detection are explored, but integration with advanced sequential and by causal modelling is still 

limited. Active fields of research in FL frameworks include model convergence, handling of 

communication overhead, and dealing with non-aid data distributions [28] [29]. 

2.5 Research Gap 

Despite the abundance of work performed in previous research on different aspects of fraud 

detection, none of the existing systems apply all the mentioned aspects to sequencing transaction 

behaviour, causal feature analysis, and privacy preserving distributive learning in one 

consolidated system. To fill this gap, we propose CauFedFormer, which unifies these 

components, leads to better detection performance, stronger interpretability and complete 

decentralization friendliness as to comply with decentralized data governance requirements. 

3 Methodology  

We introduce CauFedFormer: a novel hybrid model that integrates causal inference, transformer 

based sequential model and federated learning for improving the ability of detecting fraud in 

UPI (Unified Payments Interface) transactions. In this case, the user data privacy and the 

explainable decision making are expected critical requirements in secure digital payment 



systems, in addition to the accuracy of fraud detection, and the proposed framework is intended 

to achieve all of these goals. Fig. 1 shows the Proposed Architecture. 

 

Fig. 1. Proposed Architecture. 

The foundation of CauFedFormer lies in modeling user transactions as sequential behavior 

patterns. Each user's transaction history over a given time window is represented as an ordered 

sequence of feature vectors. Specifically, for a user 𝑢, we define the transaction sequence as: 

𝑋𝑢 = {𝑥1, 𝑥2, … , 𝑥𝑇}                                                                                                                    (1) 

where 𝑥𝑡 ∈ ℝ𝑑 is a feature vector corresponding to the 𝑡𝑡ℎ transaction, encapsulating attributes 

such as transaction amount, merchant category, time of transaction, device metadata, 

geolocation, and risk history indicators. These sequences are fed into a Transformer encoder 

that captures complex temporal dependencies across transactions. The self-attention mechanism 

at the heart of the Transformer is formulated as: 

Attention(𝑄, 𝐾, 𝑉) = softmax (
𝑄𝐾𝑇

√𝑑𝑘
) 𝑉                                                                                         (2) 

where 𝑄 = 𝑋𝑢𝑊
𝑄 , 𝐾 = 𝑋𝑢𝑊

𝐾, and 𝑉 = 𝑋𝑢𝑊
𝑉 are projections of the input into query, key, and 

value spaces using learned matrices 𝑊𝑄 ,𝑊𝐾 ,𝑊𝑉, and 𝑑𝑘 is the dimension of the key vectors. 

The multihead attention allows the model to attend to different aspects of the transaction history, 

effectively modeling both local and long-range behavioral dependencies. The output of the 

Transformer, 𝐻𝑢 = {ℎ1, ℎ2, … , ℎ𝑇}, represents enriched embeddings capturing normal and 

abnormal behavioral signatures. 



 

Deep sequential models are known to be effective at identifying anomalies but this is basically 

a correlation driven detection as these models are inherently correlation driven and 

unfortunately fail to differentiate genuine causality from spurious patterns. To overcome this 

limitation, CauFedFormer combines a causal inference module upon the Structural Causal 

Models (SCMs). In this, each transaction feature along with its corresponding fraud outcome 

are modelled as nodes of a directed acyclic graph (DAG) connected with other nodes by edges 

denoting the direct cause relation. We estimate the causal effect on the probability of fraud of 

key transaction features by using do-calculus principles. In particular we use Causal Forest to 

compute the Average Treatment Effect (ATE) and Conditional Average Treatment Effect 

(CATE): 

ATE = 𝔼[𝑌(1) − 𝑌(0)]

CATE(𝑥) = 𝔼[𝑌(1) − 𝑌(0) ∣ 𝑋 = 𝑥]
                                                                                       (3) 

where 𝑌(1) and 𝑌(0) are the potential fraud outcomes under the intervention and non-

intervention scenarios, respectively, and 𝑋 denotes the observed feature space. Transactions 

exhibiting high causal effect magnitudes on fraud likelihood are assigned elevated risk scores, 

providing a mechanism to not only detect fraud but also explain it in causal terms. 

