

Developing an Efficient and Lightweight Deep Learning

Model for an American Sign Language Alphabet

Recognition Applying Depth Wise Convolutions and

Feature Refinement
Pillarisetty Uday Karthik1*, Sai Subbarao Vurakaranam2, Sumalatha M3, Renugadevi R4 and

Sunkara Anitha5
{ udaykarthik58@gmail.com1, saisubbarao373@gmail.com2 , suma.magham@gmail.com3

,

renu.rajaram@gmail.com4, anithasunkara9@gmail.com5}

Department of CSE, Vignan’s Foundation for Science Technology and Research, Guntur, India1, 2, 3, 4, 5

Abstract. In this, we proposed a deep learning framework for classifying American Sign

Language (ASL) alphabet gestures to support accessibility for people with speech and

hearing impairment. We evaluated our model using three public ASL datasets. one of the

datasets of 87,000+ real-time images and 29 classes. To establish a baseline, we also tried

state-of-the-art models, including VGG16, Efficient Net, MobileNetV1/V2, and ResNet50.

Modeled after these findings, we created a compact application-specific convolutional

neural network (CNN) model for static ASL recognition. Our custom ASL alphabet model

employs depthwise separable convolutions, batch normalization, dropout, and global

average pooling and adds a loop-based feature refinement block that is executed four times

to increase spatial feature learning. Our test runs showed our model consistently achieved

over 95% across various datasets while being faster and more reliable than the bulkier

models. This model is a great candidate for real-time applications.

Keywords: sign language classification, deep learning, con- volution layers, CNN, Feature

refinement.

1 Introduction

Only a fraction of society speaks sign language and those are the people born with a speech or

hearing impairment. The lack of communication between the hearing majority and the deaf

minority constitutes a serious barrier. Conversations are thus frequently slow, impersonal and

inefficient. Here it can be imagined that in time of an emergency like a fireman needing to take

a deaf person to safety a smartphone with a sign language recognition app installed can instantly

be translated, allowing critical instructions to be transmitted in a timely manner. Similarly, the

person could also send emergency information or requests to emergency personnel with the

same tool.

This is human speak and for most people, it is the dominant mode of communication. The

problem is that oftentimes non- or hard-of-hearing people have difficulty in speaking

communication as well. Next is the sign language as it operates with hands, face and body to

express a words or phrase rhythmically. However, there are also regional dialects and differences

in sign languages which, like spoken languages, complicate the creation of an automatic

translator system.

ICITSM-Part I 2025, April 28-29, Tiruchengode, India
Copyright © 2025 EAI
DOI 10.4108/eai.28-4-2025.2357809

mailto:udaykarthik58@gmail.com
mailto:saisubbarao373@gmail.com
mailto:suma.magham@gmail.com3
mailto:renu.rajaram@gmail.com4
mailto:anithasunkara9@gmail.com5

In this paper, we leverage the power of Convolutional Neural Networks (CNNs) to automatically

classify and interpret ASL alphabet hand signs. Inspired by prior art on hand detection and skin

colour-based latent poses modelling, our work aims to increase the precision of sign language

recognition using deep learning. The proposed system may eventually enable the provision and

attainment of a better communication accessibility and quality of life for people with disabilities

by teaching models’ visual features of ASL signs.

Above the technical coverage, this research emphasizes the greater social significance of sign

language recognition. Achievements in this domain also could be welcomed as part of inclusive

communication systems for non-speaking or limited speaking persons. Although we concentrate

our attention to ASL for this work, we recognize that the variation in the way gestures are

executed by different users is a serious obstacle. Notwithstanding these challenges, the field has

continued to move forward at a rapid pace, with deep learning methods showing potential in

terms of ac- curacy and scalability. Through this work, we hope to help lay the groundwork for

accessible technologies that support those who have speech and hearing impairments and enable

them to participate more fully in society.

2 Related Work

Sabeenian et al. [10] utilized a dataset with 27,455 training and 7,172 validation images with

784 features for each image. They proposed a CNN-Based algorithm that uses an adapted CNN

network with 11 layers, which contained the layers of the convolutional, max-pooling, flatten,

dense, and dropout. It resulted in model with a training accuracy of 99% and a validation

accuracy of 93% which is an excellent performance in a ASL gesture recognition.

Barbhuiya et al [2]. In their approach, they utilized the American Sign Language (ASL) dataset.

