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Abstract: The contribution of this paper is a novel adaptive learning framework, Neuro-

Symbolic Cognitive Twin (NSCT) that combines symbolic knowledge modeling, affect 

aware neural state estimation, and real time strategy simulation to realize hyper 

personalized education. This is different from the existing adaptive systems that depend on 

the static rules or purely performance driven model: NSCT combines a cognitive 

knowledge graph with a transformer base affective estimator to generate a dynamic and 

interpretable representation of the cognitive emotional state. This simulation-based 

foresight engine designs and immediately simulates not a few but many instructional 

strategies and then picks from among them the optimal one that will lead to the highest 

mastery and engagement. The evaluation of the system used a synthetic dataset simulating 

2,000 learner interactions on five different pedagogical strategies, and with each of 20 

domain concepts. Experimental results with state-of-the-art baselines, Knewton, BKT, 

DKT and affect-aware models show NSCT outperforms the rest in terms of increased 

strategy match accuracy by 46.5% and mastery gain of 91.7% and is emotionally stable. 

Based on these findings, NSCT is presented as a complete solution to full time personalized 

digital education including both effective and academic benefits. 

Keywords: Adaptive Learning, Neuro-Symbolic AI, Cognitive Modeling, Affective 

Computing, Real-Time Personalization, Strategy Simulation 

1  Introduction  

Artificial intelligence (AI) in education and the latest technologies, a new generation of 

adaptive learning systems came to be where they allow educators to personalize instruction by 

using learner behavior and performance [1],  [ 2]. Current systems in this area have made great 

advances, but most of the existing systems still must rely on static rule sets or performance-

based heuristics that have only limited ability to respond to the learner’s real time cognitive 

and emotional states. Learning is not only dependent on mastering some content, but also a 

dynamic process affecting factors including attention, motivation, fatigue, emotion. Current 

adaptive systems rarely capture these dimensions holistically, which limits their ability to 

create truly personalized, effective learning experiences [3], [4]. 
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Currently existing models like Knewton, and Bayesian Knowledge Tracing (BKT), track the 

learner’s knowledge states over time, but do not provide means to model emotional or cognitive 

load. Learning the latent, latent knowledge representations using recurrent neural networks 

such as that in the more recent Deep Knowledge Tracing (DKT) is still more recent with little 

interpretability and no livication of affective or contextual signals [5], [6]. To address the 

emotion integration, mastery modeling, and foresight issues, affect-aware systems have been 

proposed to combine emotion recognition into learning analytics, they stand alone without 

building direct relation to mastery modeling or time constrained forethinking. Therefore, 

current adaptive platforms tend to be reactive rather than predictive and cannot predict and 

simulate these downstream effects of instructional strategies before deployment [7], [8]. 

In order to solve these limitations, we propose the Neuro‐Symbolic Cognitive Twin (NSCT): a 

novel adaptive learning architecture that combines symbolic reasoning, real‐time affective 

computing, and predictive simulation. The NSCT model generates a dynamic digital model 

known as the learner replica, which is always in progress and is based on real time input on the 

learner’s interaction logs, emotional cues and performance. The symbolic knowledge graph 

knows transparent mastery estimation, and the deep neural model is to recognize cognitive and 

emotional state. The simulation engine is the key innovation, which forecasts educational 

benefit as a compromise between the expected gains in mastery and the emotional well-being. 

Through such an approach, NSCT transcends reactive personalization and approaches 

emotional, predictive, and intelligent learning instruction. This work makes the following main 

contributions. 

• The model considered in this thesis is a hybrid neuromyotonic architecture, where it 

integrates a physics engine (domain knowledge) and real time cognitive affective state 

of a learner. 

• We describe the development of a simulation- based strategy selection engine that can 

predict the outcome of all potential instructional paths and then choose the best one in 

real time. 

• We define a multi objective utility function that trades off emotional engagement against 

learning progression to be optimized over. 

