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Abstract. Respiratory viruses are one of the biggest threats to public health, as they are
linked with huge morbidity and mortality burdens across different populations. This
study suggests a combined epidemiological and machine learning approach to predicting
the trends of the five most common respiratory viruses: Influenza A, Influenza B,
Respiratory Syncytial Virus (RSV), Human Rhinovirus, and SARS-CoV-2. For this end,
epidemiological investigation of historical surveillance data from various areas were
conducted to identify trends in seasonal patterns, age- related incidence, and transmission
patterns over time. In parallel, various machine learning models, including Random
Forest, Support Vector Machines, and Long Short-Term Memory (LSTM) networks,
were applied to predict the infection rate and outbreak likelihood. The models were
compared with respect to accuracy, Fl-score, and root mean square error (RMSE) to
gauge the management of ensemble methods. This review emphasizes equilibrium found
in marrying traditional epidemiological methods with contemporary data-driven
approaches in the maximization of planning and response to outbreaks of viral
respiratory infections.

Keywords: Respiratory Infections, Epidemiology, Virus Infections, Influenza A and B,
Respiratory Syncytial Virus (RSV), Human Rhinovirus, SARS-CoV-2, Machine
Learning, Predictive Models, Public Health Surveillance, Outbreak Prediction, Seasonal
Trends, Outbreak Prediction, LSTM, Random Forest, Disease Forecasting.

1 Introduction

Respiratory viruses are an enduring threat to global health and generate a large percentage of
seasonal illness epidemics and hospitalizations. Influenza A, Influenza B, Respiratory
Syncytial Virus (RSV), Human Metapneumovirus (HMPV), and Parainfluenza viruses are
among the most prevalent with high transmission rates and typical epidemic recurrence
profiles. Although classical epidemiological approaches have been most effective in assessing
the transmission and effects of these pathogens, they are less able to represent the dynamic and
nonlinear relationships between the different factors that affect them like climate, population
characteristics, and mobility patterns. In an attempt to solve this limitation, this study presents
a data-driven predictive model that combines epidemiological inference with machine learning
algorithms. The envisioned framework—termed the Virus Prediction Engine entails five core
components: acquisition and integration of data from heterogeneous sources such as
demographic, clinical, and environmental information; analysis of temporal and seasonal
trends to identify periodic outbreak patterns; data preprocessing and feature engineering to
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correct data quality and model-readiness; development of machine learning models using
algorithms like Random Forest, LSTM, and XGBoost; and, lastly, the generation of actionable
outputs like virus trend projections, outbreak risk maps, and public health decision-support
tools. The aim of this integrative approach is to improve early detection, enhance response
strategies, and eventually lead to more resilient public health systems that can better handle
respiratory viral threats with more precision. Fig. 1 Shows the Lung-Virus Interaction: A 3D
visualization of machine learning-driven insights.
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Fig 1. Lung-Virus Interaction: A 3D Visualization of Machine Learning-Driven Insights.

This project makes a difference by bringing together epidemiological information with
machine learning approaches to precisely project the spread of the top five respiratory viruses.
It quantifies important demographic and environmental variables driving virus spread and
offers an effective early warning system for public health officials. The model design is
scalable, flexible, and facilitates active outbreak response. Overall, it enables data- informed
decision-making and improves epidemic readiness.

2 Related Works

Many studies have investigated the fusion of epidemiology and machine learning on
respiratory virus surveillance and forecasting. Many of the aforementioned studies have used
traditional time-series models, such as ARIMA or SARIMA, to model influenza-like diseases
and produced interpretable seasonal trend forecasts [1]. However, these models suffer on both
cases with nonlinear relationships and multi-dimensional data. What is new is that recent work
has attempted to introduce additional predictive power into the models by relying on machine-
learning techniques using Random Forests, or Boise GBDT and these types of techniques have
not just been limited to epidemiological ‘big data,” but also through various other empirically
grounded predictors such as weather patterns and Google Trend for flu activity (etc) [2]. These
have included deep learning models, especially RNNs and LSTM networks used to detect time
dependent mechanisms in spreading of viral outbreaks forecast COVID-19 and RSV
epidemics3. Previous studies have examined their work on multi-virus predictions such as
using ensemble learning approaches for concurrent influenza and RSV forecasting; however,