The dataset is divided into 36 classes of sign characters which are the combination of 26

alphabetic and 10 numerical classes. The model architecture includes pre- processing to resize

images to 227×227×3 and 224×224×3 for AlexNet and VGG16, respectively. Model: The

VGG16 of layers contains convolutional layers of various filter sizes and Pooling layers,

concluding with fully connected layers. The system obtained excellent accuracy in ASL sign

recognition through pre-trained AlexNet and VGG16 models with SVM classification.

Sapriya et al [3]. They employed the IISL2020 dataset as part of their method. In their work,

they proposed a model based on Keras and TensorFlow libraries that used a mixture of LSTM

and GRU models and was trained on a Super Server workstation with dedicated hardware. They

were able to achieve a high accuracy of 97% in the identification of Indian Sign Language.

Syamala et al [5]. For this, they have employed a dataset containing 200 Indian sign language

words signed by 5 native ISL individuals. They applied the techniques of training CNN in a

combination of 3 samples and testing in the rest of the 2 samples. The model applies the tanh

activation function with bias add and stochastic pooling. The recognition rates for CNN

architecture appear to perform better than other classifiers such as Ada boost, ANN.

The work by Aditya Das et al [4] including the dataset of RGB and depth images of320x240

resolution with hand gesture along 140 classes includes finger-spelling numbers and alphabets.

The techniques adopted are CNN for feature extraction and ANN for classification. The model

used is the Inception V3 and its accuracy of 91.7% shows high penetration in sign language

recognition.

3 Methodology

3.1 Sign Language Dataset

You need special ASL datasets to train a sign language recognition model. Additional datasets: the

American Sign Language Dataset on Kaggle for image classification, DAI - ASL LVD dataset with

videos with synchronised transcriptions and lexical annotations, WLASL dataset recording 2,000

frequent ASL words and How2Sign which contains more than 80h of sign language videos (also

multi-modal). Fig 1 Sample Images of American sign language.

One of the ASL dataset we used has 29 classes out of 87,000 images (char from A to Z, Delete,

space or Nothing). We used a total of 87000 images from GNIRD for training, out of which we

separated 7830 for testing to help us fine-tune the final model.

Fig. 1. Sample Images of American sign language.

3.2 Implementation Flow

Fig. 2. Direction Flow of implementation.

Fig 2 shows this process, starting from the literature review, the definition of the research goal.

This action is about reading related works in order to gain knowledge of methods and problems

used in the research of sign language recognition. Then the problem finding procedure further

serves to identify the major research goals. Then data collection is conducted to obtain sign

language gesture datasets. This information is then sent through a pre-processor where any pre-

processing can be done, such as forcing behaviour relative to the model to allow for better model

performance. Depth wise convolutions are employed for feature extraction to capture essential

gesture patterns. The features extracted are then inputted to a Modified MobileNetV2 model

which is also tuned for sign language recognition. Before it can be used to predict, the model

must be trained and tested to ensure that it is appropriately accurate. The output is the signed

language gestures which is ultimately helping in the communication process for speech and

hearing-impaired people.

3.3 Data pre-processing

Data pre-processing is an important process in data pipeline analysis which is used to cleanse

the input data so that it becomes better quality and can be passed as input to the data mining

algorithm. It will organize and label the dataset so that it is more structured, thus creating a better

opportunity for machine learning to learn from. For instance, your data real world data might be

high signal-to-noise ratio and pre-processed in a way as to select relevant features or filter out

noise or artefacts; this is fine for some kinds of datasets provided that it represents accurately

the actual best version of that data possible but not OK if the distributional shift between training

set and test set causes targeting bias. E.g., values will probably be normalized and the feature

selection should be parts of the learning process rather than pre-processing steps.

3.4 Data Augmentation

In machine learning, data augmentation is the creation of new training samples using only the

original dataset. Augmentation of data will augment the training set by creating modified

versions of a given dataset. This manipulation can sometimes mean changing the original data,

or be through creating what appear to be legitimate new data points via deep learning. Data

Augmentation: transforms images to correct for overfitting by performing several

transformations on the images. We adopted the rescaling here. Normalization of the pixel data

is applied by rescaling. The pixel contains value between (0 – 255). With rescaling, my pixels

would have been in the range 0-1.

We also used image resizing. The shape of image is 200,200,3. The size of the image has been

reduced for sizing down the system compatibility, since the data is large, in initial flow using

max pooling.

