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Abstract. Plant diseases are among the key problems confronting global agriculture, which 

leads to a decrease in crop yield and losses. Conventional detection procedures like human 

observation by experts are often time-consuming, subjective, and susceptible to making 

mistakes. Deep learning, that is, convolutional neural networks (CNNs), has turned out to 

be a great asset for plant disease detection automation with high accuracy. This paper 

provides an overview of state-of-the-art techniques emphasizing CNN-based models’ 

advantages over traditional machine learning algorithms like support vector machines and 

random forests. The method combines a hybrid deep model consisting of CNNs and 

transfer learning techniques for enhanced model performance and reliability. Powerful 

preprocessing techniques, including color normalization and augmentation, are 

incorporated to enhance classification accuracy across varied environmental conditions. 

The performance of the model is measured based on parameters such as accuracy, 

precision, recall, and F1-score. This research aims to assist in early intervention of disease 

by using a scalable and efficient solution and assist in sustainable agriculture. The findings 

identify the potential of deep learning in transforming plant disease control, reducing labor 

dependence, and promoting food security. 

Keywords: Plant Disease Prediction, Deep Learning, Convolutional Neural Networks, 

VGG-19, VGG-16, Precision Agriculture, Image Classification 

1 Introduction 

Agriculture is literally the backbone of the majority of economies in the world, feeding 

and giving livelihood to millions of individuals. In this respect, plant health is of utmost 

importance, playing a very significant role in the facilitation of sustainable food production 

measures. Plant diseases, however, pose a critical and serious threat to agricultural 

production, eventually leading to lower production and posing severe challenges to 

agricultural food security initiatives worldwide. Detection of plant dis- eases at an early 

stage is thus absolutely crucial in facilitating appropriate treatment and management of 

crops, so that farmers may take necessary steps to prevent such attacks. Conventional means 

of disease detection are hugely dependent on physical inspection by agricultural experts. 

Such a procedure can be very time-consuming, consumes enormous time, and is highly 

susceptible to mistakes. Farmers in remote villages also frequently suffer due to a lack of 

access to expert analysis, which further leads to delayed treatment and facilitates infections 

to further spread among their crops. 

Over the last few years, there has been rapid and stunning growth in artificial intelligence 

(AI) and deep learning technologies, and automated plant disease detection has become a 
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very promising alternative to the classical methods that have been used for many years. 

Such deep learning algorithms leverage large-scale image dataset, which is particularly 

useful for the training of powerful models to diagnose plant diseases with high accuracy. 

Deep Networks, and CNNs in particular, have had a great impact by changing the usual 

image-based classification task to the one in which highly non-linear features or patterns 

have been learned, such as possibly the ones which are not even perceptible to the human 

eye. Moreover, elaborate architecture designs such as VGG-19 and VGG-16 improve 

the.cation performance mainly by using deep feature extraction method, and hierarchical 

learning) to improve its accuracy of disease identi.cation and reliability. 

 

This paper examines the performance of VGG-19 and VGG-16 in relation to the traditional 

models like SVM and traditional CNNs for the plant disease classification of leaf images. 

The use of deep learning techniques not only improves accuracy but also reduces 

dependency on hu- man experience, hence the diagnosis of diseases is simplified for 

farmers worldwide. Also, the use of AI-based disease diagnosis models on cloud and 

mobile platforms can facilitate real-time disease monitoring, enabling immediate response 

and minimizing crop loss. Through the use of large and extensive datasets, coupled with 

computationally effective deep learning methods, this research study seeks to provide a 

robust and scalable method for plant disease prediction. The product that emanates from 

this study has the capacity to greatly add to the growth of precision agriculture in general, 

allowing farmers to have effective and reliable means of disease detection early on and to 

improve the care of their crops. 

2 Literature Survey 

Plant disease diagnosis is very crucial for achieving the goals of sustainable agriculture 

and to minimize the economical loss. The traditional methods rely on human observation 

by manual check, which is dependent on time and human factor. In the recent period, 

among the deep learning models, there have been excellent and automatic in diagnosis of 

plant disease such as convolutional neural networks (CNN). 

Devarai et al. Images CONVed leaves for Plant Disease Classification Study [1] 

introduced a VGG16 and VGG19, CNN-based Plant Disease Classification System, 

proposed to have used segmented leaves (in an EDGESsense) and being able to get high 

accuracy on classes of diseases and healthyive plants. Similarly, Ramesh et al. (2022) used 

VGG19 for feature extraction, which helps to eliminate preprocessing issues and 

improves classification performance [2]. These papers highlight the importance of deep 

learning models in the agricultural domain, particularly when processing big data. 