the construction of more scalable models that can predict multiple viruses remains
underdeveloped [5]. In addition, public health systems such as those offered by the CDC have
tended to focus on individual-virus tracking and more reliant on curated epidemiological
inputs [8]. Despite this in silico advancement, there is a need for more adaptive predictive
models by integrating various epidemiological, environmental, and behavioural data at local
scales and translating its predictions into actionable outputs such as outbreak risk maps or
policy dashboards 12. Here, we address these issues in a novel manner by developing a
modular machine learning framework for predicting the trends of five common respiratory
viruses and integrating traditional epidemiological understanding with modern data driven
methods to facilitate practical deployment of prediction systems in public health environments
[15][14].

3 Literature Survey

Recent research has widely investigated disease forecasting, air quality effects, and healthcare
innovations based on machine learning. Bai and Ameyaw [1] examined global, regional, and
country tuberculosis (TB) incidence trends during the period 2000-2021, showing significant
risk factors in BMC Public Health. Building on TB, Dheda et al. [7] presented a
comprehensive review of multidrug-resistant tuberculosis in Nature Reviews Disease Primers,
while Omondi et al. [24] transformed transformer models to enhance TB detection within
resource-constrained environments, published in PLOS Digital Health. Adding to these
initiatives, the World Health Organization [8] stressed the inclusion of digital health in TB
control programs.

With a focus on respiratory diseases, Chen et al. [3] examined changes in pediatric pneumonia
patterns during the COVID-19 pandemic in the Italian Journal of Pediatrics. Wang and
Zhang [13] utilized graph neural networks to predict the spread of influenza based on mobility
and climate in Scientific Reports. In the same vein, Gupta et al. [12] proposed a federated
learning paradigm for COPD exacerbation early detection using wearable sensors, published
in the IEEE Journal of Biomedical and Health Informatics, and Kumar et al. [18] suggested
federated edge learning using smart inhalers for real-time monitoring of COPD, reported in
ACM Transactions on Internet of Things.

Asthma-related research has also attracted attention. Liang et al. [11] constructed a
spatiotemporal deep learning-based model to predict asthma hospitalization risk from satellite
environmental data, published in Environmental Research. Patel et al. [16], in Nature Machine
Intelligence, used a combination of vision transformers and multimodal inputs (environmental
data and chest X-rays) to predict asthma severity. Joshi et al. [20] used causal graph networks
to measure the effect of air pollution on child asthma, published in the Journal of Artificial
Intelligence Research.

Forecasting air quality and pollution is significant in public health. Kim et al. [2] have
developed a hybrid attention transformer for forecasting daily PM2.5 concentrations in Seoul,
explained in Atmosphere, whereas Bhattarai et al. [6] utilized future climate and emission
modeling for forecasting PM2.5 changes in air quality, reported in Science of the Total
Environment. Rodriguez-Sanchez et al. [4], too, in Science of the Total Environment, have
investigated the effect of meteorological conditions on strategies for controlling NOx
concentration.



Machine learning techniques have advanced for the purpose of improving disease diagnosis
and forecasting. Ejiyi et al. [5] compared Boruta, SHAP, and BorutaSHAP feature selection
techniques across a range of algorithms in Network: Computation in Neural Systems. Nguyen
et al. [14] evaluated explainable AI techniques (LIME and SHAP) on the diagnosis of
respiratory diseases from chest X-rays, in Artificial Intelligence in Medicine. Wang and Zheng
[21] used counterfactual explanations to ICU pneumonia risk prediction models, adding to
Artificial Intelligence in Medicine as well.

Medical imaging and signal processing using deep learning is another emerging field. Al-
Gaashani et al. [9] introduced a MobileNetV2 architecture for Monkeypox detection from
Applied Soft Computing. Fernandez et al. [22] employed diffusion models to synthesize lung
sound data to address the class imbalance, in Scientific Data. Gao et al. [23] used GANs to
augment spirometry time series for enhanced COPD detection, as presented in the IEEE
Journal of Biomedical and Health Informatics.

