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Abstract. Deepfake audio, which has the creation of highly realistic synthetic voices, has 

become a major cybersecurity concern. It can be used for misinformation, fraud, and 

unauthorized access, making accurate detection crucial. This paper presents a hybrid 

deep learning approach that improves both the accuracy and interpretability of deep-

fake audio detection. In this study the model integrates CNNs, RNNs, and 

transformers to extract and analyze features from audio files effectively. To ensure 

transparency in decision-making, we use XAI techniques such as SHAP, LIME, and 

Grad-CAM to highlight the key factors influencing predictions. Our experimental results 

demonstrate high detection accuracy, resilience against adversarial attacks, and improved 

trustworthiness of model decisions. This research contributes to strengthening 

cybersecurity defenses by making deepfake detection both reliable and interpretable. 

Keywords: Deepfake audio, cybersecurity, deep learning, Explainable AI, hybrid model, 

adversarial robustness, transparency. 

1 Introduction 

Recently, deep learning has enabled the creation of highly realistic synthetic voices, 

commonly known as deep-fake audio. These artificially generated audio clips can closely 

mimic human speech, which makes it dificcult to distinguish between genuine and fake 

recordings. While this technology has potential benefits in areas like entertainment and voice 

assistance, it also poses serious cybersecurity threats. Deepfake audio can be misused for 

identity theft, financial fraud, misinformation campaigns, and unauthorized access to secure 

systems, leading to significant consequences [1]. Traditional ML models often fail to predict 

deepfake audio effectively because they rely on handcrafted features and are limited in 

handling complex patterns. To address this, DL models such as VGG16, ResNet, and 

custom CNNs can be used for more accurate detection. However, a major challenge with deep 

learning models is their black-box nature, especially in cybersecurity applications where 

explainability is crucial [2]. This research focuses on integrating hybrid deep learning 

models with Explainable AI (XAI) techniques to develop a robust deepfake audio detection 

system.GANs are employed to synthesize audio content, which helps in training models to 

recognize deepfake characteristics. To enhance interpretability, XAI techniques such as LIME, 

Grad-CAM, and SHAP are incorporated. These methods provide insights into how the model 
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identifies deepfake audio, making the detection process more transparent and trustworthy [3]. 

By combining advanced deep learning architectures with explainability tools, this research 

focuses on the accuracy, reliability, and transparency of deepfake audio detection. The 

proposed approach ensures that cybersecurity professionals and organizations can confidently 

use AI-based detection systems to safeguard against the growing threat of deepfake audio. The 

structure of the paper as follows. Section II reviews existing research in deepfake audio 

detection, discussing various approaches, their advantages, and their limitations. Section III 

describes the methodology, including the hybrid deep learning models used, dataset details, 

preprocessing steps, and the implementation of Explainable AI techniques. Section IV presents 

the experimental setup, evaluation metrics, and the performance analysis of the proposed 

model. Section V discusses the findings, comparing the proposed approach with existing 

models and emphasizing the impact of XAI in improving model transparency. Finally, Section 

VI has the conclusion of the paper and summarizes the key outcomes and gives the insights 

for the future research directions for improving the deepfake audio detection in cybersecurity 

2 Literature 

2.1 Previous Work on Deepfake Audio Detection 

The detection of deep-fake audio has gained attention, leading to the development of 

various methodologies aimed at distinguishing synthetic voices from true ones. 

