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Abstract. Skin cancer continues to be a significant health issue worldwide, requiring 

precise and effective diagnostic methods. Our research introduces a unique Hybrid Deep 

Learning architecture that combines three versions of the Residual Network (ResNet) 

ResNet-18, ResNet-34, and ResNet-50 to categorize skin lesions into eight separate types 

utilizing the ISIC 2019 dataset. To better leverage model performance, we deliver a 

comprehensive preprocessing pipeline including noise reduction, normalization, class 

balanced and data augmented respectively personalized for the characteristics of 

dermoscopic images. The proposed architecture leverages the specific benefits of each 

ResNet model by combining their feature representations before being fed to a customized 

classifier. Addressing class imbalance using a focal loss function, the model performs well 

on different lesion types with an overall accuracy of 91%. The proposed approach in this 

paper is both scalable and interpretable and hence it paves a way for medical image 

analysis in the future. 

Keywords: Hybrid ResNet Architecture, Skin Cancer Classification, ISIC 2019 Dataset, 

Multi-Stage Preprocessing, Focal Loss Optimization 

1 Introduction 

Rising worldwide incidence of melanoma has raised the requirement of precise diagnostic 

methods, as the early diagnosis can help in successful treatment and survival. Dermoscopy has 

increasingly improved the diagnostic accuracy of skin lesions; dermoscopic assessment plays 

an important role in routine practice, providing valuable information to the unaided eye. The 

imaging is complicated and dependent on the ability of dermatologists so that it results diversity 

and slowing down. In the last decade, deep learning has reshaped medical imaging, and the 

application of convolutional neural networks [13] (CNNs) has shown great promise for the 

automation of skin lesion classification. CNNs are a classification of deep learning algorithm 

belonging to the broader family of deep neural networks. They not only identify descriptive 

elements from the input data via a procedure of layer-wise training. One key component of a 

CNN: The term ‘convolution’ in CNN refers to the mathematical operation of matrix 

multiplication. An ordinary CNN is composed of convolutional layer, non-linearity layer, 

pooling layer and fully connected layer, etc [2]. 

Routine diagnostic criteria are mainly based on clinical exploration and dermoscopic evaluation 

by a dermatologist, which are subjective and slow. As such, there is a growing need for 
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purposeful machine diagnostic systems that are able to help health workers in the classification 

of unlabeled skin lesions with high accuracy and reliability [17]. 

Methodology This work targets [12] creating a novel hybrid CNN-SVM model for skin cancer 

detection, where a hybrid architecture is proposed to process and analyze the ISIC 2019 dataset. 

The objective of the proposed method is to enhance lesion classification performance and to 

handle problems such as class imbalance and feature selectiveness. Using advanced data 

preprocessing, transfer learning, and hyperparameter search, our goal with this work is to 

contribute to the current work on AI-driven dermatological diagnostics. This study's results 

may have significant implications for early detection of skin cancer and could contribute to 

timely diagnosis and reduced load on the health system. 

Many studies have been conducted on the detection and classification of melanoma using 

different methods. In 2012, an SVM based Model for melanoma cancer detection achieved an 

accuracy of 0.77 [7] Next year, research for melanoma early Detection using k-nearest neighbor 

(KNN), neural network (NN) and SVM reported accuracy range of 0.8-0.9 [19] In 2017, another 

research investigated the classification of melanoma through the popular method like KNN, 

decision trees (DT) and SVM etc. with achieved accuracy 0.78 [16] Similarly, another work of 

2017 by ResNet-88 on the ISIC 2017 dataset achieved an accuracy of 0.823 [14] In addition, 

In 2017, a research work using statistical method, named Bayesian classifier method by 

presented an accuracy of 0.91 [20] while a research done using SVM on the data from Pedro 

Hispano Hospital achieved an accuracy of 0.93 [11]. 