3.5 Mobile Net V2 Model Setup

The depth of the CNN model is 26. The SSD (Single Shot Multibox Detector) is a detection

model with Mobile Net v2 as a backbone and it is efficient allowing to carry it out in real time.

In this architecture, input image of size 300x300 is considered for processing. The backbone of

Mobile Net v2 is depth wise separable convolutions that are used to produce multi-scale feature

maps, which makes the model better capture features at different scales. Moreover, multiple

feature maps at various scales are able to detect objects of various sizes. A detection network in

the SSD combined with differently shaped and scaled anchor boxes to increase the precision of

detection. The model, for each anchor, attempts to predict both the class of object and refine the

positions of the bounding boxes, so that objects can be accurately placed in the image.

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝐿𝑐𝑙𝑠) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ(𝑙𝑖 − 𝑔𝑖)

𝑖(𝑥,𝑦,𝑤,ℎ)

 (1)

where c1 is the ground truth class and P(xi) is the predicted probability.

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝐿𝑙𝑜𝑐) = ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖 − 𝑔𝑖)

𝑖(𝑥,𝑦,𝑤,ℎ)

 (2)

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠(𝐿𝑡𝑜𝑡𝑎𝑙) = 𝐿𝑐𝑙𝑠 + 𝐿𝑙𝑜𝑐 (3)

Fig. 3. MobileNet V2 architecture.

Fig 3 shows the MobileNetV2 architecture. The Table 1 represents the model summary of the

proposed modified MobileNetV2 based CNN model. The model consists of a series of

convolutional layers, depth wise separable convolutions where it includes pointwise

convolutions, batch normalizations, and pooling layers. It retains the efficiency of MobileNetV2

while optimizing performance for classification tasks. The total number of parameters is

132,125, with 118,669 trainable parameters.

3.6 Proposed lightweight CNN Model

Table 1. Architecture of The Proposed Custom CNN Model.

Layer Type Details Repetitions

Input Layer Input shape: (200, 200, 3) 1

Conv2D
3×3 filters, ReLU

activation
5

DepthwiseConv2D
3×3 filters, ReLU

activation
4

Batch Normalization
After conv/depth wise

layers
9

Max Pooling2D Pool size: 2×2 2

Dropout 0.3–0.5 rate 4

Global Average Pooling2D Reduces spatial dimensions 1

Dense (Output) 29 units (SoftMax) 1

For compiling, we used activation functions ReLU and SoftMax in the model and we also used

Early Stopping. The optimizer we used in the model is Adam. After performing some iterations,

we achieved 99.7% of accuracy.

3.7 Batch normalization

Batch normalization leads to better training consistency, faster training and better accuracy in

your model. It also protects against the problems with the gradients being too large or too small

as you were training and helps avoid get stuck or making catastrophic mistakes learning. It is

also beneficial for a neural network training that may struggle rated with long time if

training/retraining, unstable gradients, and slow training.

3.8 Early Stopping

Early stopping is a regularization method to avoid overfitting the neural network by monitoring

the model performance with a validation set. It makes it less susceptible to overfitting, and you

are sure that the model will not learn any noise from the training data.

3.9 Activation Functions

Neural networks made activation functions as a crucial element because these carries non-

linearity in output signal of respective neurons. Activation functions also work on the weighted

sum of an input with bias term to produce an output signal it passes to the following layers,

analogously. These patterns and relationships could be replicated using neural networks. ReLU,

Soft max are the two activation functions we used in our model.

3.9.1 ReLU

The Rectified Linear Unit (ReLU) is among the most used activation functions in neural

networks. ReLU adds non-linearity by returning the input directly if positive, and zero otherwise.

This simple and effective mechanism allows the model to learn complex representations and im-

proves the efficiency of learning throughout deep architectures.

𝑓(𝑥) = max (0, 𝑥) (4)

3.9.2 SoftMax

The SoftMax activation function transforms raw outputs of a neural network (raw values, also

known as logits), into a probability distribution with each individual element representing the

likelihood of a class in comparison to the other classes.

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = ∑
𝑒𝑥𝑝(𝑥𝑖)

𝑗𝑒𝑥𝑝(𝑥𝑗)
 (5)

3.10 Optimizer

They are designed as optimization algorithms of learnable parameters in a model like weights,

biases to minimize loss and improve the model. The optimizer determines how the weights of a

model are modified in the training process. In this work, we used Adam optimizer, a popular

optimizer with good convergence and adaptive learning rate.

