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Abstract. Tuberculosis (TB) remains a major global health concern, requiring early and 

accurate diagnosis for effective treatment. Traditional radiological assessments face 

challenges in distinguishing TB from other pulmonary diseases. Recent studies, such as 

the Multiscale Eigen domain Gradient Boosting (MEGB) approach, have attempted to 

automate TB detection using handcrafted features from chest X-rays, achieving 96.42% 

accuracy. However, feature extraction-based methods may suffer from generalization 

issues. In this study, we propose a deep learning-based Convolutional Neural Network 

(CNN) model for automated TB detection, incorporating data augmentation and dropout 

layers to enhance generalization and prevent overfitting. Our best performing CNN model, 

with three dropout layers, achieves 99.32% accuracy, significantly outperforming previous 

methods. Additionally, we compare CNN with a Support Vector Machine (SVM) classifier, 

achieving 93% accuracy. Our results demonstrate that deep learning models can effectively 

learn spatial features, providing superior diagnostic accuracy and robustness compared to 

feature extraction-based approaches.  

Keywords: Deep Learning, Convolutional Neural Networks (CNNs), Support Vector 

Machine (SVM), Data Augmentation, Feature Extraction, Computer-Aided Detection, 

Radiological Imaging.  

1 Introduction  

Tuberculosis (TB), is one of the major infectious disease killers over the century, claims millions 

of lives annually with heavy burden in low-resource settings [1]. Chest X-ray analysis is the 

main diagnostic method, yet radiologists reading of these images manually may be prone to 

mistakes and inefficiencies particularly when differentiating TB from other respiratory diseases 

such as pneumonia [2]. AI-based automated TB detection frameworks have surfaced as an 

attractive and dependable feature engineering solution in machine learning and classification 

approaches to provide scalability and consistency alongside high accuracy and speed [3]. 

Feature extraction Technically, earlier works on this data set are based on traditional AI-

approaches such as the Multiscale Eigen domain Gradient Boosting (MEGB) method which 

performs Discrete Wavelet Transform and Singular Value Decomposition to extract the features 

[4]. Using a classifier based in LGBM, it can achieve 96.42% of accuracy [5] in this set of 

features. However, models based on feature extraction often have a generalization problem that 
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is not easily overcome and need domain knowledge for producing descriptive features by 

repeated pre-processing as in [6]. Deep learning model, in particular, Convolutional Neural 

Network (CNN), have resolved these issues by extracting complicated spatial patterns from 

images directly without any hand-crafted feature selection to improve the accuracy of image 

classification [7]. In this study, we propose a Convolutional Neural Network (CNN) based 

technique to automatically detect the TB using hierarchical feature learning with in network 

dropout layers and data augmentation for better generalization. We also test the model in two 

layers drop out and three-layer drop dropout configurations tables of numbers: 99.32% accuracy 

for the three-dropout model compared to 93% using SVM classifier (The other verified MEBG 

approach). The performance better confirms the powerful ability of CNNs in TB detection and 

indicates their possibilities for more precise and rapid medical check-up. 

2 Related Work  

IoT and AI technologies have significantly advanced automated tuberculosis (TB) detection 

systems, enabling real-time data acquisition and integration with AI models for accurate 

diagnosis. Kashani et al. [8] highlight IoT’s role in remote patient monitoring and AI-driven 

diagnostics, emphasizing its potential in TB screening.  WHO guidelines [9] stress the 

importance of early TB detection through AI-powered radiological analysis, particularly in 

resource-limited settings, reinforcing the integration of IoT and AI in TB screening workflows.  

Several studies have leveraged deep learning for TB detection using chest X-rays. CNN-based 

models, such as those by Khan et al. [10] and Devasia et al. [11], have improved diagnostic 

accuracy through ROI localization and lung zone-wise analysis. Portable X-ray imaging, as 

reviewed by Jacobi et al. [12], is crucial for rapid screening, while Zhou et al. [13] emphasize 

the need for diverse datasets to improve model generalization. Advanced CNN architectures and 

transfer learning techniques have significantly enhanced TB detection accuracy, as noted by 

Santosh et al. [14], while traditional feature extraction methods, such as those by Singh and 

Hamde [15], face generalization challenges. To further improve TB detection, this study 

incorporates dropout regularization, data augmentation, and hyperparameter tuning to enhance 

model generalization. Rahman et al. [16] emphasize explainable AI through segmentation, while 

Pasa et al. [17] develop lightweight networks for Realtime TB screening. Kundu et al. used 

ensemble learning techniques to combine a collection of models for predicting author style 

(Kundu et al. [18] and Mogaveera et al. [19], enhance diagnostic performance. Our method can 

be seen as an attempt to fill this gap in the related works and challenge feature extraction-based 

methods using end-to-end deep learning models for accuracy and robustness. The proposed 

method aims to be more accurate and robust than feature extraction-based methods by using 

end-to-end deep learning models. Zhang et al., Pneumonia detection in chest X-ray images [20] 

additionally provides relevant insights for improving the performance of TB detection systems. 