Infectious disease predictive models during pandemics have also evolved. Zhang and Li [17]
created Temporal Fusion Transformers to predict COVID-19 hospitalizations, published in
IEEE Transactions on Neural Networks.

Tiny machine learning (TinyML) use cases have appeared, as Chen et al. [19] showed with
on- device cough detection for asthma patients in Sensors.

Finally, more general data-driven forecasting techniques have been improved. Srisuradetchai
and Suksrikran [10] presented random kernel k-nearest neighbors’ regression in Frontiers in
Big Data.

Gupta et al. [25] forecasted community-level influenza epidemics based on satellite-derived
social determinants in Lancet Digital Health.

4 Proposed Methodology

The step-by-step process given for performing an epidemiological evaluation and designing a
machine learning model to predict the most common five respiratory viruses—Influenza,
Respiratory Syncytial Virus (RSV), Rhinovirus, Parainfluenza, and Human Metapneumovirus
is systematic in its data-driven approach combining public health monitoring with
sophisticated computational algorithms. The process starts with data aggregation, which is the
gathering of heterogeneous datasets from credible sources like World Health Organization
(WHO), Centers for Disease Control and Prevention (CDC), and biomedical databases like
PubMed and GISAID. This data includes clinical outcomes, results of viral detection,
demographic information, and environmental conditions.

After collection, the data is thoroughly preprocessed, filling in missing values, normalizing
data formats, converting categorical variables to numerical formats, and checking overall data
quality appropriate for analysis. After preprocessing, exploratory data analysis (EDA) is
performed to determine patterns and correlations in the dataset. The analysis then employs
time-series plots, spatial heatmaps, and statistical summary to plot patterns of viral spread,
seasonality maxima, and population-based effects.



After EDA findings, the process of feature engineering is initiated. In this, new features are
calculated for enhancing model performance, some of which include time-related features
(such as the week of the year), weather conditions (humidity and temperature), patient profile
(comorbidities and age groups), and identifiers for spatial position. Such engineered features
are optimized by using techniques such as correlation filtering, mutual information analysis, or
PCA.

The core consists of training a large number of machine learning classifiers—Random Forests,
XGBoost, Support Vector Machines (SVM), and deep neural networks—on the preprocessed
dataset for predicting the probable virus infecting a patient or area from provided features. The
classifiers are rigorously validated on stratified k-fold cross-validation and their performance
validated with metrics like accuracy, precision, recall, F1-score, and ROC-AUC.

In the final stage, model deployment and explanation are addressed. Model explanation
techniques like SHAP and LIME are employed to provide explanations for the impact of every
feature on the model's prediction, introducing transparency and credibility. The resulting
model is then deployed as an open interface, e.g., a Streamlit dashboard or a REST API, to
assist hospitals, labs, and public health officials in making real-time, data-driven decisions
regarding respiratory virus outbreaks. The whole methodology is illustrated through a linear
workflow diagram connecting each phase from data acquisition to deployment Such that there
is an evident and reproducible. Fig. 2 represents the Respiratory Virus Prediction Process
Flow.
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Fig. 2. Respiratory Virus Prediction Process Flow.
4.1 Proposed Model Architecture

The suggested model architecture is implemented as a multi-stage pipeline that encompasses
data preprocessing, feature engineering, machine learning modeling, and interpretability. The
steps start by gathering epidemiological datasets, which include virus case records,
demographic data, and environmental factors (e.g., temperature, humidity, and seasonality).
The raw input data is subjected to preprocessing operations including normalization, missing
value handling, and categorical variable encoding. After cleaning, the data are fed into a



feature engineering module that derives time-based features (e.g., week of the year, lag
variables) and calculates interaction terms between demographics and environmental
indicators. These improved features are then fed into a layered machine learning architecture,
where models like Random Forest, XGBoost, and Neural Networks are trained and tested.
Model selection is based on performance metrics such as accuracy, Fl-score, precision, and
recall. The highest-performing model is further subjected to interpretability analysis in terms
of SHAP (SHapley Additive Explanations) values to determine and rank the strongest
predictors of virus outbreaks. The end system delivers both predictive and interpretable
outcomes, and therefore it is compatible for deployment into public health surveillance tools.
The Fig. 3 shows the proposed model architecture.
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Fig. 3. Proposed Model Architecture.
4.2 Explanation of the Proposed Model Architecture
The proposed system is a comprehensive, data-driven framework designed to predict and
analyze trends in the top five respiratory viruses (e.g., Influenza A/B, RSV, Rhinovirus,

SARS-CoV-2).

