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Abstract. In this, we proposed a deep learning framework for classifying American Sign 

Language (ASL) alphabet gestures to support accessibility for people with speech and 

hearing impairment. We evaluated our model using three public ASL datasets. one of the 

datasets of 87,000+ real-time images and 29 classes. To establish a baseline, we also tried 

state-of-the-art models, including VGG16, Efficient Net, MobileNetV1/V2, and ResNet50. 

Modeled after these findings, we created a compact application-specific convolutional 

neural network (CNN) model for static ASL recognition. Our custom ASL alphabet model 

employs depthwise separable convolutions, batch normalization, dropout, and global 

average pooling and adds a loop-based feature refinement block that is executed four times 

to increase spatial feature learning. Our test runs showed our model consistently achieved 

over 95% across various datasets while being faster and more reliable than the bulkier 

models. This model is a great candidate for real-time applications. 

Keywords: sign language classification, deep learning, con- volution layers, CNN, Feature 

refinement. 

1 Introduction 

Only a fraction of society speaks sign language and those are the people born with a speech or 

hearing impairment. The lack of communication between the hearing majority and the deaf 

minority constitutes a serious barrier. Conversations are thus frequently slow, impersonal and 

inefficient. Here it can be imagined that in time of an emergency like a fireman needing to take 

a deaf person to safety a smartphone with a sign language recognition app installed can instantly 

be translated, allowing critical instructions to be transmitted in a timely manner. Similarly, the 

person could also send emergency information or requests to emergency personnel with the 

same tool. 

This is human speak and for most people, it is the dominant mode of communication. The 

problem is that oftentimes non- or hard-of-hearing people have difficulty in speaking 

communication as well. Next is the sign language as it operates with hands, face and body to 

express a words or phrase rhythmically. However, there are also regional dialects and differences 

in sign languages which, like spoken languages, complicate the creation of an automatic 

translator system. 
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In this paper, we leverage the power of Convolutional Neural Networks (CNNs) to automatically 

classify and interpret ASL alphabet hand signs. Inspired by prior art on hand detection and skin 

colour-based latent poses modelling, our work aims to increase the precision of sign language 

recognition using deep learning. The proposed system may eventually enable the provision and 

attainment of a better communication accessibility and quality of life for people with disabilities 

by teaching models’ visual features of ASL signs. 

Above the technical coverage, this research emphasizes the greater social significance of sign 

language recognition. Achievements in this domain also could be welcomed as part of inclusive 

communication systems for non-speaking or limited speaking persons. Although we concentrate 

our attention to ASL for this work, we recognize that the variation in the way gestures are 

executed by different users is a serious obstacle. Notwithstanding these challenges, the field has 

continued to move forward at a rapid pace, with deep learning methods showing potential in 

terms of ac- curacy and scalability. Through this work, we hope to help lay the groundwork for 

accessible technologies that support those who have speech and hearing impairments and enable 

them to participate more fully in society. 

2 Related Work 

Sabeenian et al. [10] utilized a dataset with 27,455 training and 7,172 validation images with 

784 features for each image. They proposed a CNN-Based algorithm that uses an adapted CNN 

network with 11 layers, which contained the layers of the convolutional, max-pooling, flatten, 

dense, and dropout. It resulted in model with a training accuracy of 99% and a validation 

accuracy of 93% which is an excellent performance in a ASL gesture recognition. 

Barbhuiya et al [2]. In their approach, they utilized the American Sign Language (ASL) dataset. 

The dataset is divided into 36 classes of sign characters which are the combination of 26 

alphabetic and 10 numerical classes. The model architecture includes pre- processing to resize 

images to 227×227×3 and 224×224×3 for AlexNet and VGG16, respectively. Model: The 

VGG16 of layers contains convolutional layers of various filter sizes and Pooling layers, 

concluding with fully connected layers. The system obtained excellent accuracy in ASL sign 

recognition through pre-trained AlexNet and VGG16 models with SVM classification. 

Sapriya et al [3]. They employed the IISL2020 dataset as part of their method. In their work, 

they proposed a model based on Keras and TensorFlow libraries that used a mixture of LSTM 

and GRU models and was trained on a Super Server workstation with dedicated hardware. They 

were able to achieve a high accuracy of 97% in the identification of Indian Sign Language. 

