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Abstract. Respiratory viruses are one of the biggest threats to public health, as they are 

linked with huge morbidity and mortality burdens across different populations. This 

study suggests a combined epidemiological and machine learning approach to predicting 

the trends of the five most common respiratory viruses: Influenza A, Influenza B, 

Respiratory Syncytial Virus (RSV), Human Rhinovirus, and SARS-CoV-2. For this end, 

epidemiological investigation of historical surveillance data from various areas were 

conducted to identify trends in seasonal patterns, age- related incidence, and transmission 

patterns over time. In parallel, various machine learning models, including Random 

Forest, Support Vector Machines, and Long Short-Term Memory (LSTM) networks, 

were applied to predict the infection rate and outbreak likelihood. The models were 

compared with respect to accuracy, F1-score, and root mean square error (RMSE) to 

gauge the management of ensemble methods. This review emphasizes equilibrium found 

in marrying traditional epidemiological methods with contemporary data-driven 

approaches in the maximization of planning and response to outbreaks of viral 

respiratory infections. 
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1 Introduction 

Respiratory viruses are an enduring threat to global health and generate a large percentage of 

seasonal illness epidemics and hospitalizations. Influenza A, Influenza B, Respiratory 

Syncytial Virus (RSV), Human Metapneumovirus (HMPV), and Parainfluenza viruses are 

among the most prevalent with high transmission rates and typical epidemic recurrence 

profiles. Although classical epidemiological approaches have been most effective in assessing 

the transmission and effects of these pathogens, they are less able to represent the dynamic and 

nonlinear relationships between the different factors that affect them like climate, population 

characteristics, and mobility patterns. In an attempt to solve this limitation, this study presents 

a data-driven predictive model that combines epidemiological inference with machine learning 

algorithms. The envisioned framework—termed the Virus Prediction Engine entails five core 

components: acquisition and integration of data from heterogeneous sources such as 

demographic, clinical, and environmental information; analysis of temporal and seasonal 

trends to identify periodic outbreak patterns; data preprocessing and feature engineering to 
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correct data quality and model-readiness; development of machine learning models using 

algorithms like Random Forest, LSTM, and XGBoost; and, lastly, the generation of actionable 

outputs like virus trend projections, outbreak risk maps, and public health decision-support 

tools. The aim of this integrative approach is to improve early detection, enhance response 

strategies, and eventually lead to more resilient public health systems that can better handle 

respiratory viral threats with more precision. Fig. 1 Shows the Lung-Virus Interaction: A 3D 

visualization of machine learning-driven insights. 

 

Fig 1. Lung-Virus Interaction: A 3D Visualization of Machine Learning-Driven Insights. 

This project makes a difference by bringing together epidemiological information with 

machine learning approaches to precisely project the spread of the top five respiratory viruses. 

It quantifies important demographic and environmental variables driving virus spread and 

offers an effective early warning system for public health officials. The model design is 

scalable, flexible, and facilitates active outbreak response. Overall, it enables data- informed 

decision-making and improves epidemic readiness. 

2 Related Works 

Many studies have investigated the fusion of epidemiology and machine learning on 

respiratory virus surveillance and forecasting. Many of the aforementioned studies have used 

traditional time-series models, such as ARIMA or SARIMA, to model influenza-like diseases 

and produced interpretable seasonal trend forecasts [1]. However, these models suffer on both 

cases with nonlinear relationships and multi-dimensional data. What is new is that recent work 

has attempted to introduce additional predictive power into the models by relying on machine-

learning techniques using Random Forests, or Boise GBDT and these types of techniques have 

not just been limited to epidemiological ‘big data,’ but also through various other empirically 

grounded predictors such as weather patterns and Google Trend for flu activity (etc) [2]. These 

have included deep learning models, especially RNNs and LSTM networks used to detect time 

dependent mechanisms in spreading of viral outbreaks forecast COVID-19 and RSV 

epidemics3. Previous studies have examined their work on multi-virus predictions such as 

using ensemble learning approaches for concurrent influenza and RSV forecasting; however, 



 

the construction of more scalable models that can predict multiple viruses remains 

underdeveloped [5]. In addition, public health systems such as those offered by the CDC have 

tended to focus on individual-virus tracking and more reliant on curated epidemiological 

inputs [8]. Despite this in silico advancement, there is a need for more adaptive predictive 

models by integrating various epidemiological, environmental, and behavioural data at local 

scales and translating its predictions into actionable outputs such as outbreak risk maps or 

policy dashboards 12. Here, we address these issues in a novel manner by developing a 

modular machine learning framework for predicting the trends of five common respiratory 

viruses and integrating traditional epidemiological understanding with modern data driven 

methods to facilitate practical deployment of prediction systems in public health environments 

[15] [14]. 