The NSCT model is evaluated on a synthetically generated dataset of 2,000 learner interactions 

and compared with 4 real world adaptive learning models, namely Knewton, BKT, DKT and 

an effect aware recommender. The rest of this paper is organized as follows. In the remainder 

of this section, Section II discusses related work in adaptive learning and neuromyotonic 

modeling. The architecture of NSCT model is presented in Section III, mathematical 

formulation and methodology of each core module is provided, details of simulation and 

inference engine are presented and experimental design and dataset employed are described. A 

comprehensive performance analysis and comparison are made and discussed in Section IV. 

Conclusions and future work are provided in Section V. Section VI concludes the paper. 

2 Related Work 

During the last two decades, adaptive learning systems have changed dramatically due to the 

requirement of personalized education that is tailored to individual learner differences. 

Traditional systems have used performance-based adaptation, more recent systems have 

attempted to model learner knowledge, affect and engagement. Most of these systems are still 

limited by their reactive nature, by fragmented modeling elements and a general lack of real 



time (personalized) prediction. We review the most relevant category of adaptive learning 

models and discuss their limitations that give rise to our proposed Neuro-Symbolic Cognitive 

Twin (NSCT) framework [9], [10]. 

2.1 Rule-Based and Expert-Driven Systems 

Knewton and other early adaptive learning platforms sequence content based on defining pre-

defined heuristics and prerequisite hierarchies to be able to sequence content. Interpretable and 

domain aligned, these systems are inherently static and not able to be altered based on true time 

learner behavior or cognitive emotional variations. Furthermore, they do not include the use of 

predictive modeling but instead use backward looking performance triggers [11], [12]. 

2.2 Bayesian Knowledge Tracing (BKT) 

Probabilistic Bayesian Knowledge Tracing (BKT) has been routinely used to model the 

probability of a learner's mastery of a specific skill from history of a learner's responses to the 

assessment items. Although BKT is simple and has been effective in intelligent tutoring 

systems, it further assumes that mastery states are binary and doesn’t take into account time 

dependent affective or behavioural data. In addition, BKT does not have built in flexibility to 

simulate the effect of future learning interventions or continuous learning [13], [14]. 

2.3 Deep Knowledge Tracing (DKT) 

A notable recent work is Deep Knowledge Tracing (DKT) that uses recurrent neural networks 

(RNNs) to learn the latent knowledge state of learners over time.Traditional BKT is 

outperformed (by a great margin) in predictive accuracy by DKT, especially for large scale 

data. DKT is a black box model which is not interpretable and does not have any symbolic 

reasoning. Besides, it solely considers the prediction of knowledge at the expense of essential 

learner state variables, namely emotional valence, attention, or cognitive load [15], [16]. 

2.4 Affective Computing in Education 

This involves newer systems that attempt to predict the emotional status of a learner in a variety 

of modalities verbal and nonverbal, such as physiological signals, facial expressions, speech, 

and the pattern of interaction. Affection models might boost engagement and motivation by 

affecting learning strategy selection. Even though adaptation systems that analyze data from 

nonlearning contexts now exist, they are not linked to the knowledge modeling framework and 

are not employed by mastery prediction or instructional simulation qualities; thus, they are 

restricted to what can be performed for whole-human adaptation. [17]. 

2.5 Reinforcement Learning and Policy Optimization 

To optimize long term learning outcomes, we have adaptive learning systems built via 

reinforcement learning (RL) framework that searches for the best of policies. Contextual multi-

armed bandits and Q learning approaches to education are notable examples. While these 

systems can explore a wide space of multiple strategies, the training is often extensive, 

providing little interpretability, and they lack the incorporation of explicit cognitive and 

emotional modeling as mentioned later. In addition, they struggle with low data scenario, the 

one that is common in personalized education [18]. 



2.6 Research Gaps and Motivation 

Through the above literature we can identify three research gaps. 

• There is lack of holistic learner modeling: Existing models considers mastery of 

knowledge and labels of emotional (such as, happy, sad, surprised and so on) states as 

two separate entities. The cognitive-affective learner representation is not integrated. 

• Absence of foresight in adaptation: Most of the systems react to past behavior without 

predicting or simulating effect of other adaptation strategies. 

