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Abstract. Underwater object detection is essential for ocean investigation, ecological 

monitoring, and security systems. However, challenges such as light absorption, scattering, 

and limited visibility significantly undermines detection accuracy. In this work, we present 

a robust deep learning-based approach that leverages advanced YOLO variants such as 

YOLOv9, YOLOv10, YOLOv11, and YOLOv12 for precise detection of underwater 

objects identification. For further improvement of detection performance, we integrate 

image enhancement techniques that mitigate underwater deformations and enhance feature 

extraction. The models are developed and trained and tested with the aquarium dataset, 

which provides diverse and realistic underwater images. Experimental results show that 

our enhanced pipeline significantly increases detection accuracy. This work contributes to 

the development of reliable underwater object detection systems in challenging aquatic 

environments. 

Keywords: Underwater Object Detection, Deep Learning, YOLO, Image Enhancement, 
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1 Introduction 

In the underwater environments it is difficult to detect objects based due to very poor visibility, 

refraction of light, and color distortion. Underwater object detection such as fish, jellyfish, and 

starfish is important in the field of marine science research, marine conservation, and 

underwater reconnaissance. It is being noted that conventional techniques such as sonar and 

other possible techniques are typically slow, costly, and less precise. With the advent of deep 

learning revolution, object detection models such as YOLO (You Only Look Once) have been 

arrived with high impact to detect objects in real time with high precision.  

 In this paper, we have investigated the with employing different version of the yolo such as 

YOLOv9 to YOLOv12 to detect the underwater objects precisely. We utilize the aquarium 

dataset, consisting of different underwater creatures and realistic images. Additionally, image 

enhancement and augmentation methods such as brightness correction, flipping, and rotation 

has been employed to achieve the better image detection performance. We used PyTorch to 

train our model and evaluation of the object detection accuracy. 
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2 Related works 

In recent years, underwater object detection and classification have gained significant attention 

due to their applications in marine surveillance, underwater archaeology, and environmental 

monitoring. With the advancements in deep learning, especially Convolutional Neural 

Networks (CNNs) and real- time object detection methodologies such as YOLO, researchers 

have achieved a remarkable performance improvement in underwater visual tasks. Hao Wang 

[1] evaluated the YOLOv5 models for underwater object detection and reported a maximum 

accuracy of 69.3% mAP with YOLOv5x, while YOLOv5s offers 62.7% mAP at 50 FPS, 

demonstrating high efficiency and accuracy in the challenging environments. Mohamed et. al. 

[2] discussed object detection and evaluation metrics such as Recall, F1-score, mean Average 

Precision (mAP), and Frame Per Second (FPS) for various YOLOv3 architectures. It 

investigated the performance for different models on the Brackish Dataset and Google Open 

Images. Shakil Ahmed [3] has explored the vision-based underwater object detection using 

OpenCV and Python and achieved high accuracy with gaussian filtering and canny edge 

detection and recommended for future work that aims to enhance real-time detection and 

improve accuracy through additional techniques. Hao Wang [4] studied the enhancement of the 

underwater object detection using an improved Faster RCNN model with Res2Net101 and Soft-

NMS, achieving a mAP@0.5 of 71.7% and marking an 3.3% improvement in detecting marine 

organisms. Minsung Sung [5] has proposes a CNN-based method for underwater object 

detection using simulated sonar images. It achieves high detection rates (82.5% true positive, 

91.8% true negative) by training on images with randomized degradation, enhancing detection 

capabilities without real sonar data. 

Fenglei Han [6] has investigated the enhancement of the underwater images and detects objects 

using improved CNN structures, achieving a detection speed of 50 FPS and mAP of 90%. It 

demonstrates effective application in an underwater robot for real-time object detection. Fenglei 

Han [7] presents a deep CNN method for real-time detection and classification of marine 

organisms in underwater videos, achieving over 90% mean Average Precision (mAP) and a 

detection speed of 58 ms, which is notably better for the underwater robotics applications. 

Akshita Saini [8] presents a method for enhancing underwater images using contrast stretching, 

adaptive thresholding and sobel edge detection. Results shows the improved object detection 

performance compared to the other existing methods and highlighting its effectiveness for 

clearer object boundaries in underwater environments. 