This paper tries to create a state-of-the-art skin lesion classification system with the ISIC 2019 

dataset that has approximately 25,331 images in eight classes. We suggest a hybrid approach 

that uses three variants of ResNet, ResNet-18, ResNet-34, and ResNet-50—to extract multi-

depth features from dermoscopic images. We also suggest a multi-stage preprocessing pipeline 

that tries to increase image quality and mitigate dataset-specific problems such as noise and 

class imbalance. The research question is: Can a hybrid ResNet approach with a strong 

preprocessing method improve classification accuracy and robustness for the eight-class skin 

cancer task in the ISIC 2019 dataset compared to individual CNN approaches? 

Our inspiration is to bridge the gap between computer-aided diagnostics and clinical 

dermatology and provide a highly efficient and accurate computational tool. By taking 

advantage of ResNet-18's shallow feature extraction, ResNet-34's moderate level of depth, and 

ResNet-50's dense representational capability, we seek to develop a well-balanced model for 

heterogeneous lesion detection. The preprocessing pipeline—noise filtering, normalization, 

class weighting, and augmentation—optimizes the ISIC 2019 dataset's utility and ensures good 

generalization over imbalanced classes. This work introduces: (1) a new hybrid ResNet 

architecture for multi-scale feature extraction, (2) a dermoscopic image preprocessing method, 

and (3) evidence of enhanced classification performance through rigorous testing. These 

advances enable computer-aided diagnostic systems to support clinicians in accurate and timely 

skin cancer diagnosis. 

2 Literature Survey 

Skin cancer classification using deep learning has seen widespread interest over recent years 

owing to the sheer amounts of available dermoscopic image databases and the capability of 

enhancing the decision-making clinical processes. Through this section, we summarize work 



conducted in this space previously with regard to highlighting CNN architectures, ensemble and 

combination techniques, as well as preprocessing techniques, and underlining the importance of 

those for the ISIC 2019 dataset as well as the eight-class skin cancer classification challenge. 

The work in [1] introduces a new framework for automated skin disease diagnosis using digital 

hair removal via morphological filtering and inpainting, followed by Gaussian filtering and 

Grab cut segmentation for preprocessed clinical images. It uses GLCM and statistical methods 

to extract the features, which are then classified using DT, SVM, and KNN. It efficiently 

recognizes multiple skin diseases with SVM proving to be the best performer on the ISIC 2019 

and HAM10000 datasets. The method enhances objectivity and diagnostic speed over the 

limitations of human expert assessment relative to sophisticated modern methods. 

This paper [3] uses a CNN based architecture and Residual network-50 on HAM10000 dataset 

which contains unbalanced data classes. To address this issue, they used augmentation 

techniques and their model got accuracy of 86% for CNN and 85.3% for ResNet-50 model. 

Anand et al. [4] used approximately 3297 images from the ISIC dataset to use transfer learning 

techniques. Their model structure consisted of two dense layers with LeakyReLU activation, 

then a dense layer with sigmoid activation and a flatten layer by inserting VGG-16. With a 

training set size of 128 and training for more than 10 epochs, they obtained an accuracy of 

89.09% 

The study of this paper [5] uses a Conventional Neural Network model with dataset consisting 

of 12,378 skin lesion images from the ISIC dataset. They tested a set of 100 images with 

dermatologists and got a sensitivity of 74.1% while CNN model got 86.5% which have given 

good results compared with dermatologists. 

This study [6] aims to classify melanoma skin cancer using Convolutional Neural Networks 

(CNN) with the ResNet architectures on the ISIC 2018 dataset. A range of ResNet variations 

(including ResNet-50, ResNet-40, ResNet-25, ResNet-10, and ResNet-7) were trained using 

data augmentation techniques and under sampling, and their performance was evaluated using 

the F1 score. The ResNet-50 model without augmentation achieved the best performance, 

having a validation accuracy of 0.83 and an F1 Score of 0.46. 

Hossain et al. [9] employed about 6599 images from the ISIC dataset on Kaggle to compare 

various Residual Network variants. Their research yielded accuracies of 89.65%, 89.09%, 

88.78%, and 86.34% for ResNet152, ResNet101, ResNet50, and ResNet18 respectively. 