Tian et al. (2020) transformed the image by converting the RGB images to hue, saturation, 

and inten- sity (HSI) using the generalized linear model (GLCM) and concatenated them 

to the CNN model. The method increased the prediction accuracy of the models for 

detecting subtle patterns of the diseases in wheat plants [3]. Ferentinos et al. (2018) 

proved that there is net 1% Accuracy difference in plant disease detection using the deep 

learning architecture, which is trained on large dataset [4].Mohanty et al. (2016) 

demonstrated CNN’s capability to identify 38 plant diseases, confirming the deep learning 

model’s capability to diagnose plant diseases [5]. Amara et al. (2017) used VGG16 to 

identify banana leaf diseases, demonstrating its sufficiency in identifying various types 



 

of infections [6]. Singh et al. (2018) investigated data augmentation methods to maximize 

CNN performance, transcending limitations of datasets and variability [7]. Again, Gupta 

et al. (2019) showed how plant disease detection using CNN could be optimized by transfer 

learning so that models could be generalized across climates and plant species [8]. 

Chakraborty et al. (2020) streamlined CNN models for crop health evaluation, targeting 

model optimization towards feasible agricultural use [9]. 

Zhang et al. (2019) examined the impact of pretrained CNNs on plant disease detection, 

which found that fine-tuned models with large training sets were immensely more effective 

than baseline CNNs [10]. Too et al. (2019) compared and contrasted different CNN models 

(VGG16, VGG19, and ResNet) for classifying plant diseases, with data on model 

efficiency and accuracy [11]. Wang et al. (2020) combined CNN-based plant disease 

detection with automatic image preprocessing to save computational cost and detection 

time [12]. 

Liu et al. (2021) deployed a deep learning-based multi-class disease classification system 

for plants that efficiently segregated all kinds of diseases [13]. Picon et al. (2019) 

improved generalization capabilities of CNN in multiple environments by making 

extended use of data augmentation [14]. Saleem et al. (2021) proposed a real-time plant 

disease detection system using CNNs and demonstrated its applicability for adoption in 

smart agriculture applications [15]. 

 

 
 

Fig. 1. Flowchart of the Proposed Work. 

Our work builds upon these approaches by introducing a hybrid deep learning technique 

comprising CNN, VGG16, and VGG19, along with advanced preprocessing techniques. 

This enhances scalability, real-time applications, and accuracy in detecting plant diseases 

in diverse agricultural environments. Fig.1 gives the proposed work flowchart. 

 



 

3 Methodology 

The proposed approach for plant disease detection is divided into four major parts: data 

acquisition, preprocessing, model design, and testing. First, a database of healthy and diseased 

images of plants is collected from the open content or field visit. Preprocessing process are used 

as image resize, augmentiong, normalization to enhance the data quality and consistency 

between samples. More complex image enhancement methods, such as histogram equalization 

and adaptive contrast stretching, may also be used for improving feature visibility. Then, a deep 

learning model, preferably a CNN model such as ResNet or EfficientNet, is designed and trained 

with the pre-processed dataset. Transfer Learning Transferring knowledge from pre-trained 

model on huge image databases to fine tune the model to the given dataset is also known as 

transfer learning. During the training time the model is learned to recognize and generalize 

common features of a set of plant diseases over a set of convolutional layers. 

To avoid overfitting we employ dropout regularization and batch normalization. Model 

performance is evaluated with the help accuracy, precision, recall, F1-score, along with 

confusion matrix to test the model efficacy of classification. Cross-validation is also performed 

so that the model can generalise to new unseen data. Additionally, a system with real- time 

inference functionality may also present in the system which can be readily utilized by farmers 

and agrometeorologists in the field. 

3.1 Architecture of CNN 

Fig. 2. CNN: A deep learning architecture for feature extraction and classification. 

The fig. 2 represents a Deep Learning classification pipeline based on a Convolutional 

Neural Network (CNN), designed for accurate and efficient plant disease classification. This 

architecture extracts hierarchical features from images, enabling precise detection of plant 

diseases. 

 



 

3.1.1 Image Preprocessing 

Image Processing is processing of images using mathematical operations in the Digital 

domain to obtain an enhanced image or to extract some useful information from it. It’s 

crucial to computer vision and AI, as it allows machines to understand visual information. 

It's aims include digital image enhancement, restoration, analysis, compression, and 

cognitive pattern recognition. Typical methods are based on the use of filtering, 

segmentation, thresholding, morphologic operations, and geometric transformation. These 

steps enhance image quality, separate objects and make possible applications such as face 

recognition, medical imaging and autonomous driving. 

3.1.2 Deep Learning Model 

The model consists of multiple convolutional layers followed by pooling layers for feature 

extraction. Batch normalization and dropout techniques are applied to improve 

generalization and prevent overfit- ting. 