In 2024, researchers introduced a cross-domain audio deepfake detection dataset comprising 

over 300 hours of speech data. This dataset was meant to optimize the generalization skills of 

detection models across several domains, addressing the limitations of previous datasets 

that were often outdated and domain-specific. The study emphasized the importance of 

diverse and up-to-date data in training robust deepfake audio detectors [4]. Another 

research in the year 2024 posited the Sonic Sleuth model, An AI model specifically designed 

to detect audio deepfakes. Leveraging state-of-the-art DL methodologies, such as original 

CNN design, the achieved result amounted to 98.27% accuracy and an error rate of 0.016 in 

equivalent on a large real and synthetic sound dataset. The work demonstrated the importance 

of training with perccet simulated ardualization, environmental noise and acoustivc 

conditions(able to use inputs in a wide variety of acoustic conditions, such as changing classes 

in the data allowing for generalisation across a wide range of scenarios for inputs across 

different types of audio data [5]. In [6], the M2S-ADD model, which attempts to detect audio 

authenticity cues when converting from mono to stereo. This method exploits the essential 

distinctions between mono and stereo audio files to address the problem of deepfake detection 

using audio, providing a new angle on audio deepfake detection. In [7] of 2022, the Mel-

frequency cepstral coefficients (MFCC) features are used with machine learning classifiers to 

detect deepfake audio based on. This methodology targeted at extracting voice features and 

using classification tools, allowed a proof of concept of the possibility to rely on traditional 

audio-based features and modern machine-learning algorithms to deal with the problem of 

synthetic content detection. In [8] a comprehensive survey was released in 2023 that covered a 

lot of methods for generating and detecting audio deepfakes. It covered different approaches 

used in generating deepfake audio, and their corresponding detection approaches, providing 

interesting perspectives on the problems and progress in the area. The ADD 2023 competition 

in [9] was proposed to promote the detection of deepfake audio rather than binary 

classification. This challenge mimicked actual use-cases and interest by concentrating on 



objectives like detecting rescaled intervals in partially generated audio and traced the source 

of the filler noises. The project work was targeted at developing and improving detection and 

analysis methods critical for the construction of convincing and reliable evidence in 

applications such as audio forensics or journalism. In [10], a study of 2023, proposed the 

In 2023, a study suggested the HM-Conformer model, a system for detecting audio deepfakes 

using conformers. This model uses hierarchical Token pooling and aggregation at several 

classification levels are used to increase detection performance. The approach improved 

the accuracy in identify spoofing attacks from text-to-speech or voice transformation systems. 

In 2024 [11] the researchers introduced the CLAD (Contrastive Learning-based Audio 

Deepfake Detector) model to improve resistance to manipulation. This method used 

contrastive learning to reduce variations caused by manipulations, thereby improving 

identifying robustness. The study highlighted the vulnerabilities of existing detectors to simple 

manipulations and demonstrated that CLAD significantly reduced false acceptance rates 

across various tests. [12] focused on the development of the Codecfake dataset, an open-source 

large-scale dataset designed for detecting ALM-based deepfake audio. The researchers 

proposed a countermeasure strategy to achieve universal detection of deepfake audio and 

address domain ascent bias issues. Their method showed promising results in the detection 

an ALM based sound and also in generalization across different test conditions. [13] 

presented a deep learning model for the detection of deepfake audios. The methodology 

entailed converting input audio data to multiple spectrograms, and testing on diverse 

classification models such as CNN, RNN, and transfer learning from the computer vision 

models. The target domain: Imbalanced training procedures are not effective Visualization As 

detailed in Table 1, the systems achieved very competitive EER in the standard benchmark 

data, which suggests the possibility of the selected spectrograms and deep learning methods 

for boosting the performance of the audio deepfake detection. 

2.2 Related work on XAI 

Incorporating Explainable AI (XAI) into deepfake audio detection systems has become a 

research direction to improve the transparency and reliability of such models. [14] proposed a 

novel approaches for transformer-based audio deepfake detectors. Researchers created 

methods for integrating outcomes into these models to assure their explainability, a crucial 

factor in AI-based detection solutions. 

3 Dataset 

We use the ’Fake or Real’ dataset, provided by the researchers at York University, to train our 

deepfake audio classifiers. Our dataset includes both real and deepfake audios, which enables 

our model to correctly distinguish true positive samples and fake ones. Audio was converted 

to frequency spectral data audiosong27. Spectrograms provide rich features, and hence are 

more appropriate to be used with deep learning models [15]. 