Additionally, Elssied et al. proposed a novel feature selection method based on the one-way 

ANOVA F-test, which demonstrated effectiveness in enhancing classification performance for 

text categorization tasks such as e-mail classification [21]. 

 

 

 



3 Methods and Materials 

3.1 Dataset Description  

Get the dataset the dataset that was used in this experiment can be found at Tuberculosis Chest 

X-Rays. It has chest X-ray images labelled under two classes- Normal and Tuberculosis, where 

the total count of images is 5826. Pre-processing smooths, normalizes and maintains the size of 

the image dataset. Therefore, the same number of tuberculosis images are replicated N times for 

addressing the class imbalance using data augmentation techniques. The augmentation methods 

including rotation, horizontal flipping, zooming and shifting further help to make sure examples 

from both classes have balanced samples. This augmentation reduces overfitting and therefore 

improves the generalization ability of the model. 

 

Fig.1. Normal chest x-ray. 

In this fig 1 shows are a standard chest X-ray of a healthy individual. The lungs appear clear 

without any major abnormalities or opacities.  

The heart, ribs, and diaphragm are clearly visible.  

 
 

Fig.2. Tuberculosis chest x-ray image. 



This fig 2 Compared to the normal X-ray, you can observe increased opacities (whitish areas) 

in the lung regions, which may indicate lesions or infiltrates caused by TB infection.  

 

Fig.3. The proposed System Architecture. 

3.2 Data Pre-processing 

The dataset is pre-processed through image resizing (100×100 pixels for uniformity), grayscale 

conversion (reducing complexity while preserving features), and normalization (scaling pixel 

values to [0,1]). It is then split into training (60% for learning), validation (20% for tuning), and 

testing (20% for evaluation).  

                         
Fig.4. Normal chest x-ray image after pre-processing. 



Fig 4 shows the same normal X-ray after applying pre-processing techniques.   

The image is likely enhanced using edge detection, normalization, or histogram equalization to 

highlight important lung features.  

 
Fig.5. Tuberculosis chest x-ray image. 

Fig 5 shows the infected regions become more prominent, helping in feature extraction for TB 

detection.  

3.3 Deep Learning Model –CNN  

A CNN is used to classify chest X-rays as tuberculosis positive or normal by extracting spatial 

features. The architecture includes convolutional layers (feature extraction), pooling layers 

(dimension reduction), and fully connected layers for classification. Two variations with dropout 

layers are tested, with the best-performing model (3-dropout layers) achieving 99.32% accuracy. 

ReLU is used for intermediate layers, sigmoid for output, and the Adam optimizer (learning 

rate: 0.001) with binary cross-entropy minimizes classification loss. Dropout and 

hyperparameter tuning enhance model generalization, reducing overfitting.  

3.4 Traditional Machine Learning Model – SVM  

For comparison, a SVM classifier is also implemented. Unlike CNN, SVM operates on flattened 

image features, converting each chest X-ray into a 1D feature vector. The model follows these 

steps:  

• Feature Extraction: The image matrix is reshaped into a one-dimensional vector.  

• Standardization: The pixel values are standardized using Z-score normalization to 

ensure consistent feature scaling.  

• Kernel Selection: A linear kernel is used, as it has shown strong performance in medical 

image classification tasks.  

• Training & Evaluation: The SVM model is trained and tested using the same dataset 

split as CNN.  

While the SVM achieves 93% accuracy, its reliance on flattened features limits its ability to 

capture complex spatial structures present in chest X-ray images, making CNN the superior 

approach for tuberculosis detection.  



3.5 Model Training and Evaluation  

To ensure a fair comparison between the models, the following training strategies and evaluation 

metrics are applied:  

 
Fig. 6. CNN model Accuracy. 

Training accuracy reaches near 100%, while validation accuracy stabilizes slightly lower, 

indicating potential overfitting. Model generalization may need improvement as shown in fig 6.  

 

 
Fig.7. CNN model Accuracy Loss. 

Training loss decreases consistently, but validation loss fluctuates, indicating potential 

overfitting. Model generalization could improve with regularization or dropout adjustments as 

shown in fig 7.  

3.6 Performance Metrics  

• Accuracy – Measures overall classification correctness.  