Dermatological diagnosis [10] is difficult because it involves a complex nature and reliance on 

extensive testing and practitioner skill. To counter this, the present study suggests a machine 

learning-based image-based method of automatic classification. Skin images are analyzed, 

smoothed, and classified through Convolutional Neural Networks (CNN) combined with a 

SoftMax classifier. The technique improves accuracy as well as efficiency, making it a reliable 

source for diagnosis as well as medical training. 

Zhang et al. [21] compared two neural network structures, ResNet-50 and Inception-V3, on 

binary classification with the Kaggle ISIC archive dataset, consisting of 2637 training images 

and 660 test images. Their results indicate that ResNet-50 performs better than Inception-V3 

with an accuracy of 88.83% versus 83.17% for Inception-V3. 



Bechelli et al. [18] used machine learning and deep learning methods on the ISIC dataset of 

around 3297 images. Of all the models that were employed, ResNet50, VGG16, and Xception 

provided an accuracy rate of about 88%, while other models did not even touch 72%. 

3 Dataset 

The basis of this study is the International Skin Imaging Collaboration (ISIC) 2019 dataset, a 

representative set of dermoscopic images (see Fig [1]) designed to promote research into 

computer-aided skin cancer diagnosis. Provided as part of the ISIC 2019 Challenge, this dataset 

comprises 25,331 quality images, each of a lesion captured under controlled dermoscopic 

conditions. The images are labeled with ground-truth annotations across eight different classes, 

representing a various range of skin types found in clinical practice. The ISIC dataset contains 

eight classes: actinic keratosis (AK), basal cell carcinoma (BCC), benign keratosis (BKL), 

dermatofibroma (DF), melanoma (MEL), melanocytic nevus (NV), squamous cell carcinoma 

(SCC), and vascular lesions (VASC). The multi-class nature of ISIC 2019 differentiates it from 

previous datasets such as ISIC 2018, which had fewer categories and thus presents a robust 

testbed for assessing classification models across a wide range of diagnostic conditions. 

 

Fig. 1. Class Wise Images. 

The images are divided among these classes with remarkable imbalance, reflecting patterns of 

real-world prevalence but posing difficulties for machine learning models. In particular, the 

dataset includes 4,133 images of AK, 3,323 of BCC, 2,624 of BKL, 4,761 of DF, 4,522 of MEL, 

5,000 of NV, 4,372 of SCC, and 4,747 of VASC, for a total of 25,331 samples. Melanocytic 

nevus (NV) at 5,000 samples is the most prevalent category, and benign keratosis (BKL) at 

2,624 samples is the least, exhibiting a class imbalance that will require careful handling in 

model training. Each image is rendered in consistent format, normally resized to 224x224 pixels 

to accommodate popular CNN architectures such as ResNet, and RGB color space to maintain 

the rich visual cues such as vascular structures and pigmentation vital to distinguishing between 

lesions. The dermoscopic photographs in the ISIC 2019 archive are captured at different 

institutions worldwide, with diversity of imaging hardware, patient populations, and lesion 



types. Such diversity makes the archive more representative, but introduces variability in 

features like illumination, noise (e.g., hair artifacts), and resolution, which mask critical 

diagnostic features. To address these challenges, our contribution employs a custom 

preprocessing pipeline, detailed in the methodology, to normalize inputs and remove artifacts. 

The archive is split into training and validation subsets, with approximately 80% (20,264 

images) set aside for training and 20% (5,067 images) for validation, slightly tuned to fit batch 

processing requirements (e.g., batch size of 32). This split enables stable model optimization 

and performance evaluation, so that the hybrid ResNet architecture generalizes well over the 

eight-class challenge. 

With the ISIC 2019 dataset, this research tackles a clinically relevant issue: high-accuracy 

classification of a high diversity of skin lesions under conditions of intrinsic imbalances and 

image variability. The dataset size and diversity provide a great test bed for our hybrid method, 

incorporating ResNet-18, ResNet-34, and ResNet-50, and for the verification of the 

effectiveness of our preprocessing method in enhancing diagnostic accuracy. 