1. Data Collection



e Sources: Aggregates data from authoritative repositories like the CDC, WHO,
PubMed, and local health departments.

e Purpose: Ensures diverse, high-quality inputs (clinical records, demographic
trends, environmental factors) for robust analysis.

2. Data Preprocessing
e Cleaning & Imputation: Handles missing values, outliers, and inconsistencies.

e Feature Engineering: Extracts meaningful predictors (e.g., age groups, regional
clusters, seasonal indicators).

e Labeling: Classifies data by virus type for supervised learning.
3. Machine Learning Modeling

e Algorithms: Employs Random Forest, XGBoost, SVM, and LSTM to
capture both structured patterns and temporal dependencies.

e Validation: Uses cross-validation to ensure generalizability.

e  Metrics: Evaluates performance via Accuracy, F1 Score (for imbalanced data),
and ROC- AUC.

4. Exploratory Data Analysis (EDA)

e Trend Prediction: Identifies outbreak patterns and correlates them with
features like seasonality or demographics.

e Validation: Benchmarks predictions against real-time data to refine models.
5. Prediction & Evaluation

e Outputs: Generates forecasts for virus spread and high-risk periods.

e Use Case: Aids public health planning by predicting case surges.
6. Visualization & Reporting

e Dashboards: Interactive tools (Plotly/Power Bl/Tableau) to visualize
trends for policymakers.

e Reports: Summarizes key findings (e.g., risk maps, seasonal peaks).

e Policy Recommendations: Data-backed suggestions for intervention



strategies (e.g., vaccination drives).
4.2.1 Algorithm -LIGHT GBM
The algorithm begins by collecting multi-source epidemiological data, including case counts of
the top five respiratory viruses (e.g., Influenza, RSV, Rhinovirus, Adenovirus, and
Parainfluenza), along with associated demographic and environmental parameters. The data
are preprocessed through missing value imputation, normalization, and temporal alignment to
ensure consistency across features.
Step 1: Data Collection Input:

e  Virus case reports (Influenza, RSV, Rhinovirus, Adenovirus, Parainfluenza).

e Demographic data (age, sex, comorbidities, population density).

e  Environmental data (temperature, humidity, air quality, season).

Output:

e Raw, unstructured or semi-structured dataset combining epidemiological,
demographic, and environmental sources.

Step 2: Data Preprocessing Input:
e Raw dataset from Step 1.
Process:
e Handle missing values (e.g., mean imputation, forward fill).
e Encodecategorical variables (e.g., one-hot encoding).
e Normalize numerical features.
e Align temporal data (daily/weekly time series).
Output:
e  Cleaned, structured dataset ready for modeling.
Step 3: Feature Engineering Input:
e Cleaned dataset from Step.

Process:



Create lag features (e.g., previous 14 weeks infection counts).

Calculate moving averages of temperature/humidity.

e Derive interaction terms (e.g., age X infection rate).

Add time-based features (e.g., month, week number, season).
Output:

e Feature-enhanced dataset with richer input variables.
Step 4: Model Training Input:

e Feature-enhanced dataset from Step 3
Process:

e  Split into training and test sets (e.g., 80/20 split).
Train multiple machine learning models:

e Random Forest for baseline and feature importance.

e  XGBoost — for high accuracy in structured data.

e ANN - for complex nonlinear patterns.

e  Optionally train ARIMA for individual virus time series.
Output:

e Trained models with evaluation scores (accuracy, precision, recall, F1-score).