3.10.1 Adam Optimizer

Adam is a high order optimization technique which combines the benefits of Root Mean Square

Propagation and Adaptive Gradient Algorithm. On the other hand, Adam has a separate learning

rate for each parameter which reduces the oscillations and speeds up convergence. For example,

in traditional gradient descent the learning rate is a constant, and it may converge slower (if at

all) due to oscillation. The second optimizer is the learning optimizer that would be suitable for

deep neural network by utilizing momentum and RMS techniques incorporated into one. Adam

optimizer update rule:

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡 (6)

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2 (7)

𝑚̂𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

 (8)

𝑣^𝑡 =
𝑣𝑡

(1−𝛽2
𝑡)

 (9)

𝜃𝑡+1 = 𝜃𝑡 − √
𝜂

𝑣^𝑡+∈
𝑚̂𝑡 (10)

Where:

• 𝜃𝑡 is the parameter at time step t.

• 𝑔𝑡 is the gradient of the objective function with respect to 𝜃𝑡.

• 𝛽1 and 𝛽2 are decay rates for the moment estimates.

• 𝑚𝑡 and 𝑚𝑡 are first and second moment estimates, respectively.

• 𝜂 is the learning rate.

• ∈ is a small constant to prevent division by zero.

4 Results

4.1 Prediction

We have done our project to classify properly to predict the images that have been given to test

the performance of the model. The results are shown below, where the model correctly predicted

a sample input symbol as ’Y’ with a probability of 100 %.

The predicted symbol and probability according to each class is below in Fig 4, 5 and 6.

Fig. 4. Probability of predicted ’Y’ labelled data.

Fig. 5. Probability of predicted ’M’ labelled data.

Fig. 6. Probability of predicted ’C’ labelled data.

In our case, our model is a lightweight model, which is more efficient, and we use the Adam

optimizer. The loss function was drastically reduced over 10 epochs, dropping below 0.09. The

validation accuracy increased by 3% from the first epoch to 100% at the end of the last 10th

epoch. Fig. 7 shows the Train and validation accuracy curves for asl-alphabet dataset.

Fig. 7. Train and validation accuracy curves for asl-alphabet dataset.

Fig. 8. Train and validation loss curves for asl-alphabet dataset.

As the epochs increase, we are able to obtain the average of 99 % validation accuracy, which is

the greatest of all of those for our model. Fig 8 shows the Train and validation loss curves for

asl-alphabet dataset.

Table 2. Different Model Comparison.

Model Name Parameters Epochs
Learning

Rate

Training

Accuracy

Validation

Accuracy

VGG16 107,116,381 15 0.001 48 34.56

ResNet50 23,647,133 15 0.001 99.87 99.73

EfficientNet 4,086,713 15 0.001 99.94 98.02

MobileNetV2 2,295,133 15 0.001 99.07 94.13

Proposed

Model

(Custom

MobileNetV2)

132,125 15 0.001 100 99.94

Table 2 shows the Comparison of Different Model Performance. A number of deep learning

models, including VGG16, ResNet50, EfficientNet B0, and MobileNetV2, as well as suggested

MobileNetV2 variants, are compared. Over 15 epochs, it highlights important parameters like

total parameters, learning rate, training accuracy, and validation accuracy. With the highest

validation accuracy of 99.94%, the suggested custom MobileNetV2 demonstrates the

effectiveness of its model optimization.

Table 3. Model with dropouts for different learning rate Comparison.

Model Name Parameters Epochs
Learning

Rate

Training

Accuracy

Validation

Accuracy

Proposed

Model with

dropouts

132,125 15 0.002 99.53 92.14

Proposed

Model with

dropouts

132,125 15 0.0001 99.82 94.97

Table 3 examines what happens when we increase learning rate with added dropout layers to the

model architecture recommended earlier. Both set-ups have 132,125 parameters and were

trained for 15 epochs. The model trained at 0.0001 learning rate acquires a better validation

accuracy of 94.97% as opposed to the 92.14% with another model at the 0.002 learning rate,

illustrating the importance of hyperparameter tuning in improving generalization of models

accomplished by SOTA techniques.

Table 4. Performance Comparison of Different Models on Asl Alphabet Dataset.