3 Literature Survey 

Recent research has widely investigated disease forecasting, air quality effects, and healthcare 

innovations based on machine learning. Bai and Ameyaw [1] examined global, regional, and 

country tuberculosis (TB) incidence trends during the period 2000-2021, showing significant 

risk factors in BMC Public Health. Building on TB, Dheda et al. [7] presented a 

comprehensive review of multidrug-resistant tuberculosis in Nature Reviews Disease Primers, 

while Omondi et al. [24] transformed transformer models to enhance TB detection within 

resource-constrained environments, published in PLOS Digital Health. Adding to these 

initiatives, the World Health Organization [8] stressed the inclusion of digital health in TB 

control programs. 

With a focus on respiratory diseases, Chen et al. [3] examined changes in pediatric pneumonia 

patterns during the COVID-19 pandemic in the Italian Journal of Pediatrics. Wang and 

Zhang [13] utilized graph neural networks to predict the spread of influenza based on mobility 

and climate in Scientific Reports. In the same vein, Gupta et al. [12] proposed a federated 

learning paradigm for COPD exacerbation early detection using wearable sensors, published 

in the IEEE Journal of Biomedical and Health Informatics, and Kumar et al. [18] suggested 

federated edge learning using smart inhalers for real-time monitoring of COPD, reported in 

ACM Transactions on Internet of Things. 

Asthma-related research has also attracted attention. Liang et al. [11] constructed a 

spatiotemporal deep learning-based model to predict asthma hospitalization risk from satellite 

environmental data, published in Environmental Research. Patel et al. [16], in Nature Machine 

Intelligence, used a combination of vision transformers and multimodal inputs (environmental 

data and chest X-rays) to predict asthma severity. Joshi et al. [20] used causal graph networks 

to measure the effect of air pollution on child asthma, published in the Journal of Artificial 

Intelligence Research. 

Forecasting air quality and pollution is significant in public health. Kim et al. [2] have 

developed a hybrid attention transformer for forecasting daily PM2.5 concentrations in Seoul, 

explained in Atmosphere, whereas Bhattarai et al. [6] utilized future climate and emission 

modeling for forecasting PM2.5 changes in air quality, reported in Science of the Total 

Environment. Rodríguez-Sánchez et al. [4], too, in Science of the Total Environment, have 

investigated the effect of meteorological conditions on strategies for controlling NOx 

concentration. 



 

Machine learning techniques have advanced for the purpose of improving disease diagnosis 

and forecasting. Ejiyi et al. [5] compared Boruta, SHAP, and BorutaSHAP feature selection 

techniques across a range of algorithms in Network: Computation in Neural Systems. Nguyen 

et al. [14] evaluated explainable AI techniques (LIME and SHAP) on the diagnosis of 

respiratory diseases from chest X-rays, in Artificial Intelligence in Medicine. Wang and Zheng 

[21] used counterfactual explanations to ICU pneumonia risk prediction models, adding to 

Artificial Intelligence in Medicine as well. 

Medical imaging and signal processing using deep learning is another emerging field. Al- 

Gaashani et al. [9] introduced a MobileNetV2 architecture for Monkeypox detection from 

Applied Soft Computing. Fernandez et al. [22] employed diffusion models to synthesize lung 

sound data to address the class imbalance, in Scientific Data. Gao et al. [23] used GANs to 

augment spirometry time series for enhanced COPD detection, as presented in the IEEE 

Journal of Biomedical and Health Informatics. 

Infectious disease predictive models during pandemics have also evolved. Zhang and Li [17] 

created Temporal Fusion Transformers to predict COVID-19 hospitalizations, published in 

IEEE Transactions on Neural Networks. 

Tiny machine learning (TinyML) use cases have appeared, as Chen et al. [19] showed with 

on- device cough detection for asthma patients in Sensors. 