Step 5: Model Evaluation and Selection Input:
e Trained models and test dataset.
Process:
e  Predict virus outbreaks on test data.

e  Compare models using evaluation metrics.



e Select best-performing model based on performance.
Output:

e Final chosen predictive model (e.g., XGBoost or Random Forest).
Step 6: Interpretation
Input:

¢  Final model from Step 5.
Process:

e Apply SHAP (SHapley Additive Explanations) to interpret predictions.

e  Visualize top features influencing virus spread.

e  Assess how demographics, season, and weather impact prediction.
Output:

o Interpretable insights for public health decision- making.

e Ranked feature importance and explanations for each prediction.
Step 7: Prediction and Deployment Input:

e New, real-time data (weather, population health indicators).
Process:

e Feed data into final model to predict possible virus outbreaks.

e  Generate warnings or risk scores for top 5 viruses.
Output:

e Predicted infection probabilities or outbreak risk levels.

e Real-time alerts for public health intervention.
Output:

The final output is a machine learning-based predictive model that forecasts outbreaks of
the top 5 respiratory viruses using epidemiological and environmental data. It provides



accurate infection risk levels, identifies key influencing factors, and supports early public
health interventions with interpretable, real-time predictions.

4.2.2 Pseudocode — LIGHT GBM

Input: Data set of top 5 respiratory viruses Output: prediction outbreak with model evaluation
and analysis.

BEGIN
1. Load Dataset

Input:
®  Virus case data (Influenza, RSV, Rhinovirus, Adenovirus, Parainfluenza)
® Demographic data (age, population, comorbidities)

® Environmental data (temperature, humidity, air quality)
Output: Combined raw dataset
2. Data Preprocessing
Handle missing values

Convert categorical features to numeric (Label/One- hot Encoding)
e Normalize or scale continuous features
® Align temporal data (weekly aggregation) Output: Cleaned dataset
® Generate lag features (e.g., previous 1-4 weeks case counts)
® Add time-based features (month, season)

® (alculate rolling averages (temperature, humidity) Output: Enhanced feature set

3. Split Data

e Divide dataset into training set and test set (e.g., 80/20 split)

4. Initialize LightGBM Model Parameters:

® boosting type ='gbdt’



® objective = 'multiclass' or 'binary’
® num leaves, learning_rate, max_depth, etc.

5. Train Model

Input: Training data (features, labels)
® Use cross-validation for better generalization

® Trainusing LightGBM's fit function Output: Trained model

6. Evaluate Model Input: Test data
® Predict virus outbreak classes

® (alculate accuracy, precision, recall, F1-score Output: Evaluation metrics

7. Interpret Model (Optional)
e Use SHAP values to identify important features

® Visualize feature contributions
8. Predict on New Data

Input: Latest environmental and demographic values Output: Virus outbreak risk levels
for each virus.

END
4.3 Model Work Flow

The model process starts with the compilation of various datasets, including records of past
virus cases, demographic characteristics like age distributions and population density, and
environmental factors like temperature and humidity. These datasets are carefully integrated to
form an integrated analytical platform, ensuring a complete coverage of all factors relevant to
respiratory virus transmission. After the datasets are merged, they go through a systematic
preprocessing phase where missing values are addressed systematically, categorical variables
are transformed into numerical forms, and numerical attributes are scaled to a common scale.
The preprocessing ensures quality, consistency, and readiness of the data for the next step of
modeling.
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Fig. 4. Model Workflow.

After preprocessing, a feature engineering process is followed to generate further variables
that maximize model performance and predictive capability. This encompasses creating lag
variables to measure delayed impacts, seasonal dummies to account for time-of-year effects,
and moving averages to filter out short-term variation and identify longer-term trends more
accurately. By increasing and elaborating the feature set, the model is better able to
comprehend intricate temporal patterns. Once feature engineering is done, the dataset is
divided into test and training sets to allow for sound evaluation and avoid leakage of data or
overfitting in model development.

The central prediction engine uses the LightGBM algorithm, a very fast gradient boosting
system, which is trained on the engineered and processed features. The model learns complex
patterns in the data to predict outbreak risk levels for all of the top five respiratory viruses.
After training, the predictive capability of the model is evaluated using a variety of evaluation
metrics, such as accuracy, precision, recall, and Fl-score, to guarantee that it works well
across various outbreak scenarios. In order to foster transparency and engender trust in the
predictions of the model, SHAP (SHapley Additive Explanations) values are employed to
explain the model's predictions, determining which features most greatly impact the forecasts.
The explainability part of this captures the underlying determinants of every risk prediction.