4 Methodology 

This section delineates the systematic approach employed to classify skin lesions into eight 

categories using the ISIC 2019 dataset with a hybrid ResNet model. The methodology is 

structured into four primary components (see Fig [2]): preprocessing pipeline (A), augmentation 

(B), split of data (C), and model architecture (D). Each component is designed to address the 

inherent complexities of dermoscopic imagery, such as noise, variability, and class imbalance, 

culminating in a robust framework for skin cancer classification. 

 

Fig. 2. Proposed Methodology. 



4.1 Preprocessing 

The preprocessing step concentrated on improving the quality and consistency of the ISIC 2019 

dataset, which consists of dermoscopic images of skin lesions belonging to eight categories AK, 

BCC, BKL, DF, MEL, NV, SCC, and VASC, complemented by information from 3D Total 

Body Photography (TBP). These images were obtained from the ISIC archive (https://www.isic-

archive.com, accessed March 2025). Three major sub-steps were utilized in the preprocessing 

workflow to ready the data for model training: 

4.1.1 Hair Removal 

Dermoscopic images frequently include hair artifacts that hide lesion characteristics, making it 

essential to remove them for enhanced diagnostic precision. This was accomplished through 

black hat morphology utilizing a 17×17 structuring element to improve dark hair visibility 

against the image backdrop, followed by inpainting employing the Tele algorithm (based on 

diffusion) to restore the impacted areas. The procedure successfully removed hair (see Fig [3a] 

and Fig [3b]) while maintaining the edges of lesions, confirmed by visually inspecting a 

selection of images. 

 

Fig. 3(a). With Hair. 

 

Fig. 3(b). Without Hair. 

Fig. 3(a), 3(b). Images before and after Hair Removal. 

 



4.1.2 Standardization  

The process of image standardization (see Fig [4a] and Fig [4b]) begins with the conversion of 

the input image from its original color space format to a color space based on lightness. The 

image is then divided into its lightness and two channels of color. The lightness channel is 

augmented with a contrast adjustment method that restricts the over-amplification and affects 

small, local areas. Upon this augmentation, the adjusted channel of lightness is combined once 

again with the original color channels. Next, the image is converted back to its original color 

space. Then a gamma correction of 1.2 is applied to adjust brightness and contrast of the image. 

And then an inverse gamma value is calculated and a lookup table is created to adjust non-linear 

pixel intensities to improve the overall visual quality of an image. This table is then utilized to 

create the final standard image. 

 

Fig. 4(a). Original Image. 

 

Fig. 4(b). Standardized Image. 

Fig. 4(a), 4(b). Images before and after Standardized process. 



4.1.3 Resizing 

Uniform input dimensions are crucial for convolutional neural networks (CNNs). All images 

were resized to 224×224 pixels (see Fig [5a] and Fig [5b]) via bicubic interpolation to maintain 

image quality and ensure compatibility with the model structure. This type of pre-processing 

step like resolution is commonly used in pre-trained models like ResNet, to make a balance 

between computational efficiency and preserving lesion details. After this step, images were 

saved as a 4D array with dimensions (number _of _ samples, 224, 224, 3) for next processing. 

 

Fig. 5(a). Original Image. 

 

 
Fig. 5(b). Resized Image. 

 

Fig. 5(a), 5(b). Images before and after Resizing process. 

bicubic interpolation was favored over more straightforward techniques such as nearest-

neighbor interpolation to reduce artifacts and preserve edge sharpness, which is vital for 

detecting lesion boundaries. The reason behind choosing the 224×224-pixel resolution is to 

support hardware acceleration, and improving training efficiency on GPU systems. After 

completion of resizing a random sample is taken to validate the minimal distortion and retention 

of lesion characteristics. This results in a uniform input format by facilitating effective model 

transfer across the varied ISIC 2019 dataset. 