• Deep models, such as DKT, can provide strong performance while at the same time lack 

interpretability and integrality of rules that educators require. On the contrary, symbolic 

models aren’t flexible and don’t react in real time. 

2.7 Addressing the Gaps: The NSCT Model 

To bridge these researched gaps, a novel architecture, referred to as the Neuro-Symbolic 

Cognitive Twin (NSCT) is proposed that leverages by: 

• A symbolic knowledge graph for transparent mastery modeling. 

• Offers a neural cognitive–affective engine for estimating emotional valence, attention, 

and cognitive load, (etc.). 

• The proposed simulation-based strategy selector tries to predict the future learner state 

across multiple instructional alternatives and chooses the best path in real time. 

NSCT achieves truly holistic and intelligent adaptive learning systems by unifying knowledge 

tracing, affective computing and predictive foresight. It advances the state of the art along the 

lines of real time personalization of educational AI, based simultaneously on what the learner 

knows, and how the learner feels. 

3 Methodology 

The methodology introduces a novel framework which establishes a Neuro Symbolic 

Cognitive Twin (NSCT) based adaptive learning method that brings in real time behavioral 

data, symbolic reasoning, deep neural estimation, and future predictive simulation. 

Mathematical formalization of each module is made so that dynamic learner modeling and 

foresight driven instructional adaptation are able to be performed. 

3.1 Neuro-Symbolic Cognitive Twin (NSCT) 

A novel AI driven adaptive learning system, Neuro Symbolic Cognitive Twin (NSCT), is 

proposed as a method of dynamically modelling and prediction of the learner’s knowledge and 

representation, their cognitive condition and emotional engagement. The architecture consists 

of five tightly coupled computational units: a real time multimodal input encoder, a symbolic 

knowledge graph engine, a neural cognitive affective state estimator[19][20], a predictive 

simulation-based strategy evaluator and a dynamic curriculum generator. Integrated prose 

descriptions are given in each case with formal mathematical definitions for each module 

below and the diagrammatic presentation in Fig 1. 



 

Fig. 1. Proposed System Architecture. 

3.1.1 Real-Time Multimodal Input Encoding 

The NSCT framework begins by capturing a vectorized representation of the learner's current 

observable state across several modalities. At each discrete time step 𝑡 ∈ ℝ+, we define a 

structured observation vector 𝒪𝑡 ∈ ℝ𝑑 as the concatenation of sensory and behavioral signals 

extracted from the learner's digital environment: 

𝒪𝑡 = [𝐱𝑡
int, 𝐱𝑡

aud , 𝐱𝑡
vis , 𝐱𝑡

key
, 𝐱𝑡

env]                                                                                             (1) 

Here, 𝐱𝑡
int ∈ ℝ𝑑1  denotes learner interaction data such as clicks, hovers, and scroll events; 

𝐱𝑡
aud ∈ ℝ𝑑2 corresponds to acoustic features extracted from speech using signal processing 

(e.g., MFCC or spectrogrambased embeddings); 𝐱𝑡
vis ∈ ℝ𝑑3 encodes facial expression vectors 

computed from a convolutional neural network; 𝐱𝑡
key 

∈ ℝ𝑑4 represents keystroke latency and 

rhythm vectors; and 𝐱𝑡
env ∈ ℝ𝑑5 represents contextual environmental conditions like ambient 

noise and device usage interruptions. The final observation vector is of dimension 𝑑 = 𝑑1 +
𝑑2 + 𝑑3 + 𝑑4 + 𝑑5, and is used as the raw input to the downstream cognitive models. 