3.1.3 Convolutional and Pooling Layers  

Traditional Convolutional Net- works or CNNs compose features learned by stacking a 

bunch of convolutional layers. It consists of Conv1 with 32 filters and 3×3 kernel and ReLU 

activation, followed by Conv2 with 64 filters and 3×3 kernel and ReLU activation, 

succeeded by Conv3 with 128 filters, 3×3 kernel and ReLU activation. To not lose important 

information and decrease the spatial dimension on the other hand, each of the convolutional 

blocks will be followed by a MaxPooling of size 2×2, which has the effect of decreasing a 

4×4 to 2×2. 

3.1.4 Batch Normalization and Dropout 

Normalizes activations to stabilize training and accelerate convergence. Randomly 

deactivate neurons with rates of 0.25, 0.3, and 0.4 to prevent overfitting. 

3.1.5 Fully Connected Layers  

Convolutional Neural Networks (CNNs) learn features using stacked convolutional 

layers. Conv1 with 32 filters, 3×3 kernel size, and ReLU activation, and then Conv2 

with 64 filters, 3×3 kernel size, and ReLU activation. Conv3 with 128 filters, 3×3 kernel 

size, and ReLU activation. To minimize spatial dimensions without com- promising 

important features, a 2×2 MaxPooling operation is applied after every convolutional block 

3.1.6 Plant Disease Classification  

The final layer classifies plant im- ages into multiple categories, including ‘Healthy’ for 

no disease detected, ‘Leaf Spot’ for spots indicating fungal or bacterial infection, ‘Mosaic 

Virus’ for discolored patches caused by viral infection, and ‘Blight’ for severe tissue damage 

resulting from bacteria or fungi. 

This CNN-based approach ensures high accuracy, efficiency, and scalability, making it well-

suited for real-time plant disease detection in precision agriculture. 



 

3.2 Architecture of VGG16 

 

Fig. 3. VGG16: A 16-layer CNN for image classification. 

The fig. 3 represents a deep learning classification pipeline based on the VGG16 

architecture, which is widely used for image classification tasks. The structured design of 

VGG16 with deep convolutional layers enables accurate feature extraction, making it 

effective for plant disease detection. 

3.2.1 Image Preprocessing 

Image Processing is explained in 3.1.1 section 

3.2.2 Deep Learning Model  

The deep model includes multiple convolutional layers and the following pooling layers to 

get hierarchical features. The derived features are used as an input to fully connected layers 

for plant disease classification. To improve the performance, the pre-trained weights from 

ImageNet can be used to fine-tune plant disease classification. 

3.2.3 Convolutional and Pooling Layers   

VGG16 is trained using a stack of deep convolutional layers. Conv1 consists of two 64-

filter convo- lutional layers with ReLU activation and a 3×3 kernel. Conv2 consists of two 

128-filter convolutional layers with ReLU activation and a 3×3 kernel. Conv3 comprises 

three convolutional blocks with 256 filters, a 3×3 kernel, and ReLU activation, while Conv4 

comprises three convolutional blocks with 512 filters, a 3×3 kernel, and ReLU activation. 

For down sampling spatial dimensions and retaining significant features, a 2×2 MaxPooling 

operation is applied after each convolutional block. 

3.2.4 Fully Connected Layers  

The extracted features are flattened and input into dense layers. Dense1 is the first dense 

layer, with 4096 ReLU-activated neurons, then a second dense layer, Dense2, consisting of 



 

4096 ReLU-activated neurons. The output layer uses Softmax activation for multi-

classification. 

3.2.5 Plant Disease Classification  

The final layer classifies plant im- ages into multiple disease categories, including 

‘Healthy’ for no disease detected, ‘Leaf Spot’ for bacterial or fungal infection, ‘Mosaic 

Virus’ for discolored patches caused by viral infection, and ‘Blight’ for severe tissue damage 

resulting from bacteria or fungi. 

This deep learning-based approach ensures high accuracy, robustness, and scalability, 

making it a reliable solution for real-time plant disease detection in precision agriculture. 

3.3 Architecture of VGG19 

The diagram depicts a deep learning classification pipeline using the VGG19 model, 

one of the popular image classification models. Due to deep convolutional layers 

adopted in the architecture of VGG19, the feature extraction is more precise, and thus 

the proposed method is effective for plant disease detection. 

3.3.1 Image Preprocessing 

Image Processing is explained in 3.11 section 

3.3.2 Deep Learning Model   

The deep model comprises several layers of convolutional layers and then pooling layers 

in order to acquire hierarchical features as shown in fig 4. These features obtained are then 

input into fully connected layers to label plant diseases. To improve the performance, fine-

tuning can be done from pre-trained ImageNet weights especially for plant disease 

classification. 