Syamala et al [5]. For this, they have employed a dataset containing 200 Indian sign language 

words signed by 5 native ISL individuals. They applied the techniques of training CNN in a 

combination of 3 samples and testing in the rest of the 2 samples. The model applies the tanh 

activation function with bias add and stochastic pooling. The recognition rates for CNN 

architecture appear to perform better than other classifiers such as Ada boost, ANN. 

The work by Aditya Das et al [4] including the dataset of RGB and depth images of320x240 

resolution with hand gesture along 140 classes includes finger-spelling numbers and alphabets. 

The techniques adopted are CNN for feature extraction and ANN for classification. The model 



 
 
 

 

 

 

used is the Inception V3 and its accuracy of 91.7% shows high penetration in sign language 

recognition. 

3 Methodology 

3.1 Sign Language Dataset 

You need special ASL datasets to train a sign language recognition model. Additional datasets: the 

American Sign Language Dataset on Kaggle for image classification, DAI - ASL LVD dataset with 

videos with synchronised transcriptions and lexical annotations, WLASL dataset recording 2,000 

frequent ASL words and How2Sign which contains more than 80h of sign language videos (also 

multi-modal). Fig 1 Sample Images of American sign language. 

 

One of the ASL dataset we used has 29 classes out of 87,000 images (char from A to Z, Delete, 

space or Nothing). We used a total of 87000 images from GNIRD for training, out of which we 

separated 7830 for testing to help us fine-tune the final model. 

 

Fig. 1. Sample Images of American sign language. 

3.2 Implementation Flow 

 

Fig. 2. Direction Flow of implementation. 

Fig 2 shows this process, starting from the literature review, the definition of the research goal. 

This action is about reading related works in order to gain knowledge of methods and problems 

used in the research of sign language recognition. Then the problem finding procedure further 

serves to identify the major research goals. Then data collection is conducted to obtain sign 



 
 
 

 

 

 

language gesture datasets. This information is then sent through a pre-processor where any pre-

processing can be done, such as forcing behaviour relative to the model to allow for better model 

performance. Depth wise convolutions are employed for feature extraction to capture essential 

gesture patterns. The features extracted are then inputted to a Modified MobileNetV2 model 

which is also tuned for sign language recognition. Before it can be used to predict, the model 

must be trained and tested to ensure that it is appropriately accurate. The output is the signed 

language gestures which is ultimately helping in the communication process for speech and 

hearing-impaired people. 

3.3 Data pre-processing 

Data pre-processing is an important process in data pipeline analysis which is used to cleanse 

the input data so that it becomes better quality and can be passed as input to the data mining 

algorithm. It will organize and label the dataset so that it is more structured, thus creating a better 

opportunity for machine learning to learn from. For instance, your data real world data might be 

high signal-to-noise ratio and pre-processed in a way as to select relevant features or filter out 

noise or artefacts; this is fine for some kinds of datasets provided that it represents accurately 

the actual best version of that data possible but not OK if the distributional shift between training 

set and test set causes targeting bias. E.g., values will probably be normalized and the feature 

selection should be parts of the learning process rather than pre-processing steps. 

3.4 Data Augmentation 

In machine learning, data augmentation is the creation of new training samples using only the 

original dataset. Augmentation of data will augment the training set by creating modified 

versions of a given dataset. This manipulation can sometimes mean changing the original data, 

or be through creating what appear to be legitimate new data points via deep learning. Data 

Augmentation: transforms images to correct for overfitting by performing several 

transformations on the images. We adopted the rescaling here. Normalization of the pixel data 

is applied by rescaling. The pixel contains value between (0 – 255). With rescaling, my pixels 

would have been in the range 0-1. 

We also used image resizing. The shape of image is 200,200,3. The size of the image has been 

reduced for sizing down the system compatibility, since the data is large, in initial flow using 

max pooling. 

3.5 Mobile Net V2 Model Setup 

The depth of the CNN model is 26. The SSD (Single Shot Multibox Detector) is a detection 

model with Mobile Net v2 as a backbone and it is efficient allowing to carry it out in real time. 