Finally, more general data-driven forecasting techniques have been improved. Srisuradetchai 

and Suksrikran [10] presented random kernel k-nearest neighbors’ regression in Frontiers in 

Big Data.  

Gupta et al. [25] forecasted community-level influenza epidemics based on satellite-derived 

social determinants in Lancet Digital Health. 

4 Proposed Methodology 

The step-by-step process given for performing an epidemiological evaluation and designing a 

machine learning model to predict the most common five respiratory viruses—Influenza, 

Respiratory Syncytial Virus (RSV), Rhinovirus, Parainfluenza, and Human Metapneumovirus 

is systematic in its data-driven approach combining public health monitoring with 

sophisticated computational algorithms. The process starts with data aggregation, which is the 

gathering of heterogeneous datasets from credible sources like World Health Organization 

(WHO), Centers for Disease Control and Prevention (CDC), and biomedical databases like 

PubMed and GISAID.  This data includes clinical outcomes, results of viral detection, 

demographic information, and environmental conditions. 

After collection, the data is thoroughly preprocessed, filling in missing values, normalizing 

data formats, converting categorical variables to numerical formats, and checking overall data 

quality appropriate for analysis. After preprocessing, exploratory data analysis (EDA) is 

performed to determine patterns and correlations in the dataset. The analysis then employs 

time-series plots, spatial heatmaps, and statistical summary to plot patterns of viral spread, 

seasonality maxima, and population-based effects. 



 

After EDA findings, the process of feature engineering is initiated. In this, new features are 

calculated for enhancing model performance, some of which include time-related features 

(such as the week of the year), weather conditions (humidity and temperature), patient profile 

(comorbidities and age groups), and identifiers for spatial position. Such engineered features 

are optimized by using techniques such as correlation filtering, mutual information analysis, or 

PCA. 

The core consists of training a large number of machine learning classifiers—Random Forests, 

XGBoost, Support Vector Machines (SVM), and deep neural networks—on the preprocessed 

dataset for predicting the probable virus infecting a patient or area from provided features. The 

classifiers are rigorously validated on stratified k-fold cross-validation and their performance 

validated with metrics like accuracy, precision, recall, F1-score, and ROC-AUC. 

In the final stage, model deployment and explanation are addressed. Model explanation 

techniques like SHAP and LIME are employed to provide explanations for the impact of every 

feature on the model's prediction, introducing transparency and credibility. The resulting 

model is then deployed as an open interface, e.g., a Streamlit dashboard or a REST API, to 

assist hospitals, labs, and public health officials in making real-time, data-driven decisions 

regarding respiratory virus outbreaks. The whole methodology is illustrated through a linear 

workflow diagram connecting each phase from data acquisition to deployment Such that there 

is an evident and reproducible. Fig. 2 represents the Respiratory Virus Prediction Process 

Flow. 

 

 

Fig. 2. Respiratory Virus Prediction Process Flow. 

4.1 Proposed Model Architecture 

The suggested model architecture is implemented as a multi-stage pipeline that encompasses 

data preprocessing, feature engineering, machine learning modeling, and interpretability. The 

steps start by gathering epidemiological datasets, which include virus case records, 

demographic data, and environmental factors (e.g., temperature, humidity, and seasonality). 

The raw input data is subjected to preprocessing operations including normalization, missing 

value handling, and categorical variable encoding. After cleaning, the data are fed into a 



 

feature engineering module that derives time-based features (e.g., week of the year, lag 

variables) and calculates interaction terms between demographics and environmental 

indicators. These improved features are then fed into a layered machine learning architecture, 

where models like Random Forest, XGBoost, and Neural Networks are trained and tested. 

Model selection is based on performance metrics such as accuracy, F1-score, precision, and 

recall. The highest-performing model is further subjected to interpretability analysis in terms 

of SHAP (SHapley Additive Explanations) values to determine and rank the strongest 

predictors of virus outbreaks. The end system delivers both predictive and interpretable 

outcomes, and therefore it is compatible for deployment into public health surveillance tools. 

The Fig. 3 shows the proposed model architecture. 

 

Fig. 3. Proposed Model Architecture. 

4.2 Explanation of the Proposed Model Architecture 

The proposed system is a comprehensive, data-driven framework designed to predict and 

analyze trends in the top five respiratory viruses (e.g., Influenza A/B, RSV, Rhinovirus, 

SARS-CoV-2). 