Chia-Chin Wang [9] explores YOLOv3 for underwater object detection, successfully 

identifying fish species in the aquarium. It addresses challenges like light scattering and color 

distortion. Wang Hao [10] enhances underwater object detection using an improved YOLOv4 

model, incorporating deep separable convolution, k-means clustering for bounding boxes, and 

multiscale training; resulting in a 62.1% of the F1-score and 81.5% mAP@0.5, which is 

surpassing the original model’s performance. Muwei Jian [11-12] reviews advancements in 

underwater object detection, discussing various methods and datasets. It highlights challenges 

like visibility issues and emphasizes the need for diverse datasets and improved techniques to 

enhance detection of small and camouflaged objects. Fenglei Han [13-15] focuses on enhancing 

underwater images and detecting objects using improved CNN structures, achieving a detection 

speed of approximately 50 FPS and mAP of 90%, significantly outperforming existing methods 

for real-time marine organism classification in underwater robotics. 



 
 

3 Methodology          

In this study we have proposed the system that focuses on detecting underwater creatures using 

real-time object detection algorithms, specifically various versions of the YOLO architecture. 

Fig. 1 shows the block diagram of the proposed method. The pipeline includes multiple key 

stages, from preprocessing underwater images to applying YOLO versions for accurate object 

detection. The goal is to enhance detection accuracy and efficiency in challenging underwater 

environments, ensuring real-time processing and robust performance across different YOLO 

iterations. 

3.1 Dataset 

The dataset used in this work contains 7 classes of underwater creatures, with provided 

bounding box annotations for each object in the images. The different classes of the object 

include the ’fish’, ’jellyfish’, ’penguin’, ’puffin’, ’shark’, ’starfish’, ’stingray’. In this study the 

total size of the dataset used for training, testing and validation are 638 images.  

3.2 Preprocessing 

3.2.1 Resizing 

All input images are resized to a uniform dimension of 640 × 640 pixels. This standardization 

ensures consistent input shape for the neural network, which is the essential for efficient GPU 

memory usage and stable model training. 

3.2.2 Normalization 

The pixel values of each image are normalized using the mean and standard deviation of 

ImageNet such as µ = [0.485, 0.456, 0.406] and the σ = [0.229, 0.224, 0.225] for the red, green, 

and blue channels respectively. Let I be the original image with pixel values in the range [0, 

255] and then the normalization is applied channel-wise as: 

𝐼𝑛𝑜𝑟𝑚 =
𝐼 255⁄ −𝜇

𝜎
         (1) 

Where  𝜇 = mean 

            σ = standard deviation 

This transformation first scales the pixel values to the [0, 1] range, then standardizes them by 

subtracting the mean and dividing by the standard deviation. Such normalization helps in 

reducing internal covariate shift, which refers to the change in the distribution of layer inputs 

during training and consequently accelerates model convergence and improves overall training 

stability. 



 
 

 

Fig. 1. Block diagram of the proposed method. 

3.2.3 Data Augmentation 

To improve the generalization and robustness of the model, we can apply the following 

augmentation techniques such as:  a) Horizontal Flip: in this images are flipped horizontally 

with a probability p = 0.5, helping the model learn orientation- invariant features, b) Random 

Brightness and Contrast: Random adjustments to the brightness and contrast simulate various 

lighting conditions found in underwater scenes, c) Shift, Scale, and Rotate: These 

transformations mimic slight variations in object position and camera angle and d) CLAHE 

(Contrast Limited Adaptive Histogram Equalization): It enhances the local contrast in areas of 

low visibility. Let 𝐼𝐶𝐿𝐴𝐻𝐸  be the output after applying this enhancement to the input I, improving 

visibility in murky underwater conditions. 



 
 

3.2.4 Conversion to Tensor 

The final step involves in the process is to converting each processed image into a PyTorch-

compatible tensor. includes the reordering image dimensions from H × W × C to C × H × W 

and scaling pixel values from the range [0, 255] to [0, 1]. It makes the images compatible with 

standard deep learning pipelines. 

3.3 Methods of Model Training 

YOLO is a real-time object detection algorithm that treats detection as a single regression 

problem. Unlike the R-CNN based model, YOLO process the entire image in only one forward 

pass on CNN which results it as an alternative method with fast and efficient.  