 

Fig. 4. VGG19: A deeper 19-layer version of VGG16. 

3.3.3 Convolutional and Pooling Layers VGG19 takes features from a deep stack 

of convolutional layers. Conv1 is the initial block, which contains two convolutional layers 

with 64 filters, a kernel size of 3×3, and ReLU activation. Conv2 contains two convolutional 



 

layers with 128 filters, a kernel size of 3×3, and ReLU activation. Conv3 has four 

convolutional layers with 256 filters, kernel size 3×3, and ReLU activation, while Conv4 

and Conv5 have four convolutional layers with 512 filters, kernel size 3×3, and ReLU 

activation. For spatial reduction and feature retention, a 2×2 MaxPooling operation is 

applied after each convolutional block. 

3.3.4 Fully Connected Layers  

The features which have been extracted are flattened and feed into the dense layers. Dense1 

comprises 4096 neu- rons with the ReLU activation followed by the second dense layer, Dense2, 

also 4096 neurons and ReLU activation. Finally, the last layer uses the Softmax 

activation to perform the multi-class classification. 

3.3.5 Plant Disease Classification  

The final layer classifies plant im- ages into multiple disease categories, including 

‘Healthy’ for no disease detected, ‘Leaf Spot’ for bacterial or fungal infection, ‘Mosaic 

Virus’ for discolored patches caused by viral infection, and ‘Blight’ for severe tissue damage 

resulting from bacteria or fungi. 

VGG19 ensures high accuracy, robustness, and scalability, making it a reliable solution 

for real-time plant disease detection in precision agriculture. 

4 Existing Approaches 

Plant disease detection has witnessed a revolutionary transformation with groundbreaking 

breakthroughs in image-based analysis methods. This transformation began from conventional 

manual feature extraction methods to the use of powerful, deep learning-based models that 

leverage the power of artificial intelligence. Scientists in the early days of plant disease detection 

were dependent greatly on handcrafted features that utilized a huge number of descriptors that 

varied from texture, color, to shape. These methods needed high levels of technical expertise 

and, at times, involved long preprocessing steps to prepare the data sufficiently. Sadly, these 

conventional methods were tedious, required vast amounts of computational resources, and were 

riddled with enormous challenges of scaling up, particularly when working with large 

agricultural datasets that in- volved enormous amounts of data. In a quest to overcome and solve 

these built-in drawbacks, machine learning methods, especially Support Vector Machines 

(SVM), and deep learning models like Convolutional Neural Networks (CNNs) have gained 

tremendous pace and popularity for activities involved in classifying plant diseases. SVMs have 

been incredibly efficient in carrying out binary classification operations, and they have been 

successfully utilized to distinguish healthy and diseased plant samples based on pre-defined 

feature sets. A significant drawback, however, is that their reliance on handcrafted features makes 

them rigid and ineffective in handling the complex variations of images from different plant 

species. In diametrical opposition to SVMs, CNN-based models, including intricate architectures 

like VGG16, have revolutionized the plant disease detection world by leaps and bounds. They 

do so by making hierarchical feature extraction processes automatic, which have greatly boosted 

classification accuracy and reduced computational complexity. Through the application of a 

series of multi-layered convolutional filters, CNNs possess the unbelievable ability to learn 

complex patterns and features in plant images, thus making them fantastically effective in 

detecting diseases from an incredibly diverse range of plant species. 



 

Even with such improvements, some of these issues continue to arise in real-world agricultural 

environments. Uncontrolled lighting conditions, complex backgrounds, and occlusions through 

overlapping of leaves within vegetation add noise in image data, making classification harder. 

Conventional CNN models, though robust, can be strained to the limits of generalization when 

trained on datasets with imbalanced environmental conditions. High intra-class variability of 

symptom appearances for diseases, where the same visual patterns are observed across diseases, 

can also cause misclassifications. In order to address such limitations, this work introduces a 

more robust and adaptable model that supports the applicability of plant disease detection 

systems. By extending existing SVM and CNN methods, we seek to introduce a hybrid solution 

that combines advanced feature extraction methods, enhanced model regularization, and domain- 

specific preprocessing techniques. This makes the proposed model not just accurate but also 

robust to real-world agricultural conditions, allowing it to be deployed at scale across different 

farming environments. 