In order to preserve user privacy and develop collaborative learning among multiple financial 

institutions without the need of data centralization, CauFedFormer is trained on top of a 

Federated Learning framework. As such, in this setup, banks and mobile apps maintain 

enclosures of their private transaction datasets, which are trained by individual data silos. 

However, model parameter updates are the only thing shared with a secure aggregation server, 

thus, no raw transaction data leaves from the client premises. To this end, the Federated 

Averaging (FedAvg) algorithm is used to update the model parameters. 

𝜃(𝑡+1) = ∑  𝐾
𝑘=1

𝑛𝑘

𝑛
𝜃𝑘
(𝑡)

                                                                                                               (4) 

where 𝜃𝑘
(𝑡)

 denotes the model parameters of the 𝑘𝑡ℎ client at training round 𝑡,𝑛𝑘 is the number 

of samples on client 𝑘, and 𝑛 = ∑  𝐾
𝑘=1 𝑛𝑘 is the total number of samples across all clients. This 

process preserves user confidentiality while enabling robust, cross-institutional fraud detection 

capabilities. 

The outputs from the Transformer sequential module and the Causal Inference module are 

aggregated along with contextual risk scores to generate a final fraud risk score for each 

transaction. The aggregation mechanism is defined as a weighted combination: 

𝐹final = 𝛼 ⋅ 𝐹trans + 𝛽 ⋅ 𝐹causal + 𝛾 ⋅ 𝐹meta 

 where 𝛼 + 𝛽 + 𝛾 = 1
                                                                                  (5)                   

Here, 𝐹trans  denotes the fraud score from the Transformer model, 𝐹causal  represents the causal 

fraud score, and 𝐹meta  captures additional metadata-based risk signals such as device reputation 

or IP anomalies. The weights 𝛼, 𝛽, 𝛾 are determined via grid search and cross-validation on 

validation datasets to optimize the trade-off between precision, recall, and F1-score. 

 



In order to alleviate the high-risk cases, CauFedFormer incorporates a human-in-the-loop 

verification mechanism that leverages the causal explanations from the SCM. The federated 

training pipeline without these verified fraud labels is re-introduced. In order to achieve scalable, 

interpretable and privacy preserving UPI fraud detection, CauFedFormer combines federated 

computation, causal reasoning, and sophisticated machine learning algorithms seamlessly. 

4 Result and Analysis  

This evaluation shows detailed analysis of the proposed CauFedFormer model from multiple 

analytical aspects. We additionally study the internal behaviour of its main components, namely 

the transformer – based sequence analyser, the causal inference engine and the federated 

learning process, besides comparing its performance to baseline models. We evaluate overall 

predictive accuracy of the model in addition to its interpretability, ability to detect anomalies, 

and training dynamics in a decentralized setting, through a combination of quantitative metrics 

and diagnostic visualizations. 

4.1 ROC Curve – CauFedFormer 

The CauFedFormer model is evaluated with the ROC curve that represents the trade-off between 

the true positive rate (TPR) and false positive rate (FPR). The model discriminates very well 

between fraudulent and legitimate transactions with AUC = 0.92. Fig. 2 shows the ROC Curve 

– CauFedFormer. 

 

Fig. 2. ROC Curve – CauFedFormer. 

4.2 Precision-Recall Curve – CauFedFormer 

This fig 3 plots precision against recall across various thresholds. CauFedFormer exhibits very 

high precision (>90%) across a wide spectrum of recall values which is important in the case of 

a fraud, when false positives can significantly inconvenience users. 

 



 

Fig. 3. Precision-Recall Curve – CauFedFormer. 

4.3 Confusion Matrix – CauFedFormer 

From the confusion matrix, we get 448 true negatives, 339 true positives, 157 false negatives 

and 56 false positives. It shows a good capability to be able to detect frauds in a balanced way 

and avoid sending unnecessary alerts. Fig. 4 shows the Confusion Matrix – CauFedFormer. 

 

Fig. 4.Confusion Matrix – CauFedFormer. 