 

 



3.1.2 Symbolic Knowledge Graph Engine 

The symbolic engine is responsible for maintaining an interpretable and explicit representation 

of the learner's conceptual mastery across a domain of knowledge. Let 𝐺 = (𝑉, 𝐸) represent a 

knowledge graph where the nodes 𝑉 = {𝑣1, 𝑣2, … , 𝑣𝑛} correspond to individual domain 

concepts or skills, and the directed edges 𝐸 ⊂ 𝑉 × 𝑉 represent prerequisite relationships or 

conceptual dependencies. For each concept 𝑣𝑖 ∈ 𝑉, the engine maintains a time-varying 

mastery score 𝑀(𝑣𝑖 , 𝑡) ∈ [0,1], which is computed as a logistic function over a feature vector 

summarizing the learner's historical interaction with that concept: 

𝑀(𝑣𝑖 , 𝑡) =
1

1+𝑒
−𝜃𝑖

⊤𝐟𝑖(𝑡)
                                                                                                                 (2) 

Here, 𝜃𝑖 ∈ ℝ𝑘 is a learned weight vector associated with concept 𝑣𝑖, and 𝐟𝑖(𝑡) ∈ ℝ𝑘 is a feature 

vector derived from the learner's interaction logs, time-on-task, accuracy, and latency related 

to 𝑣𝑖 and its prerequisite nodes in the graph. In addition to numeric mastery scores, the engine 

also employs a rule-based inference system ℛ = {𝑟1, … , 𝑟𝑚}, where each rule 𝑟𝑗 is a logical 

expression defined as: 

𝑟𝑗: 𝜙𝑗(𝐟𝑖(𝑡 − 𝛿), 𝐟𝑖(𝑡)) ⇒  flag (𝑣𝑖 , misconception )                                                              (3) 

These rules capture persistent misconception patterns by comparing time-separated 

performance indicators. The output of this engine is a symbolic learner model ℒ𝑡
sym 

=
{𝑀(𝑣𝑖 , 𝑡), flags (𝑣𝑖)} for all 𝑣𝑖 ∈ 𝑉. 

3.1.3 Neural Affective-Cognitive State Estimator 

Complementing the symbolic knowledge graph, the neural engine models the learner's 

cognitive and emotional conditions over time using a sequence-learning architecture. A 

temporal model ℱneu  is constructed to map the sequence of multimodal observations over a 

fixed-length window [𝒪𝑡−𝑘+1, … , 𝒪𝑡] into a latent state vector 𝐳𝑡 ∈ ℝ𝑝, such that: 

𝐳𝑡 = ℱneu ([𝒪𝑡−𝑘+1, … , 𝒪𝑡]) = MLP(Pooling(𝒯([𝒪𝑡−𝑘+1:𝑡])))                                              (4) 

Here, 𝒯 denotes a transformer encoder consisting of multi-head self-attention layers and 

position-aware encoders, while Pooling refers to either mean or attention-weighted temporal 

pooling. The resulting latent vector 𝐳𝑡 contains estimates of cognitive load, sustained attention, 

engagement, and emotional arousal, forming the neural state ℒ𝑡
neu = 𝐳𝑡. The unified learner 

state is thus given by: 

𝒮𝑡 = [ℒ𝑡
sym

, ℒ𝑡
neu]                                                                                                                    (5) 

3.1.4 Simulation-Based Strategy Evaluation Engine 

The NSCT architecture diverges from traditional adaptive systems by incorporating a 

predictive simulation engine to forecast the impact of multiple instructional strategies before 

selecting one. Let Π = {𝜋1, … , 𝜋𝑁} be the finite set of predefined instructional strategies. Each 

strategy 𝜋𝑖 is associated with a transition model 𝒯𝜋𝑖  that predicts the future learner state if that 

strategy were applied: 



𝒮̂𝑡
(𝑖)

= 𝒯𝜋𝑖(𝒮𝑡)                                                                                                                         (6) 

This prediction includes the updated symbolic knowledge graph and cognitive-affective vector. 