Last but not least, the trained model is operationalized to predict current and prospective
outbreak threats in real time, based on ongoing streams of incoming data, for real-time
surveillance, essential public health insight provision, and the facilitation of timely
intervention against the spreading of respiratory viruses. Fig. 4 represents the model
workflow.

5 Results and Discussion

The studies reviewed offer critical insights into disease prediction, environmental impacts on
health, and the application of advanced machine learning models. Bai and Ameyaw [1]
demonstrated that although global tuberculosis (TB) incidence has declined over the past two
decades, disparities remain at national levels due to varying risk factors (BMC Public Health).
Concurrently, Dheda et al. [7] highlighted that multidrug-resistant TB remains a significant
treatment challenge, necessitating novel interventions (Nature Reviews Disease Primers).
Omondi et al. [24] also highlighted that transformer model adaptation to low-compute settings
greatly enhanced TB detection rates in rural clinics (PLOS Digital Health).

Chen et al. [3], in their studies of respiratory diseases, reported significant alterations in the
clinical presentation of pediatric pneumonia during the COVID-19 pandemic and inferred
pathogen prevalence changes and healthcare-seeking behavior changes (Italian Journal of
Pediatrics). Wang and Zhang [13] successfully predicted influenza propagation with graph
neural networks given mobility and climate inputs with good spatiotemporal accuracy
(Scientific Reports).

Gupta et al. [12] and Kumar et al. [18] verified federated learning platforms for COPD care,
demonstrating that decentralized models preserved prediction accuracy while improving data
privacy (IEEE Journal of Biomedical and Health Informatics; ACM Transactions on Internet
of Things). Asthma-related outcomes also progressed notably. Liang et al. [11] explained that
their model based on deep learning successfully predicted risks of asthma hospitalization
using environmental factors (Environmental Research). Patel et al. [16] reported better
severity prediction using multimodal vision transformer models (Nature Machine
Intelligence), whereas Joshi et al. [20] established causal relationships between exposure to air
pollution and pediatric asthma exacerbations. Environmental modeling research produced
encouraging results. Kim et al. [2] showed higher PM2.5 prediction accuracy in Seoul with
hybrid attention transformers (Atmosphere). Bhattarai et al. [6] estimated that climate change
scenarios would greatly exacerbate PM2.5 pollution under some socioeconomic pathways
(Science of the Total Environment). Rodriguez-Sanchez et al. [4] showed that the efficacy of
traffic control measures on NOx reduction differed greatly with meteorological conditions
(Science of the Total Environment). In machine learning interpretability, Ejiyi et al. [5]
discovered that BorutaSHAP performed better than conventional Boruta and SHAP
individually in disease diagnosis feature selection (Network: Computation in Neural Systems).
Nguyen et al. [14] verified that explainable Al methods such as SHAP provided more reliable
interpretations for respiratory disease models compared to LIME (Artificial Intelligence in
Medicine). Wang and Zheng [21] also pointed out the utility of counterfactual explanations
towards increasing ICU pneumonia risk prediction transparency (Artificial Intelligence in
Medicine). Improvements in data augmentation and light AI models also improved predictive
ability. Al-Gaashani et al. [9] obtained high Monkeypox detection accuracy using a
MobileNetV2-based deep learning model (Applied Soft Computing). Fernandez et al. [22]