In this architecture, input image of size 300x300 is considered for processing. The backbone of 

Mobile Net v2 is depth wise separable convolutions that are used to produce multi-scale feature 

maps, which makes the model better capture features at different scales. Moreover, multiple 

feature maps at various scales are able to detect objects of various sizes. A detection network in 

the SSD combined with differently shaped and scaled anchor boxes to increase the precision of 

detection. The model, for each anchor, attempts to predict both the class of object and refine the 

positions of the bounding boxes, so that objects can be accurately placed in the image. 



 
 
 

 

 

 

𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝐿𝑐𝑙𝑠) =  ∑ 𝑠𝑚𝑜𝑜𝑡ℎ(𝑙𝑖 − 𝑔𝑖)   

𝑖(𝑥,𝑦,𝑤,ℎ)

                                                         (1) 

where c1 is the ground truth class and P(xi) is the predicted probability. 

𝐿𝑜𝑐𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝐿𝑜𝑠𝑠(𝐿𝑙𝑜𝑐) =  ∑ 𝑠𝑚𝑜𝑜𝑡ℎ𝐿1(𝑙𝑖 − 𝑔𝑖)

𝑖(𝑥,𝑦,𝑤,ℎ)

                                                             (2) 

 

𝑇𝑜𝑡𝑎𝑙 𝐿𝑜𝑠𝑠(𝐿𝑡𝑜𝑡𝑎𝑙) =  𝐿𝑐𝑙𝑠 + 𝐿𝑙𝑜𝑐                                                                                                         (3) 

 

 

Fig. 3. MobileNet V2 architecture. 

Fig 3 shows the MobileNetV2 architecture. The Table 1 represents the model summary of the 

proposed modified MobileNetV2 based CNN model. The model consists of a series of 

convolutional layers, depth wise separable convolutions where it includes pointwise 

convolutions, batch normalizations, and pooling layers. It retains the efficiency of MobileNetV2 



 
 
 

 

 

 

while optimizing performance for classification tasks. The total number of parameters is 

132,125, with 118,669 trainable parameters. 

3.6 Proposed lightweight CNN Model 

Table 1. Architecture of The Proposed Custom CNN Model. 

Layer Type Details Repetitions 

Input Layer Input shape: (200, 200, 3) 1 

Conv2D 
3×3 filters, ReLU 

activation 
5 

DepthwiseConv2D 
3×3 filters, ReLU 

activation 
4 

Batch Normalization 
After conv/depth wise 

layers 
9 

Max Pooling2D Pool size: 2×2 2 

Dropout 0.3–0.5 rate 4 

Global Average Pooling2D Reduces spatial dimensions 1 

Dense (Output) 29 units (SoftMax) 1 

 

For compiling, we used activation functions ReLU and SoftMax in the model and we also used 

Early Stopping. The optimizer we used in the model is Adam. After performing some iterations, 

we achieved 99.7% of accuracy. 

3.7 Batch normalization  

Batch normalization leads to better training consistency, faster training and better accuracy in 

your model. It also protects against the problems with the gradients being too large or too small 

as you were training and helps avoid get stuck or making catastrophic mistakes learning. It is 

also beneficial for a neural network training that may struggle rated with long time if 

training/retraining, unstable gradients, and slow training. 

3.8 Early Stopping 

Early stopping is a regularization method to avoid overfitting the neural network by monitoring 

the model performance with a validation set. It makes it less susceptible to overfitting, and you 

are sure that the model will not learn any noise from the training data. 

3.9 Activation Functions 

Neural networks made activation functions as a crucial element because these carries non-

linearity in output signal of respective neurons. Activation functions also work on the weighted 

sum of an input with bias term to produce an output signal it passes to the following layers, 

analogously. These patterns and relationships could be replicated using neural networks. ReLU, 

Soft max are the two activation functions we used in our model. 

3.9.1 ReLU  

The Rectified Linear Unit (ReLU) is among the most used activation functions in neural 

networks. ReLU adds non-linearity by returning the input directly if positive, and zero otherwise. 

 



 
 
 

 

 

 

This simple and effective mechanism allows the model to learn complex representations and im- 

proves the efficiency of learning throughout deep architectures. 

𝑓(𝑥) = max (0, 𝑥)                                                                                                                       (4) 

3.9.2 SoftMax 

The SoftMax activation function transforms raw outputs of a neural network (raw values, also 

known as logits), into a probability distribution with each individual element representing the 

likelihood of a class in comparison to the other classes. 