• Precision & Recall – Evaluates the reliability of TB predictions.  

• F1-Score – Balances precision and recall for better performance assessment.  

• Confusion Matrix – Visualizes the model’s classification errors.  

• Training and Validation Loss Curves – Helps in analysing overfitting and model 

convergence.  



4 Results and Analysis  

4.1 Model Performance Comparison  

Experiments CNN: We used two different configurations of dropouts (2-dropout layers and 3-

dropout layer) to train our model, to reveal their effectiveness with SVM classifier. It was found 

that the CNN model with 3dropout layers exhibited a higher accuracy of 99.32%, which 

significantly outperformed both CNN model with 2dropout layers (96.69%) and SVM model 

(93%), as shown in Table 1. 

Table 1. Our model performance metrics. 

Model Accuracy Precision Recall 
F1-

Score 

CNN (2 

Dropout 

Layers) 

96.69% 0.97 0.97 0.97 

CNN (3 

Dropout 

Layers) 

99.32% 0.98 0.98 0.98 

SVM 93.00% 0.92 0.94 0.93 

 

The improvement in CNN performance with additional dropout layers highlights the importance 

of regularization in deep learning models, reducing overfitting while increasing generalization 

ability.  

4.2 Confusion Matrix Analysis  

To evaluate classification reliability, confusion matrices were generated for each model:  

 

Fig. 8. Confusion matrix for true labels and predicted labels. 

The confusion matrix shows high accuracy with 624 true negatives and 595 true positives. Minor 

misclassifications (16 false positives, 21 false negatives) indicate good model performance but 

slight room for improvement as shown in fig 8  



Figure 9 shows the CNN model with 3 dropout layers misclassified only 18 out of 1256 images, 

demonstrating high sensitivity (recall: 98%) and precision (98%).  

The SVM model, in contrast, produced more false positives and false negatives, reducing its 

reliability in real-world TB screening.  

The graph shows accuracy improvement with epochs. Three dropouts provide better 

generalization, reducing overfitting compared to two dropout layers shown in fig 10.  

 

Fig.9. Model accuracy by dropout layers. 

 

Fig.10. Model loss by dropout layers. 

Loss decreases with epochs. Three dropouts show lower training loss and better generalization, 

maintaining stable validation loss compared to two dropouts as shown in figure 10  

The low false-negative rate in CNN models is particularly important in medical applications, 

ensuring early and accurate TB diagnosis.  

4.3 Effect of Data Augmentation on Model Performance  

A key contribution of our study was the use of data augmentation to balance the dataset and 

improve generalization. The CNN model trained without augmentation showed a 2-3% lower 

accuracy compared to the augmented dataset.  

This proves that data augmentation helps deep learning models learn more robust features, 

especially in cases where dataset sizes are limited.  



4.4 Discussion on CNN vs. SVM for TB Detection  

The CNN model outperformed traditional methods in tuberculosis detection in contrast, SVMs 

struggled to capture complex patterns, relying on flattened pixel values. Dropout layers 

effectively controlled overfitting, leading to high accuracy and stable validation performance. 

Compared to the MEGB method (96.42% accuracy), our CNN model achieved superior results, 

highlighting its effectiveness for automated medical diagnostics.  

5 Conclusion  

This study aimed to identify the automatic tuberculosis detection which would be accomplished 

by deep learning with machine learning techniques and had a comparison between CNNs and 

SVM models. On the other hand, Table 2 shows that our best CNN model with three dropout 

layers could achieve an incredibly high accuracy of 99.32%, significantly facilitating its 

outperformance comparing to traditional machine learning approaches and previous feature 

extraction-based methods as exemplary by the MEGB model. This shows that CNNs are capable 

of learning spatial features of the images from a regular X-ray image and consequently, feature 

engineering lead to higher accuracy in classification. Moreover, data augmentation and dropout 

regularization lead the model towards generalizing at its best: the former prevents overfitting, 

while the latter makes sure that inference is reliable on unseen real-world examples. 

Table 2. Comparison of CNN with Dropout Layers (2 vs. 3) and SVM. 

 

Model 
Accuracy 

(%) 
Precision Recall 

F1- 

Score 
Remarks 

CNN (2 

Dropout 

Layers) 

96.69 0.97 0.97 0.97 

High accuracy but 

slight 

overfitting observed 

after 30 epochs. 

CNN (3 

Dropout 

Layers) 

99.32 0.98 0.98 0.98 

Best performance 

with low validation 

loss and high 

generalization. 

SVM 93.00 0.92 0.94 0.93 

Good 

performance 

but less effective in 

capturing complex 

spatial features. 
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