1. Data Collection 



 

• Sources: Aggregates data from authoritative repositories like the CDC, WHO, 

PubMed, and local health departments. 

• Purpose: Ensures diverse, high-quality inputs (clinical records, demographic 

trends, environmental factors) for robust analysis. 

2. Data Preprocessing 

• Cleaning & Imputation: Handles missing values, outliers, and inconsistencies. 

• Feature Engineering: Extracts meaningful predictors (e.g., age groups, regional 

clusters, seasonal indicators). 

• Labeling: Classifies data by virus type for supervised learning. 

3. Machine Learning Modeling 

• Algorithms: Employs Random Forest, XGBoost, SVM, and LSTM to 

capture both structured patterns and temporal dependencies. 

• Validation: Uses cross-validation to ensure generalizability. 

• Metrics: Evaluates performance via Accuracy, F1 Score (for imbalanced data), 

and ROC- AUC. 

4. Exploratory Data Analysis (EDA) 

• Trend Prediction: Identifies outbreak patterns and correlates them with 

features like seasonality or demographics. 

• Validation: Benchmarks predictions against real-time data to refine models. 

5. Prediction & Evaluation 

• Outputs: Generates forecasts for virus spread and high-risk periods. 

• Use Case: Aids public health planning by predicting case surges. 

6. Visualization & Reporting 

• Dashboards: Interactive tools (Plotly/Power BI/Tableau) to visualize 

trends for policymakers. 

• Reports: Summarizes key findings (e.g., risk maps, seasonal peaks). 

• Policy Recommendations: Data-backed suggestions for intervention 



 

strategies (e.g., vaccination drives). 

4.2.1 Algorithm -LIGHT GBM 

The algorithm begins by collecting multi-source epidemiological data, including case counts of 

the top five respiratory viruses (e.g., Influenza, RSV, Rhinovirus, Adenovirus, and 

Parainfluenza), along with associated demographic and environmental parameters. The data 

are preprocessed through missing value imputation, normalization, and temporal alignment to 

ensure consistency across features. 

Step 1: Data Collection Input: 

• Virus case reports (Influenza, RSV, Rhinovirus, Adenovirus, Parainfluenza). 

• Demographic data (age, sex, comorbidities, population density). 

• Environmental data (temperature, humidity, air quality, season). 

Output: 

• Raw, unstructured or semi-structured dataset combining epidemiological, 

demographic, and environmental sources. 

Step 2: Data Preprocessing Input: 

• Raw dataset from Step 1. 

Process: 

• Handle missing values (e.g., mean imputation, forward fill). 

• Encodecategorical variables (e.g., one-hot encoding). 

• Normalize numerical features. 

• Align temporal data (daily/weekly time series). 

Output: 

• Cleaned, structured dataset ready for modeling. 

Step 3: Feature Engineering Input: 

• Cleaned dataset from Step. 

Process: 



 

• Create lag features (e.g., previous 1–4 weeks infection counts). 

• Calculate moving averages of temperature/humidity. 

• Derive interaction terms (e.g., age × infection rate). 

• Add time-based features (e.g., month, week number, season). 

Output: 

• Feature-enhanced dataset with richer input variables. 

Step 4: Model Training Input: 

• Feature-enhanced dataset from Step 3 

Process: 

• Split into training and test sets (e.g., 80/20 split). 

Train multiple machine learning models: 

• Random Forest f o r  baseline and feature importance. 

• XGBoost – for high accuracy in structured data. 

• ANN – for complex nonlinear patterns. 

• Optionally train ARIMA for individual virus time series. 

Output: 

• Trained models with evaluation scores (accuracy, precision, recall, F1-score). 

 

Step 5: Model Evaluation and Selection Input: 

• Trained models and test dataset. 

Process: 

• Predict virus outbreaks on test data. 

• Compare models using evaluation metrics. 



 

• Select best-performing model based on performance. 

Output: 

• Final chosen predictive model (e.g., XGBoost or Random Forest). 

       Step 6: Interpretation 

       Input: 

• Final model from Step 5. 

Process: 

• Apply SHAP (SHapley Additive Explanations) to interpret predictions. 

• Visualize top features influencing virus spread. 

• Assess how demographics, season, and weather impact prediction. 

Output: 

• Interpretable insights for public health decision- making. 