𝑆𝑜𝑓𝑡𝑚𝑎𝑥(𝑥𝑖) = ∑
𝑒𝑥𝑝(𝑥𝑖)

𝑗𝑒𝑥𝑝(𝑥𝑗)
                                                                                                              (5) 

3.10 Optimizer 

They are designed as optimization algorithms of learnable parameters in a model like weights, 

biases to minimize loss and improve the model. The optimizer determines how the weights of a 

model are modified in the training process. In this work, we used Adam optimizer, a popular 

optimizer with good convergence and adaptive learning rate. 

3.10.1 Adam Optimizer 

Adam is a high order optimization technique which combines the benefits of Root Mean Square 

Propagation and Adaptive Gradient Algorithm. On the other hand, Adam has a separate learning 

rate for each parameter which reduces the oscillations and speeds up convergence. For example, 

in traditional gradient descent the learning rate is a constant, and it may converge slower (if at 

all) due to oscillation. The second optimizer is the learning optimizer that would be suitable for 

deep neural network by utilizing momentum and RMS techniques incorporated into one. Adam 

optimizer update rule: 

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)𝑔𝑡                                                                                                                    (6) 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)𝑔𝑡
2                                                                                                                      (7) 

𝑚̂𝑡 =
𝑚𝑡

(1 − 𝛽1
𝑡)

                                                                                                                                          (8) 

𝑣^𝑡 =
𝑣𝑡

(1−𝛽2
𝑡)

                                                                                                                                                (9) 

𝜃𝑡+1 = 𝜃𝑡 − √
𝜂

𝑣^𝑡+∈
𝑚̂𝑡                                                                                                                           (10) 

Where: 

• 𝜃𝑡 is the parameter at time step t. 

• 𝑔𝑡 is the gradient of the objective function with respect to 𝜃𝑡. 

• 𝛽1 and 𝛽2 are decay rates for the moment estimates. 

• 𝑚𝑡 and 𝑚𝑡 are first and second moment estimates, respectively. 

• 𝜂 is the learning rate. 

• ∈ is a small constant to prevent division by zero. 

 

 



 
 
 

 

 

 

4 Results 

4.1 Prediction 

We have done our project to classify properly to predict the images that have been given to test 

the performance of the model. The results are shown below, where the model correctly predicted 

a sample input symbol as ’Y’ with a probability of 100 %. 

The predicted symbol and probability according to each class is below in Fig 4, 5 and 6. 

 

Fig. 4. Probability of predicted ’Y’ labelled data. 

 

Fig. 5. Probability of predicted ’M’ labelled data. 

 



 
 
 

 

 

 

 

Fig. 6. Probability of predicted ’C’ labelled data. 

In our case, our model is a lightweight model, which is more efficient, and we use the Adam 

optimizer. The loss function was drastically reduced over 10 epochs, dropping below 0.09. The 

validation accuracy increased by 3% from the first epoch to 100% at the end of the last 10th 

epoch. Fig. 7 shows the Train and validation accuracy curves for asl-alphabet dataset. 

 

Fig. 7. Train and validation accuracy curves for asl-alphabet dataset. 



 
 
 

 

 

 

 

Fig. 8. Train and validation loss curves for asl-alphabet dataset. 

As the epochs increase, we are able to obtain the average of 99 % validation accuracy, which is 

the greatest of all of those for our model. Fig 8 shows the Train and validation loss curves for 

asl-alphabet dataset. 

Table 2. Different Model Comparison. 

Model Name Parameters Epochs 
Learning 

Rate 

Training 

Accuracy 

Validation 

Accuracy 

VGG16 107,116,381 15 0.001 48 34.56 

ResNet50 23,647,133 15 0.001 99.87 99.73 

EfficientNet 4,086,713 15 0.001 99.94 98.02 

MobileNetV2 2,295,133 15 0.001 99.07 94.13 

Proposed 

Model 

(Custom 

MobileNetV2) 

132,125 15 0.001 100 99.94 

 

Table 2 shows the Comparison of  Different Model Performance. A number of deep learning 

models, including VGG16, ResNet50, EfficientNet B0, and MobileNetV2, as well as suggested 

MobileNetV2 variants, are compared. Over 15 epochs, it highlights important parameters like 

total parameters, learning rate, training accuracy, and validation accuracy. With the highest 

validation accuracy of 99.94%, the suggested custom MobileNetV2 demonstrates the 

effectiveness of its model optimization. 