To further increase the performance and flexibility of models working in this domain, different 

preprocessing techniques and data augmentation techniques have been heavily studied and 

researched in recent scholarly literature. Histogram equalization is one such method that has 

been largely used to greatly improve contrast in images; the improvement makes it easier to 

differentiate and detect symptoms of diseases much more easily. Edge detection methods are 

used to recognize structural patterns on leaves of plants, which helps in the vital activity of 

feature extraction carried out by models based on Convolutional Neural Networks (CNNs). Apart 

from these, synthetic data generation using novel approaches like Generative Adversarial 

Networks (GANs) or geo- metric operations provides diversity in datasets. Such diversity is 

required, as it helps models generalize better under the presence of new and unseen examples of 

plant diseases. Apart from these, some research studies have proposed the idea of hybrid 

architectures that skillfully blend CNNs with Recurrent Neural Networks (RNNs) or attention-

based approaches based on Transformer models. Such hybrid approaches are expected to 

improve feature representation and contextualization of symptoms related to plant diseases. 

Spatial feature extraction is achieved through the strategic inclusion of CNNs, while RNNs or 

transformers help in learning sequential relationships. This integration ultimately results in 

improved classification accuracy. 

Despite the great strides that have been achieved in this area, it is worth noting that further 

research is still needed to further improve the strength of these models and to render them 

deployable in an effective way in a broad range of diverse agricultural environments. The 

existing models typically require large quantities of labeled training data to perform at their 

optimal levels, which can be a significant bottleneck in certain particular agricultural uses where 

such data may be scarce or difficult to obtain. Aside from this, real-time inference is a significant 

challenge, primarily due to the high computational needs of deep learning architectures. This 

situation requires the application of alternative optimization methods, which include techniques 

such as model pruning, quantization, and the application of edge computing. In the future, 

research should be directed towards the development of lightweight but extremely powerful 

models that can operate effectively on resource-poor devices such as smartphones and drones. 

Through actively addressing these ongoing challenges, the application of deep learning 

technologies in the area of plant disease detection can transcend the boundaries of laboratory 

research and become a viable tool that can be applied by farmers and agronomists in their daily 

activities. Ultimately, this advancement has the potential to make a significant contribution to 

increased crop yields and promote sustainable agricultural practices in a significant way. 



 

5 Proposed Approach 

Plant diseases represent a serious and critical threat to agricultural pro- duction at the global 

level, eventually leading to huge economic loss and triggering food insecurity that impacts 

millions of individuals. Early and precise identification of plant diseases is of paramount 

importance in an attempt to reduce these negative impacts so that interventions can be initiated 

in a timely manner and widespread crop devastation cannot occur that could have long-term 

implications. Conventional approaches used for the identification of plant diseases have 

included manual inspections carried out by field experts, a process that is not only time-

consuming and labor intensive but also highly prone to human error and negligence. 

Nevertheless, with the unprecedented developments in the areas of artificial intelligence and 

deep learning technologies, automated identification of plant diseases has emerged as a viable 

and robust alternative solution. In this research, we suggest an end-to-end method based on 

deep learning that employs Convolutional Neural Networks (CNNs), the VGG16 and VGG19 

models, and conventional CNN architectures to considerably im- prove the accuracy and 

efficiency in relation to the classification of plant diseases. These specific models have been 

chosen with utmost care due to their proven efficacy in both feature extraction and image 

classification, particularly in relation to the identification of intricate patterns embedded in 

plant images that are symptomatic of the incidence of disease. 

The proposed approach is an end-to-end and strong data preprocessing pipeline tailored 

specifically to accomplish successful model generalization as well as improve performance 

across a broad set of environmental conditions that can be encountered during deployment. 

The dataset utilized in this particular study is a diverse collection of plant images, including 

both healthy and disease plant samples in an effort to collect a diverse range of varied plant 

species as well as varying types of diseases that affect them. In an effort to collect a better-

quality dataset overall, several preprocessing techniques are systematically employed, 

including image augmentation, normalization, and contrast enhancement, all with the intent of 

improving information within the dataset. Rotation, flipping, and scaling are a few of the image 

augmentation techniques employed, all with the combined effort of creating a more variegated 

and diverse training set; this diversity allows the model to learn meaningful features that are 

invariant to scale and orientation changes. Furthermore, normalization is diligently performed 

to normalize the pixel intensity values in the images, ensuring that model convergence is not 

only efficient but stable as well. In addition to these techniques, contrast enhancement 

algorithms are employed to significantly improve the visibility of the images as well as improve 

important features that pertain to disease; this intentional enhancement allows for deep learning 

models to easily learn meaningful and pertinent patterns from the data. 

In order to effectively train the models so that they can generalize well, the large dataset is 

splitted into training, validation and testing sets. This exact balancing is crucial because it 

forces the models to generalize well when applied on new data not seen during training for 

real-world applications. The CNN Convolutional neural network ( CNN ) model It is 

specifically designed with multiple layers for convolution operations and pooling operations. 

These layers are used to capture the hierarchical features of plant images to enable further 

analysis. In addition to the standard model, the VGG16, and VGG19 architectures are also 

used. This limits the acquisition costs even more than the 2D convolutions and is also very 

fast to compute. I3D and R(2+1)D are two pre-trained deep learning models, notoriously 

known to outperform classical hand-crafted features methods for prediction purposes. These 

models are re-trained on the plant disease and outperforms on detect and classify diseases. 