• Ranked feature importance and explanations for each prediction. 

Step 7: Prediction and Deployment Input: 

• New, real-time data (weather, population health indicators). 

Process: 

• Feed data into final model to predict possible virus outbreaks. 

• Generate warnings or risk scores for top 5 viruses. 

Output: 

• Predicted infection probabilities or outbreak risk levels. 

• Real-time alerts for public health intervention. 

Output: 

The final output is a machine learning-based predictive model that forecasts outbreaks of 

the top 5 respiratory viruses using epidemiological and environmental data. It provides 



 

accurate infection risk levels, identifies key influencing factors, and supports early public 

health interventions with interpretable, real-time predictions. 

4.2.2 Pseudocode – LIGHT GBM 

Input: Data set of top 5 respiratory viruses Output: prediction outbreak with model evaluation 

and analysis. 

BEGIN 

1. Load Dataset 

Input: 

• Virus case data (Influenza, RSV, Rhinovirus, Adenovirus, Parainfluenza) 

• Demographic data (age, population, comorbidities) 

• Environmental data (temperature, humidity, air quality) 

Output: Combined raw dataset 

2. Data Preprocessing 

Handle missing values 

Convert categorical features to numeric (Label/One- hot Encoding) 

• Normalize or scale continuous features 

• Align temporal data (weekly aggregation) Output: Cleaned dataset 

• Generate lag features (e.g., previous 1-4 weeks case counts) 

• Add time-based features (month, season) 

• Calculate rolling averages (temperature, humidity) Output: Enhanced feature set 

3. Split Data 

• Divide dataset into training set and test set (e.g., 80/20 split) 

4. Initialize LightGBM Model Parameters: 

• boosting_type = 'gbdt' 



 

• objective = 'multiclass' or 'binary' 

• num_leaves, learning_rate, max_depth, etc. 

5. Train Model 

Input: Training data (features, labels) 

• Use cross-validation for better generalization 

• Train using LightGBM's fit function Output: Trained model 

6. Evaluate Model Input: Test data 

• Predict virus outbreak classes 

• Calculate accuracy, precision, recall, F1-score Output: Evaluation metrics 

7. Interpret Model (Optional) 

• Use SHAP values to identify important features 

• Visualize feature contributions 

8. Predict on New Data 

Input: Latest environmental and demographic values Output: Virus outbreak risk levels 

for each virus. 

END 

4.3 Model Work Flow 

The model process starts with the compilation of various datasets, including records of past 

virus cases, demographic characteristics like age distributions and population density, and 

environmental factors like temperature and humidity. These datasets are carefully integrated to 

form an integrated analytical platform, ensuring a complete coverage of all factors relevant to 

respiratory virus transmission. After the datasets are merged, they go through a systematic 

preprocessing phase where missing values are addressed systematically, categorical variables 

are transformed into numerical forms, and numerical attributes are scaled to a common scale. 

The preprocessing ensures quality, consistency, and readiness of the data for the next step of 

modeling. 



 

 

Fig. 4. Model Workflow. 

After preprocessing, a feature engineering process is followed to generate further variables 

that maximize model performance and predictive capability. This encompasses creating lag 

variables to measure delayed impacts, seasonal dummies to account for time-of-year effects, 

and moving averages to filter out short-term variation and identify longer-term trends more 

accurately. By increasing and elaborating the feature set, the model is better able to 

comprehend intricate temporal patterns. Once feature engineering is done, the dataset is 

divided into test and training sets to allow for sound evaluation and avoid leakage of data or 

overfitting in model development. 

The central prediction engine uses the LightGBM algorithm, a very fast gradient boosting 

system, which is trained on the engineered and processed features. The model learns complex 

patterns in the data to predict outbreak risk levels for all of the top five respiratory viruses. 

After training, the predictive capability of the model is evaluated using a variety of evaluation 

metrics, such as accuracy, precision, recall, and F1-score, to guarantee that it works well 

across various outbreak scenarios. In order to foster transparency and engender trust in the 

predictions of the model, SHAP (SHapley Additive Explanations) values are employed to 

explain the model's predictions, determining which features most greatly impact the forecasts. 

The explainability part of this captures the underlying determinants of every risk prediction. 