4.4 Comparison of AUC across models. 

Here we show comparative bar chart for AUC scores of model variants. The AUC achieved by 

the proposed CauFedFormer is highest (0.93) and it surpasses Transformer only model (0.83), 

Causal only model (0.81) and baseline model (0.76). Fig. 5 shows the Comparison of AUC 

across models. 

 

Fig. 5. Comparison of AUC across models. 

4.5 Federated Training Loss Over Rounds 

Here is a plot showing the model’s convergence when learning in a federated way. With 10 

rounds of training, the training loss steadily decreases until stabilizing around 0.08, which 

indicates that decentralized learning is effective and fast convergence is achieved. Fig. 6 shows 

the Federated Training Loss Over Rounds. 

 

Fig. 6. Federated Training Loss Over Rounds. 



4.6 Causal Feature Importance 

The chart ranks feature by how much they cause fraud to be detected. It shows that Transaction 

Amount (≈0.48) is the most influential, followed by Geo Location (≈0.41), meaning that they 

cause frauds highly. Fig. 7 shows the Causal Feature Importance. 

 

Fig. 7. Causal Feature Importance. 

4.7 Final Fraud Score Distribution 

The histogram shows fraud risk scores’ distribution. Most transactions fall into a low-to-

moderate range of risk, with a meaningful tail extending to higher risks, from a risk perspective, 

centred around 0.4 - 0.6. Fig. 8 shows the Final Fraud Score Distribution. 

 

Fig. 8. Final Fraud Score Distribution. 

4.8 Precision by Threshold – CauFedFormer 

This means the model becomes more precise as the fraud score threshold goes up. Precision is 

practically 100% at thresholds >0.6, making this an excellent approach to capture as much true 



alert as possible with as few false positives as possible, in the context of high risk alerts. Fig. 9 

shows the Precision by Threshold – CauFedFormer. 

 

Fig. 9. Precision by Threshold – CauFedFormer. 

4.9  Anomaly Score Over Time – Transformer Output. 

Shown is this line plot that takes transformer-based anomaly scores over 20 transactions. Sudden 

behavioural deviations flagged as a fraud attempts are indicated by peaks above 0.75. Fig. 10 

shows the Anomaly Score Over Time – Transformer Output. 

 

Fig. 10.  Anomaly Score Over Time – Transformer Output. 

4.10  Causal effect per transaction. 

The fig 11 below illustrates the estimated causal effects of the features to fraud risk on 100 

transactions. Its rising trend suggests a greater amount of causal impact on the detected 

anomalies for both scoring and interpretability. 



 

Fig. 11. Causal effect per transaction. 

4.11 Comparative Analysis  

In order to validate the efficacy of the proposed CauFedFormer model, we will compare this 

model to three baselines, which are widely used in financial fraud detection, including: (1) a 

baseline based on logistic regression representing traditional rule-based systems; (2) a 

Transformer model where we do not consider any causality or decentralization; (3) a Causal 

model which is interested in causal inference rather than behavioural sequences. Table 1 

illustrates that CauFedFormer outperforms all baselines on important metrics. In terms of false 

positives, its precision was 0.86, while it managed to achieve a recall of 0.82 making the fraud 

detection very strong. BAL performance measured by 0.84 F1 and ROC AUC of 0.93 is better 

than baseline Transformer only (0.83) and Causal only (0.81). In addition, CauFedFormer has 

the highest accuracy of 0.88 ensuring its success in real world transaction settings where both 

interpretability and privacy are important. These results validate that integrating sequential 

transformers, causal inference and federated learning, the proposed solution does improve 

substantial fraud detection in UPI systems. Table 1 shows the Comparative Performance 

Analysis of Fraud Detection Models. 

Table 1: Comparative Performance Analysis of Fraud Detection Models. 