 

With these complex models, the systems can exploit the advantages of deep hierarchies, that 

are efficient at learning highly used and complex patterns in images. This feature allows for 

the precise differentiation between the healthy plants and the plants presenting disease 

symptoms. These models are very difficult to train as the optimization must be done carefully 

to prevent overfitting, which is a serious problem when training deep learning models. To 

overcome this issue effectively, dropout regularization is applied during training. This method 

shuts down some of the neurons randomly during training and stops the neural network from 

relying too much on some features that may not work for unseen data. In addition, batch 

normalization is utilized during training. It normalizes the activations of each layer, making 

the training stable and accelerating the model convergence towards optimal performance. 

After the training process is complete, the performance levels of the different models are 

carefully assessed through the application of a series of key indicators that are deemed 

important in measuring their effectiveness. These are accuracy, precision, recall, and the F1-

score. In particular, accuracy is a measurement of the overall accuracy of the model’s 

predictions. Precision and recall, however, are concerned with the model’s capacity to 

accurately predict plants that are diseased in a manner that false positives or false negatives are 

avoided. The F1-score, on the other hand, provides a general measurement by combining 

precision and recall into a single measure that measures their harmony. Through a series of 

thorough and systematic experiments, it has been noted that the VGG16 and VGG19 models 

have better performance than the baseline CNN model, especially in terms of their accuracy 

and generalization ability. In addition, the application of sophisticated techniques of data 

preprocessing, as well as different techniques of regularization, significantly enhances the 

robustness of the models. Such an enhancement ensures sound performance on a wide range 

of plant species and under different environmental configurations. The results that have thus 

been derived from this research high- light the exemplary accuracy of deep learning technology 

in the detection of plant diseases, thereby providing a scalable and efficient solution to the 

requirements of precision agriculture. The automated nature that is intrinsic in this new method 

significantly minimizes the reliance on human expertise, thereby making the process of 

diagnosis of plant diseases more viable and accessible to farmers and agricultural stakeholders 

in general. In the future, the scope of work will be on the expansion of the current dataset with 

the inclusion of a larger number of plant species and a larger number of disease variations. 

Moreover, there will also be a focus on the inclusion of real-time detection functionality 

through the application of edge computing technology and the development of a mobile-based 

ap- plication specifically designed to allow farmers to detect the existence of plant diseases 

immediately through the use of their smartphone camera. Through the complete utilization of 

these advances in technology, the proposed deep learning method has the potential to actually 

revolutionize the field of plant disease management, thereby playing an important contribution 

towards the bigger goal of global food security. 

6 Experimental Result and Discussion 

6.1 Evaluation Metrics 

To verify the performance of the suggested defect detection model, several measures are 

utilized.  

1. Accuracy: Accuracy tells us what percentage of images our model correctly identified out 

of the total. It is understood as: 



 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
       (1) 

where: - T P (True Positives) are defective images that are identified correctly, - T N (True 

Negatives) are non-defective images correctly directly stated, - F P (False Positives) are the 

non-faulty images incorrectly marked as defective, and - FN (False Negatives) are the defective 

images that were missed. 

2. Precision: Precision measures how many of the images we predicted as defective were 

actually defective. Its formula is: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
        (2) 

 A high precision means that when the model flags an image as defective, it is usually correct. 

3. Recall (Sensitivity): Recall shows us how well our model finds all the defective images. It 

is defined as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
         (3) 

This is particularly important because missing a defective image (a false negative) could be 

very costly. 

4. F1 Score: The F1 Score is the balance between precision and recall. It is the harmonic mean 

of the two, given by: 

𝐹 1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

This score provides a single number that captures both the correctness of the positive 

predictions and the model’s ability to find all defective images.  

5. Specificity: Specificity tells us how well the model correctly identifies the non-defective 

images. Its formula is: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =
𝑇𝑁

𝑇𝑁+𝐹𝑃
        (5) 

A high specificity means that the model rarely mistakes a good image for a defective one. 

6. ROC Curve and AUC: The ROC curve simply indicates how the True Positive Rate 

(Recall) varies with the False Positive Rate for different decision thresholds. Finally, the AUC 

stands for the Area Under the ROC Curve and summarizes the overall ability of the model to 

distinguish between defective and non-defective images. 

7. Confusion Matrix: Although not a formula, the confusion matrix is a table that shows the 

counts of TP, TN, FP, and FN visually, helping us see exactly how the model performed on 

each class. 

  

 



 

These metrics together provide a detailed view of the model’s performance in detecting defects. 