3.1 Feature selection 

The features in this study we extracted by the deep learning model layers as follows: 

1) Convolutional Layers: During training, MobileNet’s convolutional layers 

automatically determine which spectrogram segments are crucial for sorting. While deeper 



layers of the network capture complicated patterns and structures in the spectrogram, early 

levels may concentrate on basic elements like edges and textures [16]. 

2) Global Average Pooling: The GAP following the convolutional Layers lowers the 

spatial dimensions of feature maps into a single value per channel. This operation effectively 

”selects” the required features by averaging the values over each feature map, which reduces 

the feature count while keeping important data [17]. 

3) Dense Layers: The final dense layers in MobileNet further process the extracted 

features and refine the feature selection for the final classification task. These layers assign 

weights to different features and output a prediction based on the learned importance of each 

feature [18]. 

3.2 Feature Extraction 

The features in this study were extracted as below: 

MobileNet’s Convolutional Layers: MobileNet uses depthwise separable convolutions as the 

primary feature extraction technique. The conventional convolution method is divided into 

two easier [19] steps by depthwise separable convolutions: 

• Depthwise Convolution: every input channel is convolved with its own filter, meaning 

that each feature map is processed independently. 

• Pointwise Convolution: A 1 × 1 convolution is used to include the results of the 

depthwise convolutions. 

The features extracted by the MobileNet model during the deepfake audio detection task can 

be categorized into low, mid, and high level features. These features are derived from the 

audio spectrograms and processed through various layers of the MobileNet architecture. The 

Table 1 demonstrates these features as they are extracted at different stages of the model. 

4 Proposed Model 

In this study we explored various pre-trained deep learning model and evaluated to determine 

the best-performing model for classifying deepfake audio. Given the importance of Feature 

extraction and classification within the framework of detecting synthetic audio, we initially 

experimented with three prominent models: MobileNet, InceptionV3, Custom CNN, and 

VGG16. Based on their shown efficiency in picture classification tasks and their adaptability 

to audio data in the form of spectrograms, these models were chosen. 

Based on the effectiveness of each model the Mobilenet outperformed over the other models 

with an of accuracy of 91% making it the best-performing model for this deepfake audio 

detection task.Its ability to efficiently process audio spectrograms, combined with its 

lightweight architecture, allowed it to deliver high performance without compromising 

computational efficiency. Fig 1 illustrates an end-to-end pipeline for deepfake audio detection 

using MobileNet. The process begins with the spectrogram conversion of raw audio files 

into visual representations. These spectrograms are then fed into the MobileNet architecture, 

which acts as a feature extractor. After feature extraction, Dropout and Global Average 

Pooling layers help regularize the model and reduce spatial dimensions. The extracted 



features pass through Dense layers with sigmoid and softmax activations to differentiate the 

audio as either real or fake. The trained model is then saved and deployed in an app for 

real-time classification of incoming audio samples. This pipeline effectively uses 

MobileNet’s lightweight structure to deliver efficient, accurate audio classification. 

  

Fig. 1. Proposed model. 

4.1 Mathematical Representation 

The base of MobileNet is depthwise separable convolutions, which reduces the complexity and 

parameters when compared to conventional convolutions. A mathematical representation of 

the MobileNet architecture used in this work is as follows: 

4.1.1 Depthwise Separable Convolution: 

Depth wise separable convolutions are a key feature of the MobileNet architecture. They 

consist of two procedures include depthwise and pointwise convolution. 

Depthwise Convolution: Each input channel is combined with its own filter: 
Ydepthwise = Wdepthwise ∗ X       (1) 

Where: 

• Ydepthwise is the output of the depthwise convolution, 

• Wdepthwise is the depthwise filter, 

• X is the input feature map. 