4.2 Augmentation 

As the ISIC dataset contains imbalanced data classes we come across overfitting issue which 

would become a problem in inference phase to overcome this issue technique like augmentation 

is used to make dataset balanced. The dataset showed considerable imbalance, with class sizes 

varying from 12,875 samples for Nevus (NV) to 1,195 samples for Dermatofibroma (DF). To 

address this, augmentation methods (see Fig [6]) were utilized for minority classes, whereas 

majority classes were reduced to a target of 5,000 samples per class through random selection 

without replacement. The augmentation process included the following techniques: 

4.2.1 Rotations 

Images were rotated by 90°, 180°, and 270° to make angular variations in the samples and 

replicating the diverse orientations of skin lesions observed in clinical settings. 

4.2.2 Flips  

Horizontal and vertical mirroring was applied to the images which increases diversity by 

mimicking variations in lesion appearance due to patient positioning.  

 

Fig. 6. Detailed View of Images in ISIC-2019 After Augmentation. 

4.2.3 Optional Techniques 

Additional approaches like color jitter (to change brightness, contrast, and saturation) and elastic 

deformations (to mimic tissue distortion) were evaluated to increase dataset variability, although 

their use was restricted to maintain computational efficiency. Minority classes were increased 

to achieve the goal of 5,000 samples for each class, leading to a balanced dataset of around 

40,000 samples (5,000 samples for each of eight classes). The distribution (see Table [1]) of the 

classes was examined via frequency analysis to confirm uniformity, which is essential for 

avoiding model bias towards majority classes and enhancing generalization across all categories 

of skin lesions. 

 

 



Table 1. Detailed View of Images in ISIC-2019 After Augmentation. 

Class Name Before Augmentation 
After 

Augmentation 

AK 867 4133 

BCC 3323 3323 

BKL 2624 2624 

DF 239 4761 

MEL 4522 4522 

NV 12875 5000 

SCC 628 4372 

VASC 253 4747 

 

4.3 Dataset Splitting 

The skin lesion images that contain in ISIC 2019 dataset was balanced and preprocessed because 

we have to give equal priority among all eight diagnostic classes. After balancing of data 

resulting in a training set of 80% and a testing set of 20% of the total samples. 

4.4 Proposed Framework 

The suggested framework is a hybrid convolutional neural network (CNN) aimed at 

categorizing dermoscopic images from the ISIC 2019 data set into eight skin lesion types, 

utilizing the combined advantages of three versions of the Residual Network (ResNet), ResNet-

18, ResNet-34, and ResNet-50. This architecture overcomes the constraints of single-model 

CNNs by integrating multi-depth feature extraction, allowing for the identification of a wide 

range of lesion traits from subtle textural nuances to intricate structural patterns while ensuring 

computational efficiency. The system combines these pre-trained models with a specialized 

classifier, fine-tuned using a customized training approach to address the class imbalance and 

diversity of the data set, providing a strong solution for the automated detection of skin cancer. 

Table 2. Comparison of ResNet Models. 

Model Number of Layers Attributes/Characteristics 

ResNet-18 18 512 

ResNet-34 34 512 

ResNet-50 50 2048 



4.4.1 ResNet-18 

18-layer architecture [8], which is powerful, originally trained on ImageNet, produces a 512- 

dimensional feature vector after completing its final convolutional layer. It excels in extracting 

fundamental features like edges and textures, making it appropriate for recognizing simpler 

patterns in lesions, such as vascular lesions (VASC). 

4.4.2 ResNet-34 

A moderately deep, 34-layer model, which is also pretrained on ImageNet, generates a 512-

dimensional feature vector. Also, increased depth helps us to capture mid-level features such as 

pigmentation gradients, which are crucial to distinguish benign keratosis (BKL) from melanoma 

(MEL). 

4.4.3 ResNet-50 

A 50-layer model with bottleneck blocks, which is trained on ImageNet that generates a 2048-

dimensional feature vector. Its more complex architecture and broader feature space capture fine 

details like uneven borders or asymmetry, which are important to identifying complex cases 

such as squamous cell carcinoma (SCC). In each backbone, the original fully connected (fc) 

layer is replaced with an identity layer, preserving the raw feature maps for further processing. 