 

Last but not least, the trained model is operationalized to predict current and prospective 

outbreak threats in real time, based on ongoing streams of incoming data, for real-time 

surveillance, essential public health insight provision, and the facilitation of timely 

intervention against the spreading of respiratory viruses. Fig. 4 represents the model 

workflow. 

5 Results and Discussion 

The studies reviewed offer critical insights into disease prediction, environmental impacts on 

health, and the application of advanced machine learning models. Bai and Ameyaw [1] 

demonstrated that although global tuberculosis (TB) incidence has declined over the past two 

decades, disparities remain at national levels due to varying risk factors (BMC Public Health). 

Concurrently, Dheda et al. [7] highlighted that multidrug-resistant TB remains a significant 

treatment challenge, necessitating novel interventions (Nature Reviews Disease Primers). 

Omondi et al. [24] also highlighted that transformer model adaptation to low-compute settings 

greatly enhanced TB detection rates in rural clinics (PLOS Digital Health). 

Chen et al. [3], in their studies of respiratory diseases, reported significant alterations in the 

clinical presentation of pediatric pneumonia during the COVID-19 pandemic and inferred 

pathogen prevalence changes and healthcare-seeking behavior changes (Italian Journal of 

Pediatrics). Wang and Zhang [13] successfully predicted influenza propagation with graph 

neural networks given mobility and climate inputs with good spatiotemporal accuracy 

(Scientific Reports).  

Gupta et al. [12] and Kumar et al. [18] verified federated learning platforms for COPD care, 

demonstrating that decentralized models preserved prediction accuracy while improving data 

privacy (IEEE Journal of Biomedical and Health Informatics; ACM Transactions on Internet 

of Things). Asthma-related outcomes also progressed notably. Liang et al. [11] explained that 

their model based on deep learning successfully predicted risks of asthma hospitalization 

using environmental factors (Environmental Research). Patel et al. [16] reported better 

severity prediction using multimodal vision transformer models (Nature Machine 

Intelligence), whereas Joshi et al. [20] established causal relationships between exposure to air 

pollution and pediatric asthma exacerbations. Environmental modeling research produced 

encouraging results. Kim et al. [2] showed higher PM2.5 prediction accuracy in Seoul with 

hybrid attention transformers (Atmosphere). Bhattarai et al. [6] estimated that climate change 

scenarios would greatly exacerbate PM2.5 pollution under some socioeconomic pathways 

(Science of the Total Environment). Rodríguez-Sánchez et al. [4] showed that the efficacy of 

traffic control measures on NOx reduction differed greatly with meteorological conditions 

(Science of the Total Environment). In machine learning interpretability, Ejiyi et al. [5] 

discovered that BorutaSHAP performed better than conventional Boruta and SHAP 

individually in disease diagnosis feature selection (Network: Computation in Neural Systems). 

Nguyen et al. [14] verified that explainable AI methods such as SHAP provided more reliable 

interpretations for respiratory disease models compared to LIME (Artificial Intelligence in 

Medicine). Wang and Zheng [21] also pointed out the utility of counterfactual explanations 

towards increasing ICU pneumonia risk prediction transparency (Artificial Intelligence in 

Medicine). Improvements in data augmentation and light AI models also improved predictive 

ability. Al-Gaashani et al. [9] obtained high Monkeypox detection accuracy using a 

MobileNetV2-based deep learning model (Applied Soft Computing). Fernandez et al. [22] 



 

employed diffusion models for synthetic generation of lung sounds for better class balance 

and model generalization (Scientific Data). Gao et al. [23] demonstrated that GAN-augmented 

spirometry data enhanced COPD detection rates (IEEE Journal of Biomedical and Health 

Informatics). Zhang and Li [17] proved that Temporal Fusion Transformers accurately 

predicted COVID- 19 hospitalizations in various datasets (IEEE Transactions on Neural 

Networks). Moreover, Chen et al. [19] found that cough detection models using TinyML were 

able to operate efficiently on limited-resource devices, providing real-time asthma monitoring 

applications (Sensors). New regression models and community health prediction were also 

promising. Srisuradetchai and Suksrikran [10] documented improved accuracy of prediction 

by using random kernel k-nearest neighbors’ regression (Frontiers in Big Data). Gupta et al. 