Pointwise Convolution: A 1×1 convolution is used to aggregate the results of the depthwise 

convolution: 
Ypointwise =  Wpointwise ∗ Ydepthwise + b     (2) 

Where: 

• Ypointwise is the output of the pointwise convolution, 

• Wpointwise is the 1×1 filter, 



• b is the bias term. 

Table 1. Feature Levels in the MobileNet Model for Audio Classification. 

Level Features 

Low-Level 
Edges (horizontal, vertical, diagonal), Textures (periodicity, noise), Frequency 

Patterns (specific spectral distributions) 

Mid-Level 
Harmonics (peaks at regular intervals), Rhythm (amplitude and frequency variations), 

Formants (important for phoneme distinction in speech) 

High-Level 
Speech Patterns (complex interactions), Audio Artifacts (subtle features in deepfake 

audio) 

 

Final Output: The final output of the depthwise separable convolution is: 
Youtput = Ypointwise       (3) 

4.1.2 ReLU Activation 

After each convolution operation, the ReLU activation function is applied: 

f (x) =  max(0, x)        (4) 

• f (x) is the result after using ReLU, 

• x is the input to the activation function. 

4.1.3 Global Average Pooling (GAP) 

Global Average Pooling (GAP) decreases the spatial dimensions of the feature maps to a 

single value per channel. It is calculated as the average of all values in a given feature map: 

𝐺𝐴𝑃(𝑌) =
1

𝐻×𝑊
∑ ∑ 𝑌𝑖,𝑗

𝑊
𝑗=1

𝐻
𝑖=1        (5) 

Where: 

• Y is the input feature map, 

• H and W are the height and width of the feature map, 

• Yi,j is the value at position (i, j) in the feature map. 

This results in a 1D vector representing the extracted features. 

4.1.4 Fully Connected Dense Layer 

The output from the GAP is sent through entirely connected (dense) layers. The equation for a 

dense layer is: 

Z =  Wdense ·  X +  b       (6) 

Where: 

• Z is the dense layer output, 

• Wdense is the dense layer’s weight matrix, 

• X is the input to the dense layer (from GAP), 

• b is the bias term. 

The output of the dense layer is passed through an activation function, such as ReLU or 

sigmoid. 



4.1.5 Output Layer for Binary Classification 

For binary classification (e.g., real vs. fake audio), a sigmoid activation function is applied: 

P (real) = σ(Z) =
1

1+e−z       (7) 

Where: 

• σ(Z) is the sigmoid function, 

• Z is the output from the final dense layer. 

The sigmoid function produces a value ranges from 0 and 1, a value closer to 1 indicating 

”real” audio, and a value near to 0 indicating ”fake” audio. 

4.1.6 Loss Function 

The model is trained using the binary cross-entropy loss, which measures the difference 

between true labels and predicted probabilities: 

𝐿 = −
1

𝑁
∑ [𝑦𝑖 log(𝑝𝑖) + (1 − 𝑦𝑖) log(1 − 𝑝𝑖)]𝑁

𝑖=1      (8) 

• N represents number of samples, 

• yi represents the true label for the i-th sample (0 or 1), 

• pi is the predicted probability for the i-th sample (from the sigmoid output). 

This loss function helps minimize the difference between predictions and actual labels 

during training. 

4.2 XAI integration 

In this study we integrated MobileNet with Explainable AI (XAI) techniques that enhanced 

the transparency and decision making of the model, which is important in theDeepfake audio 

detection.While MobileNet is excellent at extracting the relevant features from the 

spectrograms, the black-box nature of deep learning models often makes the predictions 

unclear, integrating XAI makes it more enchanced [20]. 

1) LIME: LIME was applied to the spectrograms fed into MobileNet. For a given 

audio input, LIME identifies the regions of the spectrogram that are most important in 

the classification. The key advantage of LIME is that it provides local explanations, which 

help explain why the model generated a specific prediction for a given audio sample. 