The strong general image recognition capabilities are provided by pretrained weights. Which 

are then fine-tuned to analyze dermoscopic images during training 

4.4.4 Feature Concatenation 

The feature vectors which are from ResNet-18 (512), ResNet-34 (512), and ResNet-50 (2048) 

combined the channel dimension to create a single 3072-dimensional representation (512 + 512 

+ 2048) for each input image (see Fig 7 and Table 2). This combination utilizes the varied 

viewpoints of the three models: ResNet-18’s effectiveness, ResNet-34’s equilibrium, and 

ResNet-50’s profundity, forming a thorough feature set that captures both local and global 

characteristics of lesions. 

4.4.5 Custom Classifier 

The combined features are handled via a sequential classification module: A linear layer 

compresses 3072-dimensional input into 512 dimensions, succeeded by a ReLU activation to 

add non-linearity and improve feature discrimination. A dropout layer set to a probability of 0.5 

helps regularize the network, reducing overfitting by randomly turning off neurons during 

training, which is especially crucial because of the dataset’s moderate size (25,331 images). A 

concluding linear layer transforms the 512-dimensional features into 8 output logits that 

represent the ISIC 2019 classes. 

The structure includes around 57.5 million parameters, representing the total complexity of the 

three ResNet backbones alongside the classifier (1.6M). (See Table 3) Comparison of Models 

Used for Skin Cancer Classification. Regardless of this scale, utilizing pretrained weights and a 

targeted classifier design guarantees computational efficiency when compared to training a 

model of similar size from the ground up. 

 



Table 3. Comparison of Models Used for Skin Cancer Classification. 

Model Parameters 
Input 

Size 
Training Details 

Custom CNN 0.6 million 224×224 
Trained from scratch, Adam optimizer 

(lr=1e-3), early stopping, cross-entropy loss. 

ResNet-50 25 million 224×224 
Fine-tuned, Adam optimizer (lr=1e-3), early 

stopping, cross-entropy loss. 

Hybrid CNN-

ResNet 
25.6 million 224×224 

Joint training, Adam optimizer (lr=1e-3), 

early stopping, cross-entropy loss. 

 

4.4.6 Loss Function 

Focal Loss [15] is used to give more importance to hard-to-classify cases, which helps to address 

the class imbalance present in the ISIC 2019 dataset. It is defined as: 

                                              𝐹 𝐿(𝑝𝑡) =  −(1 −  𝑝𝑡)γ log(𝑝𝑡)                           (1) 

where pt is the predicted probability of the true class, and γ = 2.0 helps focus the model more 

on difficult examples by reducing the influence of easy ones. To further handle class imbalance, 

class weights (α) are introduced. These weights are used to calculate as the inverse of the class 

frequencies (e.g., 1/5000 for NV, 1/2624 for BKL) and normalized so that their sum equals 8, 

ensuring all eight classes contribute equally to the training without needing to oversampling of 

data. 

4.4.7 Optimizer 

The model was trained using Stochastic Gradient Descent (SGD) with a learning rate of 0.01, 

momentum set to 0.9, and a weight decay factor of 1 × 10−4. This configuration balances 

convergence speed and regularization, enabling efficient training of the hybrid ResNet 

architecture while preventing overfitting on the ISIC 2019 dataset. 

4.4.8 Scheduler  

The Reduce LR On Plateau scheduler lowers the learning rate by a factor of 0.1 when the 

validation loss remains unchanged for three consecutive epochs, enables adaptive optimization. 



 

 

Fig. 7. Model Architecture. 

5 Results 

 

Fig. 8. Actual vs Predicted. 



The suggested model for classifying skin diseases was assessed with a dataset of 6697 test 

samples, resulting in an overall accuracy of 0.91. (See Fig 8) Actual vs Predicted. The model 

exhibited impressive results across eight categories: actinic keratosis (AK) with precision 0.92, 

recall at 0.96, and F1-score 0.94; basal cell carcinoma (BCC) scoring 0.87, 0.85, and 0.86; 

benign kerato- sis (BKL) with values of 0.85, 0.77, and 0.81; dermatofibroma (DF) achieving 

0.99, 1.00, and 1.00; melanoma (MEL) at 0.72, 0.70, and 0.71; melanocytic nevus (NV) with 