3.3.1 Basic YOLO Architecture 

Basic structure of YOLO is built on a single CNN that directly predicts bounding boxes, class 

probabilities, and confidence scores from an input image. The architecture consists of: a) 

Feature Extraction using CNN: A deep CNN processes the input image to extract high-level 

features, b) Fully Connected Layers for Prediction: The final layer outputs bounding box 

coordinates, confidence scores, and class probabilities and c) Post-processing (NMS): used for 

the filtering of the overlapping boxes and finalizes detections. Fig. 2 shows a basic gridded 

image with bounding box for an underwater object detection. 

 

Fig. 2. A gridded image with bounding box for an underwater object detection. 

3.3.2 Steps to be Followed for Object Detection using YOLO 

Initial step is to resize the given input image as resized to 448 × 448 pixels, and then image has 

been divided into an S × S grid, in which each grid cell is responsible for predicting an object 

if the object center falls within the cell. As shown in Fig. 2 the bounding box and inside each 

image the bounding box for the object detection is represented by (𝑋, 𝑌, 𝑊, 𝐻). In which (𝑋, 𝑌) 

is the center point of the bounding box,  𝑊 is the width, 𝐻 is the height of the bounding box 

relative to the entire image. Fig 3 shows the basic representation of the object detection with 

specific size of the bounding box. In Fig 3, the top-left coordinate of the grid cell (highlighted 



 
 

in blue color) is denoted as (𝑋𝑎, 𝑌𝑎) . Then the center, height and width of the bounding box 

with respect to the enveloping grid cell can be written as: 

∆𝑋 =
𝑋−𝑋𝑎

64
 and ∆𝑌 =

𝑌−𝑌𝑎

64
                                                         (2) 

∆𝑊 =
𝑊

448
 and ∆𝐻 =

𝐻

448
                                                            (3) 

Prediction vector of each grid cell can have 5 parameters i.e. (𝑋𝑖 , 𝑌𝑖 , 𝑊𝑖 , 𝐻𝑖 , 𝐶𝑖), here 𝐶𝑖 is the 

classes of the object in the bounding box.  Additionally, 2 bounding box in each grid cell are 

considered and total 7 different class of the possible object in given dataset. Therefor the total 

number of parameters in each grid cell can be computed as 17 and final prediction vector 

representation for each bounding box can be written as:  

[∆𝑋1, ∆𝑌1, ∆𝑊1, ∆𝐻1 , 𝐶1, ∆𝑋2, ∆𝑌2, ∆𝑊2, ∆𝐻2, 𝐶2, 𝑃1, … , 𝑃7]       (4) 

Further we can transform the normalized predictions back to actual image coordinates as for 

both the bounding boxes can be written as: 

𝑋𝑖 = 64 ∆𝑋𝑖 + 𝑋𝑎 and  𝑌𝑖 = 64 ∆𝑌𝑖 + 𝑌𝑎                                     (5) 

𝑊𝑖 = 448 ∆𝑊𝑖  and  𝐻𝑖 = 448 ∆𝐻𝑖                                                (6) 

 

Fig. 3. Representation of the object detection with size of the bounding box. 

4 Model Architecture 

The YOLO architecture is built upon a Convolutional Neural Network (CNN) and is designed 

for real-time object detection. Basic structure of the YOLO is shown in Fig 4 from which we 

can observe that it consists of 24 convolutional layers followed by 2 fully connected layers. 

The design is inspired by the GoogLeNet architecture, with modifications to suit the needs of 

object detection. 

Convolutional Layers (24 layers): These layers are responsible for extracting spatial and 

semantic features from the input image. 1×1 convolutions are used to reduce the depth (number 



 
 

of channels) of feature maps, helping to lower computational cost. A 3×3 convolutions are 

applied for effective feature ex- traction at local regions. 

Fully Connected Layers (2 layers): These layers convert the spatial feature maps into final 

predictions including bounding boxes and class probabilities. The last convolutional feature 

map has a size of 7 × 7 × 1024 and this feature map is flattened into a feature vector of size 

50176. 

 

Fig. 4. Basic YOLO Model Architecture. 

5 Results and Evaluation 

The performance evaluation of underwater object detection system has been conducted using 

the four different YOLO variants such as YOLOv9, YOLOv10, YOLOv11, and YOLOv12. 

These models have been trained and tested on the aquarium dataset and assessed based on the 

important performance metrics of object detection such as precision, recall, mAP@0.5, 

mAP@0.5:0.95, and validation losses including box loss, classification loss, and DFL loss. Fig. 