2) Grad-CAM: For a given prediction, Grad-CAM generates a heatmap to highlight the 

important areas of the spectrogram, indicating where the model”focuses” when making a 

choice. This heatmap is then superimposed on the original spectrogram, allowing us to 

visually inspect which frequencies and time frames MobileNet is attending to during 

classification. 

5 Comparative Result Analysis 

1) InceptionV3: In the study to compare we used the InceptionV3 pre-trained 

model, was also explored for the audio classification task. It was fine-tuned with custom 



layers to adapt to the audio data represented as spectrograms. While InceptionV3 achieved 

good performance, its accuracy was slightly lower compared to MobileNet, with a recorded 

accuracy of around 87%. Despite its slightly lower performance, InceptionV3 was still able to 

capture relevant features for audio classification, but MobileNet outperformed it in terms of 

overall accuracy and computational efficiency [21]. 

2) VGG16: We tested VGG16 model, a deep convolutional network known for its 

simple yet powerful architecture in the audio classification task. The model was trained 

using the binary cross-entropy loss function and Adam optimizer at a learning rate. of 1e-5. 

During training, the model attained 85% validation accuracy. The results show that VGG16 

can extract significant characteristics from audio spectrograms and classify them accordingly 

[22]. 

3) Custom CNN Model: We created the Custom CNN model with convolutional layer, 

pooling and dense layers, specifically designed for the audio classification task. It used the 

Adam optimizer and binary cross-entropy loss function. The model achieved validation 

accuracy of 90%, outperforming the VGG16 model. The custom model showed better 

generalization to the audio data, suggesting that a more tailored architecture for the task at 

hand can provide improved performance in classifying real versus fake audio. 

4) MobileNet: MobileNet model outperformed the models with an accuracy of 91.5%, 

showing its effectiveness in distinguishing between real and synthetic audio signals. Table 2 

shows the achieved metrics of the models. 

Table 2. Model Performance Comparison. 

Model Accuracy (%) Precision Recall F1 score Epoch 

Inception Net 90.17 0.505 0.529 0.539 5 

VGG 16 93.37 0.508 0.421 0.472 5 

Mobile Net 91.57 0.507 0.551 0.507 5 

Custom CNN 88.33 0.506 0.503 0.504 20 

 

5) Grad-CAM Visualizations: The Grad-CAM visualizations provide a heatmap that 

highlights the regions in the spectrogram that had a role in the model’s decision. The red and 

yellow colors indicate high importance, and the blue and green colors represent less influence. 

Inception Net: Inception Net achieved an accuracy of 90.17%, with a precision of 0.505, recall 

of 0.529, and an F1 score of 0.539. This indicates that while Inception Net performed well, its 

precision and recall were not optimal. 

VGG16: VGG16 showed a higher accuracy of 93.37%, but with a precision of 0.508 and recall 

of 0.421, resulting in a relatively low F1 score of 0.472. VGG16 classified more samples as 

real, resulting in a lower recall. 

MobileNet: MobileNet, a lightweight model, showed an accuracy of 91.57%, a precision of 

0.507, recall of 0.551, and gave F1 score of 0.507. Despite slightly lower accuracy compared 



to VGG16, MobileNet demonstrated a better balance, made it more effective for real-time 

applications where computational efficiency is also critical. 

Custom CNN:The Custom CNN achieved an accuracy of 88.33% after 20 epochs of training, 

with recall and precision both around 0.506 and an F1 score of 0.504. Although the accuracy 

was lower than the other models, the custom architecture still performed reasonably well with 

a good balance of precision and recall. 

5.1 Interpretation of Visualizations 

The table 3 provides visualizations of how the SHAP, Grad-CAM, and LIME methods 

explain the clssifiaction ability of different models in the deepfake audio detection task. Each 

technique highlights the regions in the spectrogram that the models consider most important 

when classifying audio as either real or fake. 