Model Precision Recall F1-Score ROC-AUC Accuracy 

Baseline (LogReg) 0.68 0.61 0.64 0.76 0.72 

Transformer-only 0.79 0.76 0.77 0.83 0.81 

Causal-only 0.76 0.73 0.74 0.81 0.79 

CauFedFormer (Proposed) 0.86 0.82 0.84 0.93 0.88 

 

The results prove that CauFedFormer is capable of detecting UPI frauds with extremely high 

precision and recall settings. In addition to its superior performance in anomaly classification 

compared with existing state of the art models, component level analyses verify the capability 

of the transformer in spotting sequential anomalies, interpretations of risk factors are obtained 

using the causal module and we show the privacy preserving learning capability of the federated 

setup with efficient convergence. The insights gained from these evaluations when combined 



aid the feasibility of deploying CauFedFormer in real world financial systems where explain 

ability, security and data privacy are critical. 

5 Discussion 

Our experiments can be said being actually experimental for showing not only the practical 

effectiveness but also the theoretical strengths of the proposed CauFedFormer framework. 

CauFedFormer has consistent improvements compared to both the traditional and modern 

baseline models on all the major performance metrics such as precision, recall, F1-score, 

accuracy and ROC-AUC. This furthers our core hypothesis that modelling temporal behaviour, 

causal reasoning, and including federated learning in the same fraud detection system makes the 

process more holistic and intelligent when it comes to offline fraud detection in digital 

transactions such as UPI. This work’s use of causal inference to identify fraud is one of the most 

significant contributions. CauFedFormer differs from conventional models and only works 

based on correlation and does not have a causal engine that will be able to simulate 

counterfactuals and estimate treatment effects. It allows the model not only to spot suspicious 

transactions but also to provide interpretable explanations, which is becoming a necessity for 

XAI in financial systems. The other major benefit is that with federated learning, cross 

institutional collaborations can happen without user exploitable privacy loss. The primary of 

this is in financial domains, where centralization of raw data is prohibited by regulatory 

framework like GDRP and India’s Data Protection Bill. We demonstrate for our federated 

approach fast convergence with low communication overhead and scalability for deployment in 

large-scale financial networks that are distributed in their data. The transformer component of 

the model was found to be extremely useful in capturing the sequential transaction behaviour 

and discovered minute deviations which otherwise should not have been highlighted by a static 

model. Additionally, hybrid score aggregation, through the use of transformer outputs, causal 

effects as well as contextual metadata, enables the model to ensure a balance between robustness 

and accuracy depending on existing fraud strategies. However, although with great strength, 

CauFedFormer is not free from weaknesses. More concretely, first our synthetic and partially 

anonymized datasets exhibit realistic transaction patterns, yet a real, large scale labelled UPI 

fraud dataset would better buttress the empirical grounding of this work. Furthermore, 

transformers and causal forests tend to be computationally complex, thereby possible 

encountering challenges in making real time inference in high throughput environment. Future 

work could include optimizations like model pruning, edge inference, or distillation etc. Fraud 

strategies evolve rapidly. However, CauFedFormer has the adaptability to be future proofed 

when incorporating concept drift detection and online continual learning mechanism among its 

next steps as updates from the federated updates and feedback loop are shown to have strong 

adaptability. 

6 Conclusion 

A novel hybrid architecture named CauFedFormer was proposed to improve UPI frauds 

detection, whose predictive capability was based on the combination of sequential transformers, 

causal inference, and federated learning. To address these limitations, our approach models 

temporally the behaviour of users, finds features that cause true fraud, and brings user data to 

the edge, keeping it decentralized and secure. Extensive experiments showed that 

CauFedFormer attains the highest level of precision, recall and AUC scores using all major 

evaluation metrics over baseline models. Furthermore, the component wise analysis also 

verified that each module indeed plays a useful role in the overall model performance – 



transformer plays the role of behavioural anomaly detector, the causal module aids in 

interpretability by estimating treatment effects, and finally, federated learning aids in scaling the 

model to diverse distributed financial network without succumbing to privacy loss. The model 

thus is explainable, adaptable, and complies well with data regulations and hence is naturally fit 

for deployment in real world digital payment infrastructures, like UPI. Coming forward, we aim 

to expand this work by considering online learning over dynamic fraudulent patterns, supporting 

sophisticated drift significance detection, and conducting the test on significant, live UPI data 

for various geographies and end consumer segments. 
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