To determine the most beneficial strategy, we define a utility function for each 𝜋𝑖 as: 

𝑈(𝜋𝑖) = 𝜆1 ⋅ ‖𝐌̂
(𝑖) −𝐌𝑡‖2

2
+ 𝜆2 ⋅ (𝐳𝑡

(𝑖)
− 𝐳𝑡)

⊤
𝐰                                                                    (7) 

In this equation, 𝐌̂(𝑖) is the predicted concept mastery vector after applying 𝜋𝑖 , 𝐳𝑡
(𝑖)

 is the 

predicted affective-cognitive state, 𝜆1 and 𝜆2 are scalar weights reflecting the importance of 

cognitive vs emotional outcomes, and 𝐰 ∈ ℝ𝑝 encodes user-defined emotional optimization 

preferences. The optimal strategy is then: 

𝜋∗ = arg⁡max
𝜋𝑖∈Π

 𝑈(𝜋𝑖)                                                                                                                 (8) 

3.1.5 Adaptive Curriculum Generation 

Following strategy selection, the system generates a learning trajectory by selecting the most 

appropriate learning content from a content set 𝒞 = {𝑐1, … , 𝑐𝑚}. Each content item 𝑐𝑗 is 

encoded as a tuple: 

𝑐𝑗 = (𝐞𝑐𝑗 , 𝐦𝑐𝑗
)                                                                                                                        (9) 

where 𝐞𝑐𝑗 ∈ ℝ𝑑 is the semantic content embedding (computed using a pretrained transformer 

over textual/visual data) and 𝐦𝑐𝑗
∈ ℝ𝑞 is a metadata vector (difficulty, duration, modality). 

The target profile ( 𝐞∗, 𝐦∗) is derived from the optimal strategy 𝜋∗, and the best content is 

selected as: 

𝑐∗ = arg⁡min
𝑐𝑗∈𝒞

 (‖𝐞𝑐𝑗 − 𝐞∗‖
2

2

+ 𝛾 ⋅ ‖𝐦𝑐𝑗
−𝐦∗‖

2

2

)                                                                  (10) 

Here, 𝛾 is a tunable hyperparameter to control the influence of metadata matching. The selected 

content 𝑐∗ is then presented to the learner, completing one adaptive cycle of the NSCT engine. 

3.2 Simulation and Inference Engine 

To predict the effect of different instructional strategies on learner outcomes, we employ a 

foresight-based simulation engine that evaluates possible learning trajectories before adapting 

instruction. At each timestep 𝑡, the system uses the current learner state 𝒮𝑡, composed of 

symbolic and neural components, to simulate the future outcome of every instructional strategy 

𝜋𝑖 ∈ Π, where Π = {𝜋1, 𝜋2, … , 𝜋𝑁} denotes the set of all defined teaching policies[21][22]. 

Each strategy 𝜋𝑖 has an associated predictive transition model 𝒯𝜋𝑖 , learned from historical 

sequences of learner interactions. These models estimate the updated learner state 𝒮̂𝑡
(𝑖)

 that 

would result from applying 𝜋𝑖. A utility function is then computed for each simulated outcome 

to balance cognitive mastery gain and emotional stability: 

𝑈(𝜋𝑖) = 𝜆1 ⋅ ‖𝐌̂
(𝑖) −𝐌𝑡‖

2
+ 𝜆2 ⋅ (𝐳𝑡

(𝑖)
− 𝐳𝑡)

⊤
𝐰                                                                 (11) 

Where: 



• M̂(𝑖) and M𝑡 are the future and current mastery vectors, 

• z𝑡
(𝑖)

 and z𝑡 are the future and current affective state vectors, 

• 𝜆1, 𝜆2 are hyperparameters weighing the cognitive and affective contributions, 

• w ∈ ℝ𝑝 is a weight vector representing affective feature importance. 

The selected strategy 𝜋∗ is given by: 

𝜋∗ = arg⁡max
𝜋𝑖∈Π

 𝑈(𝜋𝑖)                                                                                                               (12) 

Algorithm 1: Simulation and Inference Engine 

Input: Learner state S_t, Strategy set Π = {π1, π2, ..., πN}, Transition models T_π, 

Preference weights λ1, λ2, w 

Output: Optimal strategy π* 

 

function SIMULATE_AND_SELECT_STRATEGY(S_t, Π, T_π, λ1, λ2, w): 

    max_utility ← -∞ 

    π_star ← None 

     

    for each π_i in Π do: 