They help ensure that the model is not only accurate overall but also effective at correctly 

identifying defective images while minimizing false alarms. 

6.2 Mathematical Equations 

Convolutional Neural Networks (CNNs) CNN applies convolution and pooling operations to 

extract hierarchical features. 

Convolution Operation 

𝑌 (𝑖, 𝑗)  =  ∑ ∑  𝑋(𝑖 +  𝑚, 𝑗 +  𝑛)  ·  𝐾(𝑚, 𝑛)𝑛𝑚      (6) 

where: 

–X (i, j) is the input image. 

–K (m, n) is the convolution kernel. 

–Y (i, j) is the output feature map. Pooling Operation (Max Pooling) 

𝑌 (𝑖, 𝑗)  =  max
𝑚,𝑛

𝑋(𝑖 +  𝑚, 𝑗 +  𝑛)        (7) 

where: 

–Max-pooling selects the highest value in the receptive field. 

Fully Connected Layer 

𝑦 =  𝑊𝑥 +  𝑏         (8) 

where: 

–W is the weight matrix. 

–x is the feature vector. 

–b is the bias term. 

VGG16 VGG16 consists of 16 layers with small 3 × 3 convolution filters. 

Convolutional Layers 

𝑌𝑙 =  𝜎(𝑊𝑙 ∗  𝑌𝑙 − 1 +  𝑏𝑙)       (9) 

where: 

–Wl and bl are the weights and bias for layer l. 

–∗ represents the convolution operation. 

–σ is the activation function (ReLU). Max Pooling Layer 

𝑌 (𝑖, 𝑗)  =  max
𝑚,𝑛

 𝑋(𝑖 +  𝑚, 𝑗 +  𝑛)      (10) 



 

where: 

–Down samples feature maps while retaining important information. 

Fully Connected Layers 

𝑦 =  𝑊𝑥 +  𝑏        (11) 

where: 

–Three fully connected layers process the extracted features. 

VGG19 VGG19 extends VGG16 with 19 layers. 

Extended Convolutional Layers 

𝑌𝑙 =  𝜎(𝑊𝑙 ∗  𝑌𝑙 − 1 +  𝑏𝑙)      (12) 

where: 

–Uses additional convolutional layers compared to VGG16. 

Pooling and Fully Connected Layers VGG19 follows the same max pooling and fully 

connected layer structure as VGG16. 

6.3 Model Performance Summary 

Fig. 5. Accuracy Curves for CNN. 

6.3.1 Accuracy and Loss Analysis  

The loss and accuracy curves for the CNN model reflect possible overfitting as shown in fig 5 

and fig 6. The training accuracy is high, approaching 1.0, but the validation accuracy is 

somewhat lower, implying that the model can do a good job with training data but perhaps not 

as well with generalization. 



 

 

Fig. 6. loss curves for CNN. 

The loss curve also indicates a rapid decline in training loss at first but then a rise after an 

epoch, a signal of overfit- ting. The validation loss is also unstable, increasing before 

decreasing, indicating unstable learning. Techniques to overcome such issues include applying 

dropout, L2 regularization, or data augmentation, which would improve generalization. 

Decreasing the learning rate or fine-tuning the model structure may also stabilize the loss and 

enhance performance. 

Fig. 7. Accuracy curves for VGG16. 

Fig. 8. Loss curves for VGG16. 



 

The plot of VGG16 model accuracy and loss indicates that the performance is good. Both 

training accuracy and validation accuracy are increasing and approaching leveling off at around 

1.0 on the accuracy plot, which indicates that the model is generalizing and learning as it 

should. The loss plot shows that training and validation loss is declining steadily, which is an 

indicator of the model optimizing well without over- fitting. Since the validation accuracy is 

approaching the training accuracy and the validation loss just continues to drop, the model 

appears to be adequately trained. The VGG19 model performs well based on its accuracy and 

loss curves as shown in fig 7 and fig 8. 

Fig. 9. Accuracy curves for VGG19. 

Fig. 10. Loss curves for VGG19. 

The fig 9 accuracy curve demonstrates that the model is successfully learning the patterns in 

the dataset, with both training and validation accuracy rapidly approaching 1.0. Successful 

optimization is indicated by the low, constant validation loss on the loss curve in fig 10 and the 

sharp decline in training loss. In the case of a small dataset, however, near-perfect accuracy 

and fast convergence could mean overfitting, and may require dropout, L2 regularization, or 

even data augmentation, to be able to ensure improvement in generalization. 

6.3.2 Confusion Matrix Evaluation  

Confusion matrix for the CNN model shows enhanced overall performance, especially with 

class 1 samples at low misclassifications. 

  

 



 

 

Fig. 11. Confusion Matrix for CNN. 