5(a), Fig. 5(b) and Fig. 5(c) shows the metric performance of precision, mAP@0.5 and 

classification loss for YOLO9. It illustrates the variation of Precision over the training epochs 

for the YOLOv9 model and we can observe that after 200 epochs the performance has 

convergence. This indicates the model’s growing ability to correctly identify relevant 

underwater objects. A steady increase in precision represents that the model is progressively 



 
 

improving the accuracy of the classifying of the detected underwater objects.  From which we 

can observe that YOLOv9 followed closely, showing comparable results and achieving the 

lowest box loss (0.668), reflecting its robustness in the localization tasks. Fig. 5(b) illustrates 

the convergence of mAP at 0.50 (mean average precision at the IoU threshold 0.50) and Fig 

5(c) illustrates the convergence of the classification loss. Similarly, Fig. 6(a), Fig. 6(b) and Fig. 

6(c) shows the metric performance of precision, mAP@0.5 and classification loss for 

YOLOv10. Additionally, Fig. 7 shows the performance of YOLOv11 and YOLOv12. From 

these we can observe that among all the models, YOLOv11 demonstrated the best overall 

performance with the highest mAP@0.5 (0.967) and mAP@0.5:0.95 (0.833), along with 

excellent precision (0.955) and recall (0.946). Fig. 8 shows the comparison of different metric 

performances of the YOLO Versions.  

 

Fig.5 (a) Metric performance of the Precision. 

 

Fig.5 (b) Metric performance of the mAP @ 0.50. 



 
 

 

 

Fig.5  (c) Metric performance of the classification loss. 

Fig. 5(a), 5(b), 5(c). Metric performance of different parameters for YOLO version 9. 

 

Fig.6 (a) Metric performance of the Precision. 

 

Fig. 6 (b) Metric performance of the mAP @ 0.50. 



 
 

 

Fig. 6 (c) Metric performance of classification loss. 

Fig. 6(a), 6(b), 6(c). Metric performance of different parameters for YOLO version 10. 

 

Fig. 7 (a) Metric performance of the Precision. 

 

Fig.7 (b) Metric performance of the mAP @ 0.50. 



 
 

 

Fig. 7 (c) Metric performance of the classification loss. 

Fig. 7(a), 7(b), 7(c). Metric performance of different parameters for YOLO version 11. 

 

Fig. 8 (a). Comparison of precision of YOLO Versions. 

 

Fig. 8 (b). Comparison of mAP50 of YOLO Versions. 



 
 

 

Fig. 8 (c). Comparison of classification loss of different YOLO Versions. 

Fig. 8(a), 8(b), 8(c). Comparison of different metric performance of the YOLO Versions. 

Table 1 shows the comparison of the performance of YOLO models and it is also observed that 

the lowest classification loss (0.395), indicating strong capability in accurately detecting and 

classifying underwater objects. We noticed that YOLOv10 exhibited higher validation losses, 

particularly box-loss (1.414) and DFL loss (1.784), suggesting reduced stability and potential 

overfitting during training. YOLOv12 showed moderate performance across all metrics, 

slightly trailing behind YOLOv9 and YOLOv11. Overall, the experimental results confirm that 

the integration of image enhancement techniques with state-of-the-art YOLO models 

significantly improves detection accuracy and reliability in challenging underwater 

environments. Further, we observe from these results that YOLOv11 and YOLOv9, gives the 

best performance for real-time underwater object detection applications. 

Table 1. Comparison of the performance of YOLO Models. 

Metric YOLOv9 YOLOv10 YOLOv11 YOLOv12 

Precision 0.954 0.929 0.955 0.941 

Recall 0.944 0.921 0.946 0.933 

mAP@0.5 0.965 0.954 0.967 0.955 

mAP@0.5:0.95 0.830 0.821 0.833 0.807 

Val Box Loss 0.668 1.414 0.670 0.722 

Val Cls Loss 0.432 0.830 0.395 0.488 

Val DFL Loss 0.886 1.784 0.946 0.934 

 

6 Conclusion 

In this work, we developed an efficient underwater object detection system by integrating 

advanced deep learning models with image enhancement techniques and by leveraging YOLO 

variants such as YOLOv9, YOLOv10, YOLOv11, and YOLOv12. We have evaluated their 

performances on the aquarium dataset, which provides realistic underwater object detection 

with very high precision and can be used in the diverse underwater scenarios. Among the tested 

models, YOLOv11 and YOLOv9 demonstrated superior detection accuracy, robustness, and 



 
 

generalization capabilities, making them ideal for deployment in real-time underwater object 

detection applications. The image enhancement has significantly mitigated the challenges 

posed by underwater environments such as light distortion and low visibility and thereby 

improving feature extraction and model performance. This study highlights the potential of 

deep learning-based solutions for reliable underwater object sensing and sets a foundation for 

further advancements in marine research, ecological monitoring, and autonomous underwater 

systems. 