 
 
 

 

 

 

Table 3. Model with dropouts for different learning rate Comparison. 

Model Name Parameters Epochs 
Learning 

Rate 

Training 

Accuracy 

Validation 

Accuracy 

Proposed 

Model with 

dropouts 

132,125 15 0.002 99.53 92.14 

Proposed 

Model with 

dropouts 

132,125 15 0.0001 99.82 94.97 

 

Table 3 examines what happens when we increase learning rate with added dropout layers to the 

model architecture recommended earlier. Both set-ups have 132,125 parameters and were 

trained for 15 epochs. The model trained at 0.0001 learning rate acquires a better validation 

accuracy of 94.97% as opposed to the 92.14% with another model at the 0.002 learning rate, 

illustrating the importance of hyperparameter tuning in improving generalization of models 

accomplished by SOTA techniques. 

Table 4. Performance Comparison of Different Models on Asl Alphabet Dataset. 

Model Accuracy Precision Recall F1 Score Accuracy 

Proposed 

Model 
0.99 0.93 0.87 0.87 0.99 

MobileNet 

V1 
0.71 0.91 0.88 0.88 0.71 

MobileNet 

V2 
0.95 0.91 0.88 0.88 0.95 

VGG16 0.48 0.95 0.93 0.93 0.48 

ResNet50 0.92 0.96 0.94 0.94 0.92 

EfficientNet 0.89 0.92 0.89 0.89 0.89 

We evaluated the Enhanced MobileNet model on the American Sign Language dataset and ASL 

dataset along with our primary datasets. Table 4 shows the performance comparison of different 

models on ASL Alphabet Dataset. Fig 9 shows the train and validation accuracy curves for the 

ASL dataset. 

One of each the 28 classes is mapped to via a given color image in the American Sign Language 

Dataset thereby correspondingly representing each letter of the ASL alphabet Because these 

photos were taken in different light conditions and against different backgrounds, this database 

can be used to examine how well the model generalizes. Train and validation loss curves for the 

ASL dataset as shown in the Fig 10. American sign language · Fig 11 shows training and 

validation accuracy curves for models on the American sign language dataset. You will get 2,515 

verified images comprised of 36 different classes ASL Dataset This dataset although of less 

instances are having a wider class distribution and can be tested on low resource multi-class 

classification. 



 
 
 

 

 

 

 

Fig. 9. Train and validation accuracy curves for asl-dataset. 

 

 

Fig. 10. Train and validation loss curves for asl-dataset. 



 
 
 

 

 

 

 

Fig. 11. Train and validation accuracy curves for American sign language dataset. 

 

Fig. 12. Train and validation loss curves for American sign language dataset. 

Table 5. Performance comparison of Enhanced MobileNet model on different ASL Alphabet dataset. 

Model Accuracy Precision Recall F1 Score Accuracy 

asl-

alphabet 
0.99 0.93 0.87 0.87 0.99 

asl-dataset 0.96 0.92 0.85 0.86 0.96 

American-

sign-

language 

0.85 0.92 0.85 0.86 0.85 



 
 
 

 

 

 

Table 5 depicts the Comparison of performances of the proposed Enhanced MobileNet model 

on three different ASL datasets. The accuracy of the model reaches 0.99 on the ASL Alphabet 

dataset, where the standardized and well-defined sign images shows an excellent performance. 

The ASL Dataset and American Sign Language Dataset exhibit slightly less accuracies of 0.96 

and 0.85 as the cause of greater variation on the signer’s posture, background conditions, and 

the dataset variety. In spite of these variations, the model achieves high precision on both 

datasets, which demonstrates the robustness of the model in the classification of hand gestures 

whenever a prediction is performed. Fig 12 shows the Train and validation loss curves for 

American sign language dataset. 

5 Conclusion and Future Scope 

In order to effectively classify the fixed hand symbols of the American Sign Language (ASL) 

letters, we created a custom Convolution Neural Network (CNN) model based on MobileNet. 

The effectiveness of the pre-processing procedures and the used dataset is demonstrated by the 

developed model's excellent testing accuracy, which exceeded 99% on image data. The 

outcomes validate the CNN's resilience and efficiency in classifying ASL gestures, as well as its 

potential for incorporation into actual assistive communication systems. 
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