The model correctly classifies a majority of the samples for every one of the three classes, and 

the correctness is highest in class 1. Nevertheless, it can be seen that there is some overlap 

between class 0 and class 2, i.e., 492 class 2 samples that were mistakenly labeled as class 0 

and 320 class 0 samples incorrectly categorized as class 2. This indicates that the feature 

representation of both classes may overlap and thus some misclassifications take place Such 

performance improvement may be done by means such as improved feature extraction, 

hyperparameter fine-tuning, or data augmentation to reduce errors. Despite these errors of 

misclassification, the model shows high accuracy and reliability in forecasting and hence suits 

its task of classification well. 

Fig. 12. Confusion Matrix for VGG16. 

The VGG16 model confusion matrix fig 12 - indicates good classifying performance on all 

three classes with the majority correctly classified instances. Class 1 is classed best with very 

few misclassifications into class 0 (39 samples) and into class 2 (5 samples). Class 2 is 

classified well with few misclassifications into other classes. Though class 0 exhibits some 

mis- classification with class 2, with 505 cases misplaced. In comparison to the earlier CNN 

model, VGG16 seems to have enhanced classifying class 2 better but increased misclassifying 

class 0 marginally. This can imply that the feature representations of VGG16 are more 

appropriate for discriminating class 2 but may need to be fine-tuned for class 0. Further tuning, 

such as learning rate modifications, data augmentation, or class-specific weighting, could 

reduce errors and enhance overall performance. 



 

Fig. 13. Confusion Matrix for VGG19. 

The VGG19 model confusion matrix fig 13 - confirms excellent classification of all three 

classes, and the vast majority are correctly classified. Class 1 is best, but fewer 

misclassifications occur (28 samples as class 0, 6 as class 2). Class 2 is extremely accurate, 

with fewer misclassifications than any other model. But there remains some overlap between 

class 0 and class 2, where 472 instances of class 0 are mistakenly assigned to class 2 and 124 

instances of class 2 are mistakenly assigned to class 0. 

In comparison to VGG16, VGG19 has fewer misclassifications for class 2 but higher 

misclassifications for class 0. This shows that while the deeper structure of VGG19 may 

provide improved feature extraction, it may also result in slight overfitting or higher sensitivity 

to certain patterns within the data. Fine-tuning the model through other training processes, such 

as dropout, data augmentation, or class-weighted loss functions, may potentially continue to 

enhance accuracy and reduce rates of misclassification. 

6.3.3 Performance Comparison  

The bar graph- fig 14,” Model Accuracy Comparison” compares the Train, Validation, and Test 

accuracies of CNN, VGG16, and VGG19. As is evident from the graph, VGG19 is the highest 

accuracy model across all three with train, validation, and test accuracies essentially equivalent 

and greater than 98%. VGG16 is next and has a test accuracy slightly below but still performs 

well in terms of generalization. On the other hand, the CNN model has the lowest test accuracy, 

which is just over 96%, reflecting a likely overfitting where its training ac- curacy is higher but 

its performance lower when testing in unseen data. Overall, on a general note, VGG19 is the 

most stable model that yields constant accuracy in the training, validation, and testing sets. 

 

Fig. 14. comparison of models. 



 

 

Fig. 15. comparison of models. 

The fig 15 compares the accuracy of three models—CNN, VGG16, and VGG19. The accuracy 

for the CNN model is 95%, bettered to 97% with VGG16 and bettered even further to 98% 

with VGG19. This improvement reflects that the deeper models such as VGG16 and VGG19 

acquire higher-level abstract features and improve classification accuracy com- pared to the 

standard CNN. The improvement in accuracy from VGG16 to VGG19 is perhaps because the 

deeper network can better capture minute details in the data. However, although VGG19 has 

the highest ac- curacy, it could also have higher computational complexity and training time. 

If the gain in performance is worth the cost, then VGG19 would be the best option; otherwise, 

VGG16 has a good balance of accuracy and efficiency. 

7 Conclusion 

The paper presents an automated defect inspection system using deep learning methods to 

enhance quality control in manufacturing. The system uses a custom CNN model and transfer 

learning from EfficientNet, MobileNetV2, and MLP-Mixer, with high accuracy in classifying 

defects. EfficientNet outperformed MobileNetV2 and CNN at 98.75% and 94.68%, 

respectively. The system minimizes reliance on manual labor intensive verifications, offering 

an economic, scalable solution for quality control efficiency enhancement. Future 

improvements will focus on real-time defect detection, optimizing inference speed, and 

integrating edge AI for on-site analysis. Model optimization techniques like pruning and 

quantization will be explored for efficiency and cost-effectiveness. The system will also be 

integrated with IoT manufacturing environments for continuous monitoring and predictive 

maintenance. 
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