References 

[1] Wang, H., Sun, S., Wu, X., Li, L., Zhang, H., Li, M., & Ren, P. (2021, September). A yolov5 

baseline for underwater object detection. In OCEANS 2021: San Diego–Porto (pp. 1-4). IEEE. 

[2] Asyraf, M. S., Isa, I. S., Marzuki, M. I. F., Sulaiman, S. N., & Hung, C. C. (2021). CNN-based 

YOLOv3 comparison for underwater object detection. Journal of Electrical and Electronic 

Systems Research (JEESR), 18, 30- 37. 

[3] Ahmed, S., Khan, M. F. R., Labib, M. F. A., & Chowdhury, A. E. (2020, February). An 

observation of vision based underwater object detection and tracking. In 2020 3rd International 

Conference on Emerging Technologies in Computer Engineering: Machine Learning and 

Internet of Things (ICETCE) (pp. 117-122). IEEE. 

[4] Wang, H., & Xiao, N. (2023). Underwater object detection method based on improved faster 

RCNN. Applied Sciences, 13(4), 2746. 

[5] Sung, M., Lee, M., Kim, J., Song, S., Song, Y. W., & Yu, S. C. (2019, October). Convolutional-

neural-network-based underwater object detection using sonar image simulator with 

randomized degradation. In OCEANS 2019 MTS/IEEE SEATTLE (pp. 1-7). IEEE. 

[6] Han, F., Yao, J., Zhu, H., & Wang, C. (2020). Underwater image processing and object detection 

based on deep CNN method. Journal of Sensors, 2020(1), 6707328. 

[7] Han, F., Yao, J., Zhu, H., & Wang, C. (2020). Marine organism detection and classification 

from underwater vision based on the deep CNN method. Mathematical Problems in 

Engineering, 2020(1), 3937580. 

[8] Saini, A., & Biswas, M. (2019, April). Object detection in underwater image by detecting edges 

using adaptive thresholding. In 2019 3rd In- ternational Conference on Trends in Electronics 

and Informatics (ICOEI) (pp. 628-632). IEEE. 

[9] Wang, C. C., Samani, H., & Yang, C. Y. (2019, December). Object detection with deep learning 

for underwater environment. In 2019 4th International Conference on Information Technology 

Research (ICITR) (pp. 1-6). IEEE. 

[10] Hao, W., & Xiao, N. (2021, December). Research on underwater object detection based on 

improved YOLOv4. In 2021 8th International Con- ference on Information, Cybernetics, and 

Computational Social Systems (ICCSS) (pp. 166-171). IEEE. 

[11] Jian, M., Yang, N., Tao, C., Zhi, H., & Luo, H. (2024). Underwater object detection and 

datasets: a survey. Intelligent Marine Technology and Systems, 2(1), 9. 

[12] Han, F., Yao, J., Zhu, H., & Wang, C. (2020). Underwater image processing and object detection 

based on deep CNN method. Journal of Sensors, 2020(1), 6707328. 

[13] Wulandari, N., Ardiyanto, I., & Adi Nugroho, H. (2022). A Comparison of Deep Learning 

Approach for Underwater Object Detection. Jurnal RESTI (Rekayasa Sistem Dan Teknologi 

Informasi), 6(2), 252 - 258. 

[14] C. -H. Yeh et al., "Lightweight Deep Neural Network for Joint Learning of Underwater Object 

Detection and Color Conversion," in IEEE Transactions on Neural Networks and Learning 

Systems, vol. 33, no. 11, pp. 6129-6143, Nov. 2022, doi: 10.1109/TNNLS.2021.3072414. 

[15] Zhao S, Zheng J, Sun S, Zhang L. An Improved YOLO Algorithm for Fast and Accurate 

Underwater Object Detection. Symmetry. 2022; 14(8):1669. 