SHAP Visualizations: The SHAP plots show the contribution of each feature (pixel) in the 

spectrogram to the model’s output. The green and red regions indicate positive and negative 

contributions, respectively. In the visualizations: 

• VGG16 and MobileNet show a more spread-out focus across the spectrogram, with some 

areas of high importance (green) corresponding to certain frequencies and time intervals. 

• InceptionV3 appears to be more uniform, suggesting it might be focusing on a broader set 

of features rather than specific time-frequency regions. 

Grad-CAM Visualizations: The Grad-CAM visualizations provide a heatmap that highlights 

the regions in the spectrogram that had a role in the model’s decision. The red and yellow 

colors indicate high importance, and the blue and green colors represent less influence. 

• MobileNet exhibits a focused area of attention, with clear highlights around specific 

frequency bands, suggesting it pays more attention to distinct features within the audio 

signal. 

• Custom CNN and VGG16 appear to have a broader focus, indicating that they might 

consider more general features across the spectrogram. 

• InceptionV3 shows varied focus, indicating that it may be relying on a range of features in 

the spectrogram. 

Table 3. XAI Visualization Methods for Different Models. 

Models Custom CNN VGG16 MobileNet InceptionV3 

 

 
 

 

 
 

 

 
 

 
SHAP 

 

  

 

 

 

 



 

 
 

 

 
 

 

 
 

 
GradCA

M 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
 

 

 

 
LIME 

 

 

 

 

 

 

 

 

 

LIME Visualizations: The LIME heatmaps provide further insights into the model’s reasoning 

by showing the areas of the spectrogram that influenced the decision. The yellow and green 

regions indicate high importance. 

• Similar to Grad-CAM, MobileNet highlights specific regions, with concentrated focus on 

certain frequencies that are most relevant to the classification task. 

• VGG16 and Custom CNN also show significant focus but with less specificity compared 

to MobileNet. 

Interpretation of Results: 

• MobileNet shows the most focused attention in its visualizations, suggesting that the 

model is more discriminative and effectively identifies specific features in the 

spectrograms that distinguish real audio from fake audio.VGG16 and Custom CNN 

demonstrate more generalized focus, suggesting they might be using broader features for 

classification. 

• InceptionV3 displays multiple areas of focus, indicating that it is drawing from various 

features, which might make it more versatile but less precise compared to MobileNet in 

terms of focusing on the key aspects of the spectrogram. 

6 Conclusion 

This study proposes a deepfake audio detection model with MobileNet for classifying audio 

samples into positive and negative samples. The lightweight architecture of MobileNet with 

depthwise separable convolutions efficiently learns useful features from audio spectrograms, 

such as low-level, mid-level, and high-level patterns. Although other network architectures 

like VGG16 were slightly more accurate, MobileNet had a higher recall and better 



computationally, and hence suitable for real-time applications. 

In order to improve transparency of the model, the XAI techniques (LIME, SHAP and Grad-

CAM) were incorporated into the model to interpret the portions of the spectrogram that 

contributed to predictions. This has the advantage of achieving both accuracy and 

interpretability, both of which should be important for practical application. 

The system evidences effective deepfake detection, and provides a solid baseline for further 

enhancements by data extension, use of more sophisticated architectures, and more effective 

XAI methodologies. 

7 Future Work 

Improving focus on the dataset, both in improving generalization across different audio types 

and deepfake techniques. Using alternative architectures or hybrid models, especially 

including transfer learning, may improve the system’s results. Optimizing Explainable AI 

methods to allow the model to provide more detailed reasons for decision-making may 

improve its interpretability. Real-time deployment testing in real-world environments such as 

live phone calls or streams would provide more information about how reliable and efficient 

the system is. Integration of multimodal approaches, including combining audio and visual 

data to detect deepfake video, might further increase its accuracy. These are areas in which the 

system could be made more reliable, scalable, and applicable for real-world purposes. 
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