Model Accuracy Precision Recall F1 Score Accuracy

Proposed

Model
0.99 0.93 0.87 0.87 0.99

MobileNet

V1
0.71 0.91 0.88 0.88 0.71

MobileNet

V2
0.95 0.91 0.88 0.88 0.95

VGG16 0.48 0.95 0.93 0.93 0.48

ResNet50 0.92 0.96 0.94 0.94 0.92

EfficientNet 0.89 0.92 0.89 0.89 0.89

We evaluated the Enhanced MobileNet model on the American Sign Language dataset and ASL

dataset along with our primary datasets. Table 4 shows the performance comparison of different

models on ASL Alphabet Dataset. Fig 9 shows the train and validation accuracy curves for the

ASL dataset.

One of each the 28 classes is mapped to via a given color image in the American Sign Language

Dataset thereby correspondingly representing each letter of the ASL alphabet Because these

photos were taken in different light conditions and against different backgrounds, this database

can be used to examine how well the model generalizes. Train and validation loss curves for the

ASL dataset as shown in the Fig 10. American sign language · Fig 11 shows training and

validation accuracy curves for models on the American sign language dataset. You will get 2,515

verified images comprised of 36 different classes ASL Dataset This dataset although of less

instances are having a wider class distribution and can be tested on low resource multi-class

classification.

Fig. 9. Train and validation accuracy curves for asl-dataset.

Fig. 10. Train and validation loss curves for asl-dataset.

Fig. 11. Train and validation accuracy curves for American sign language dataset.

Fig. 12. Train and validation loss curves for American sign language dataset.

Table 5. Performance comparison of Enhanced MobileNet model on different ASL Alphabet dataset.

Model Accuracy Precision Recall F1 Score Accuracy

asl-

alphabet
0.99 0.93 0.87 0.87 0.99

asl-dataset 0.96 0.92 0.85 0.86 0.96

American-

sign-

language

0.85 0.92 0.85 0.86 0.85

Table 5 depicts the Comparison of performances of the proposed Enhanced MobileNet model

on three different ASL datasets. The accuracy of the model reaches 0.99 on the ASL Alphabet

dataset, where the standardized and well-defined sign images shows an excellent performance.

The ASL Dataset and American Sign Language Dataset exhibit slightly less accuracies of 0.96

and 0.85 as the cause of greater variation on the signer’s posture, background conditions, and

the dataset variety. In spite of these variations, the model achieves high precision on both

datasets, which demonstrates the robustness of the model in the classification of hand gestures

whenever a prediction is performed. Fig 12 shows the Train and validation loss curves for

American sign language dataset.

5 Conclusion and Future Scope

In order to effectively classify the fixed hand symbols of the American Sign Language (ASL)

letters, we created a custom Convolution Neural Network (CNN) model based on MobileNet.

The effectiveness of the pre-processing procedures and the used dataset is demonstrated by the

developed model's excellent testing accuracy, which exceeded 99% on image data. The

outcomes validate the CNN's resilience and efficiency in classifying ASL gestures, as well as its

potential for incorporation into actual assistive communication systems.

6 Acknowledgement

We want to express our gratitude to open-source resources such as the Keras and TensorFlow

communities, as well as internet resources like OpenAI and other artificial intelligence, for their

invaluable contributions to our learning process.

References

[1] Singh, G., Yadav, A. L., S e h g a l , S. S. (2022). Sign language recognition

Using Python. Interna- tional Conference on Cyber Resilience, ICCR 2022.

https://doi.org/10.1109/ICCR56254.2022.9996001

[2] Barbhuiya, A. A., Karsh, R. K., Jain, R. (2021). CNN based feature extraction and

classification for sign language. Multimedia Tools and Applications, 80(2), 3051–3069.

https://doi.org/10.1007/s11042-020-09829-y

[3] Kothadiya, D., Bhatt, C., Sapariya, K., Patel, K., Gil- Gonza´lez, A. B., Corchado, J. M.

(2022). Deep- sign: Sign Language Detection and Recognition Us- ing Deep Learning.

Electronics (Switzerland), 11(11). https://doi.org/10.3390/electronics11111780

[4] Das, A., Gawde, S., Suratwala, K., Kalbande, D. (n.d.). Sign Language Recognition Using

Deep Learning on Custom Processed Static Gesture Images.

[5] Rao, G. A., Syamala, K., Kishore, P. V. v, Sastry, A. S. C. S. (n.d.). Deep Convolutional

Neural Networks for Sign Language Recognition.