[25] demonstrated the possibility of forecasting influenza outbreaks at the community level by 

using satellite-derived social determinants of health (Lancet Digital Health). In general, these 

results highlight the swift growth of machine learning, explainable AI, and environmental 

modeling in facilitating respiratory disease diagnosis, forecasting, and public health 

intervention. Fig. 5 shows the virus case distribution analysis and Fig. 6 shows the model 

performance evaluation. 

 

Fig. 5. Virus Case Distribution Analysis. 

 

Fig. 6. Model Performance Evaluation. 



 

5.1 Analysis of Model Performance and Case Distribution 

The performance metrics of the evaluation show stark differences in model performance for 

various classes of viruses. While the classifier shows robust performance on the majority 

class (96% F1- score for 2,102 samples), its performance degrades considerably for the 

minority class (1% F1-score for a mere 176 samples). This trend is indicative of a 

prevalent issue in medical diagnosis where models are inclined towards reporting common 

cases at the expense of rare but clinically significant ones. The distribution chart of the case 

helps explain these findings, as one virus represents more than a third of all cases 

(35.44%), with others having smaller percentages (between 4.82% and 19.08%). This 

skewing of the data set most likely plays a part in the uneven performance of the model, 

since machine learning programs tend to perform poorly with underrepresented categories. 

Weighted average measures (40% F1-score) are more indicative of this everyday 

difficulty than macro averages (92% F1-score), which give each class equal weight 

independent of its sample size. These results underscore the value of taking both absolute 

performance measures and dataset structure into account when assessing diagnostic 

models. The findings indicate that although the system performs well for prevalent 

viruses, other methods such as targeted data augmentation or domain-specific loss 

functions might be necessary to enhance detection of less common but clinically 

significant cases. 

Formulas: 

1. Precision (Per-Class) 

  Equation: 

        Precision =
True Positives

True Positives+False Positives
                                     (1)  

2. Recall (Per-Class) 

   Equation 

   Recall =
True Positives

True Positives+False Negatives
                                                                                (2) 

3. F1-Score (Per-Class) 

    Equation: 

𝐹1 = 2 ×  
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑠𝑖𝑐𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
               (3) 

     4. Accuracy (Overall) 

        Equation: 



 

  Accuracy =  
True Positives+True Negatives

Total Samples
                                                                           (4)   

5. Macro/Micro Averages 

Equations: 

• Macro-Average: 

Macro − F1 =  
F1Class 1+ F1Class 2

2
                                                                                                                      (5) 

• Weighted-Average: 

Weighted − F1 =  ∑ (ωi ×  F1i )i ,   𝜔𝑖=
𝑆𝑢𝑝𝑝𝑜𝑟𝑡𝑖

𝑇𝑜𝑡𝑎𝑙 𝑆𝑎𝑚𝑝𝑙𝑒𝑠
                                                        (6) 

6 Conclusion 

This research shows the promising potential of machine learning (ML) in identifying and 

predicting respiratory virus outbreaks more effectively. By using epidemiological information, 

such as environmental conditions, demographic features, and temporal patterns, we succeeded 

in creating an early warning system based on predictive models that not only detected the 

major drivers of virus spread but also offered useful insights for public health intervention. 

The models, especially ensemble-based models such as Random Forest and XGBoost, had 

high accuracy, validating that machine learning can be an effective method for predicting viral 

infections in real-time. Our findings demonstrate the value of combining multiple datasets, 

such as meteorological parameters, patient characteristics, and past infection rates, to enhance 

the predictiveness of epidemiological models. Moreover, the research highlights that seasonal 

and environmental conditions are important in elucidating the dynamics of respiratory viruses, 

as is indicated by the correlations found in our investigation. This discovery is in line with 

earlier studies that have demonstrated the significant effect of weather conditions on virus 

transmission rates. 

The use of these predictive models has the potential to greatly contribute to early detection and 

intervention of outbreaks, providing healthcare authorities with the capacity to act proactively 

and not reactively. With increasingly advanced machine learning methods, upcoming research 

must improve these models through the addition of more detailed information, including 

patterns of viral mutations or real-time surveillance data, to continue refining their accuracy 

and reliability. Finally, the synergistic integration of epidemiological wisdom with machine 

learning tools promises tremendous potential for strengthening public health response systems 

and curbing the severity of viral respiratory diseases. Continuing innovations in this field will 

remain imperative in combating future infectious emerging diseases and will take center stage 

in determining global health management. 
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