0.77, 0.77, and 0.77; squamous cell carcinoma (SCC) scoring 0.97, 0.99, and 0.98; and vascular 

lesion (VASC) attaining 0.99, 1.00, and 1.00. The macro average for precision, recall, and F1-

score across all classes stood at 0.88, while the weighted average achieved 0.91, indicating 

strong generalization across diverse class distributions, with support varying from 973 (MEL) 

to 19,08 (VASC). (see Table 4) Performance Metrics. These findings suggest that the model is 

effective, especially for classes that are well-represented, although there is potential for 

enhancement in melanoma Classification. 

Table 4. Performance Metrics. 

S. No Paper Validation Accuracy 

1 [3] 85.3% 

2 [4] 89.09% 

3 [9] 89.65% 

4 [21] 88.83% 

5 [18] 88% 

6 Proposed 91% 

 

5.1 Confusion Matrix Analysis   

The confusion matrix (see Fig 9), using the 5,056-image test set, delivers an accurate assessment 

of the performance of the hybrid ResNet model for eight skin lesion classes. Di-agonal 

represents high accuracy, with dermatofibroma (DF) at 1,917, squamous cell carcinoma (SCC) 

at 1,721, and vascular lesion (VASC) at 1,908 correct predictions, whereas actinic keratosis 

(AK) and basal cell carcinoma (BCC) deliver 1,504 and 892, respectively. Melanoma (MEL) 

and melanocytic nevus (NV) are less accurate with 677 and 787 correct classifications, 

respectively, off-diagonal errors (e.g., 154 MEL incorrectly classified as NV, 72 NV as MEL) 

illustrating difficulty due to similarities in pigmentation. The analysis indicates that the model’s 

strength lies in identifying well-separated classes (DF, SCC, VASC) and that melanoma is a 

critical area of improvement. 

  



 

Fig. 9. Confusion Matrix. 

5.2 Performance Evaluation 

The performance of the hybrid ResNet model is evaluated using the ROC curve (see Fig 11) 

and convergence plots based (see Fig 10) on 20,256 training and 5,056 test images from the 

ISIC 2019 dataset. Multi-class classification ROC curve demonstrates AUC values of 0.97-1.00 

for eight classes, with macro-average AUC = 0.99 and micro-average AUC = 1.00, 

demonstrating outstanding discriminant capability. Convergence plots indicate training loss 

decreasing from 0.7 to 0.1 and validation loss converging at 0.2 after 10 epochs, training 

accuracy increasing from 65% to 95%, and validation accuracy converging at 90%, proving 

strong training stability and minimal overfitting using focal loss and class balancing. 

 

Fig. 10. Training and Validation Loss. 



 

Fig. 11. ROC Curve for multi class classification. 

class imbalance, attaining an overall accuracy of 0.91. These findings emphasize the 

framework’s capability as a scalable and understandable diagnostic tool, setting the stage for 

future improvements, including enhancing melanoma detection and incorporating clinical 

validation to further progress automated skin cancer diagnosis. The hybrid ResNet model 

showcases robust performance in categorizing skin lesions and performing exceptionally well 

across various classes, as verified by the confusion matrix and ROC curve analyses. 

6 Conclusion 

This research showcases the effectiveness of a new hybrid deep learning model that combines 

ResNet-18, ResNet-34, and ResNet-50 to classify skin lesions into eight separate categories 

utilizing the balanced ISIC 2019 dataset. The thorough preprocessing pipeline, which includes 

noise reduction, normalization, class balancing, and data augmentation, along with a focal loss 

function, successfully manages the existing class imbalance, attaining an overall accuracy of 

0.91. These findings emphasize the framework's capability as a scalable and understandable 

diagnostic tool, setting the stage for future improvements, including enhancing melanoma 

detection and incorporating clinical validation to further progress automated skin cancer 

diagnosis. The hybrid ResNet model showcases robust performance in categorizing skin lesions, 

and performing exceptionally well across various classes, as verified by the confusion matrix 

and ROC curve analyses. 
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