[6] Nirmala, M. (2022). Sign Language Recognition Using Deep Learning. 2022 4th International

Conference on Cognitive Computing and Information Processing, CCIP 2022.

https://doi.org/10.1109/CCIP57447.2022.10058655

[7] Tamam, Moh. B., Hozairi, H., Walid, M., Bernardo, J. F. A. (2023). Classification of Sign

Language in Real Time Using Convolutional Neural Network. Applied In- formation System and

Management (AISM), 6(1), 39–46. https://doi.org/10.15408/aism.v6i1.29820

[8] Neha Kawarkhe, M., Alhat, U., Wadaskar, P., Su- fiyan, S., Mohod, V., Ahmed Panjwani, M.,

Watane, H. N., Student, U. (n.d.). SIGN LANGUAGE RECOGNITION USING PYTHON.

In International Research Journal of Modernization in Engineering Technology and Science

www.irjmets.com @International Research Journal of Modernization in Engineering (Vol. 4900).

www.irjmets.com

[9] Bronstein, M. M., Agapito, L., Rother, C. (2015). Preface. In Lecture Notes in Computer Science

https://doi.org/10.1109/ICCR56254.2022.9996001
https://doi.org/10.1007/s11042-020-09829-y
https://doi.org/10.3390/electronics11111780
https://doi.org/10.1109/CCIP57447.2022.10058655
https://doi.org/10.15408/aism.v6i1.29820
http://www.irjmets.com/
http://www.irjmets.com/

(includ- ing subseries Lecture Notes in Artificial Intelligence and Lecture Notes in

Bioinformatics) (Vol. 8927, p. VI). Springer Verlag. https://doi.org/10.1007/978-3-319- 16178-5

[10] Sabeenian, R. S., Sai Bharathwaj, S., Mohamed Aadhil, M. (2020). Sign language recognition

using deep learning and computer vision. Journal of Advanced Research in Dynamical and

Control Systems, 12(5 Special Issue), 964–968.

https://doi.org/10.5373/JARDCS/V12SP5/20201842

[11] Pathan, R. K., Biswas, M., Yasmin, S., Khandaker, M. U., Salman, M., & Youssef, A. A. (2023).

RETRACTED ARTICLE: Sign language recognition using the fusion of image and hand

landmarks through multi-headed convolutional neural network. Scientific Reports, 13(1), 1-11.

https://doi.org/10.1038/s41598-023-43852-x

[12] Liu, Y., Nand, P., Hossain, M.A. et al. Sign language recognition from digital videos using feature

pyramid network with detection transformer. Multimed Tools Appl 82, 21673–21685 (2023).

https://doi.org/10.1007/s11042-023-14646-0

[13] Deep, A. Litoriya, A. Ingole, V. Asare, S. M. Bhole and S. Pathak, "Realtime Sign Language

Detection and Recognition," 2022 2nd Asian Conference on Innovation in Technology

(ASIANCON), Ravet, India, 2022, pp. 1-4,

https://doi.org/10.1109/ASIANCON55314.2022.9908995

[14] N. Rajasekhar, M. G. Yadav, C. Vedantam, K. Pellakuru and C. Navapete, "Sign Language

Recognition using Machine Learning Algorithm," 2023 International Conference on Sustainable

Computing and Smart Systems (ICSCSS), Coimbatore, India, 2023, pp. 303-306,

https://doi.org/10.1109/ICSCSS57650.2023.10169820 . keywords: {Machine learning

algorithms;Image color analysis;Gesture recognition;Speech recognition;Assistive

technologies;Streaming media;Feature extraction;convolutional neural network;sign-

recognition;hand movements},

[15] D. Van Hieu and S. Nitsuwat, "Image Preprocessing and Trajectory Feature Extraction based on

Hidden Markov Models for Sign Language Recognition," 2008 Ninth ACIS International

Conference on Software Engineering, Artificial Intelligence, Networking, and

Parallel/Distributed Computing, Phuket, Thailand, 2008, pp. 501-506,

https://doi.org/10.1109/SNPD.2008.80

https://doi.org/10.1007/978-3-319-%2016178-5
https://doi.org/10.5373/JARDCS/V12SP5/20201842
https://doi.org/10.1038/s41598-023-43852-x
https://doi.org/10.1007/s11042-023-14646-0
https://doi.org/10.1109/ASIANCON55314.2022.9908995
https://doi.org/10.1109/ICSCSS57650.2023.10169820
https://doi.org/10.1109/SNPD.2008.80