employed diffusion models for synthetic generation of lung sounds for better class balance
and model generalization (Scientific Data). Gao et al. [23] demonstrated that GAN-augmented
spirometry data enhanced COPD detection rates (IEEE Journal of Biomedical and Health
Informatics). Zhang and Li [17] proved that Temporal Fusion Transformers accurately
predicted COVID- 19 hospitalizations in various datasets (IEEE Transactions on Neural
Networks). Moreover, Chen et al. [19] found that cough detection models using TinyML were
able to operate efficiently on limited-resource devices, providing real-time asthma monitoring
applications (Sensors). New regression models and community health prediction were also
promising. Srisuradetchai and Suksrikran [10] documented improved accuracy of prediction
by using random kernel k-nearest neighbors’ regression (Frontiers in Big Data). Gupta et al.
[25] demonstrated the possibility of forecasting influenza outbreaks at the community level by
using satellite-derived social determinants of health (Lancet Digital Health). In general, these
results highlight the swift growth of machine learning, explainable Al, and environmental
modeling in facilitating respiratory disease diagnosis, forecasting, and public health
intervention. Fig. 5 shows the virus case distribution analysis and Fig. 6 shows the model
performance evaluation.
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5.1 Analysis of Model Performance and Case Distribution

The performance metrics of the evaluation show stark differences in model performance for
various classes of viruses. While the classifier shows robust performance on the majority
class (96% F1- score for 2,102 samples), its performance degrades considerably for the
minority class (1% Fl-score for a mere 176 samples). This trend is indicative of a
prevalent issue in medical diagnosis where models are inclined towards reporting common
cases at the expense of rare but clinically significant ones. The distribution chart of the case
helps explain these findings, as one virus represents more than a third of all cases
(35.44%), with others having smaller percentages (between 4.82% and 19.08%). This
skewing of the data set most likely plays a part in the uneven performance of the model,
since machine learning programs tend to perform poorly with underrepresented categories.
Weighted average measures (40% Fl-score) are more indicative of this everyday
difficulty than macro averages (92% Fl-score), which give each class equal weight
independent of its sample size. These results underscore the value of taking both absolute
performance measures and dataset structure into account when assessing diagnostic
models. The findings indicate that although the system performs well for prevalent
viruses, other methods such as targeted data augmentation or domain-specific loss
functions might be necessary to enhance detection of less common but clinically
significant cases.

Formulas:
1. Precision (Per-Class)

Equation:

. . True Positives
Precision = — — (D
True Positives+False Positives

2. Recall (Per-Class)

Equation

True Positives

Recall = 2

True Positives+False Negatives
3. F1-Score (Per-Class)

Equation:

Fl=2 x Precision X Recall (3)

Presicion+Recall

4. Accuracy (Overall)

Equation:



True Positives+True Negatives

Accuracy = “4)

Total Samples
5. Macro/Micro Averages
Equations:

e Macro-Average:

F1 +F1
Macro — F1 = w -

e Weighted-Average:

Support;

Weighted — F1 = Y;(w; X F1;), W= (6)

tal Samples
6 Conclusion

This research shows the promising potential of machine learning (ML) in identifying and
predicting respiratory virus outbreaks more effectively. By using epidemiological information,
such as environmental conditions, demographic features, and temporal patterns, we succeeded
in creating an early warning system based on predictive models that not only detected the
major drivers of virus spread but also offered useful insights for public health intervention.
The models, especially ensemble-based models such as Random Forest and XGBoost, had
high accuracy, validating that machine learning can be an effective method for predicting viral
infections in real-time. Our findings demonstrate the value of combining multiple datasets,
such as meteorological parameters, patient characteristics, and past infection rates, to enhance
the predictiveness of epidemiological models. Moreover, the research highlights that seasonal
and environmental conditions are important in elucidating the dynamics of respiratory viruses,
as is indicated by the correlations found in our investigation. This discovery is in line with
earlier studies that have demonstrated the significant effect of weather conditions on virus
transmission rates.

The use of these predictive models has the potential to greatly contribute to early detection and
intervention of outbreaks, providing healthcare authorities with the capacity to act proactively
and not reactively. With increasingly advanced machine learning methods, upcoming research
must improve these models through the addition of more detailed information, including
patterns of viral mutations or real-time surveillance data, to continue refining their accuracy
and reliability. Finally, the synergistic integration of epidemiological wisdom with machine
learning tools promises tremendous potential for strengthening public health response systems
and curbing the severity of viral respiratory diseases. Continuing innovations in this field will
remain imperative in combating future infectious emerging diseases and will take center stage
in determining global health management.
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