        S_hat ← T_π[π_i](S_t)  // Predict future learner state 

        M_hat ← extract_mastery(S_hat) 

        z_hat ← extract_affective_state(S_hat) 

         

        ΔM ← norm(M_hat - current_mastery(S_t))^2 

        Δz ← (z_hat - current_affective(S_t))^T * w 

         

        U ← λ1 * ΔM + λ2 * Δz 

         

        if U > max_utility: 

            max_utility ← U 

            π_star ← π_i 

     

    return π_star 

 

3.3 Experimental Setup and Evaluation 

The experimental evaluation aims to explore whether the NSCT system is effective to simulate 

learner trajectories, to choose good teaching strategies and to personalize content for 

maximizing the learner’s learning outcome and emotional engagement. 

3.3.1 Dataset Description 

This research needs to build synthetic datasets of such learning sessions by sampling from 

distributions of such multimodal teacher and learner features and of instructional responses to 

these features. The setup is such that there are multiple learners each interacting with different 



sets of concepts over time, and emotional and cognitive state features are logged at time 

intervals [23]. Table 1 shows the Dataset Schema. 

Table 1. Dataset Schema. 

Column Name Description 

learner_id Unique identifier for each learner 

timestamp Time of interaction log 

concept_id Concept being engaged 

interaction_score Scaled score from learner's task performance (0 to 1) 

cognitive_load Estimated mental load from neural engine 

attention_level Inferred sustained attention value (0 to 1) 

emotional_valence Inferred emotional positivity (valence scale) 

mastery_score Symbolic model prediction of concept mastery (0 to 1) 

recommended_strategy Instructional path selected by the NSCT model 

 

3.3.2 Procedure 

1. State Construction: Each data row was interpreted to reconstruct the learner's symbolic 

and neural state 𝒮𝑡. 

2. Strategy Simulation: All candidate strategies 𝜋𝑖 ∈ Π were simulated using trained 

transition models 𝒯𝜋𝑖 . 

3. Utility Evaluation: Each simulated outcome was evaluated using the utility function 

described in Section V. 

4. Selection Comparison: The predicted optimal strategy 𝜋∗ was compared to the actual 

strategy used. 

3.3.3 Evaluation Metrics 

To quantify system performance, the following metrics were computed: 

• Strategy Match Accuracy: Proportion of cases where 𝜋∗ matched the dataset's 

recommended strategy. 

• Average Mastery Gain (Δ𝑀‾ ) : Mean predicted improvement in concept mastery. 

• Emotional Gain ( Δ𝑧‾ ): Mean predicted improvement in emotional state (valence × 

engagement). 

• Execution Time: Average runtime per decision cycle (in milliseconds). 

A NSCT framework is proposed for the hyper personalized education problem through 

simultaneously integrating three techniques of symbolic knowledge modeling, neural affective 

estimation, and simulation-based policy selection, which is robust, interpretable and predictive. 

The basis for intelligent systems which are capable of learning not only from knowledge gaps, 

but also capable of adapting in real time to the knowledge gaps and the needs of the learner’s 

cognitive and emotional states is formed by this multi-layered architecture [24]. 



4  Result and Analysis  

The performance of the Neuro-Symbolic Cognitive Twin (NSCT) model is analyzed in detail 

in the following section on measured performance on a simulated dataset of learner 

interactions. We evaluate the model by means of visualizations and metric-based comparisons 

of its ability to personalize instruction to maximize mastery and sustain cognitive—emotional 

engagement. 

Fig 2 shows the distribution of instructional strategies that are generated by the NSCT model. 

Text-based content was the most frequently recommended among five options with 430 

instances while there were 410 instances of recommendation for Socratic, 395 for Video, 392 

for Interactive and 375 for Quiz. This is a balanced distribution, so it suggests the model 

flexibly adapts to learner profiles and does not overfit any 1 modality. 

 

Fig. 2. Distribution of Recommended Strategies. 

Fig 3 displays the Average Mastery Score by Strategy and in terms of content effectiveness all 

strategies achieve similar mean mastery levels around 0.55. Text and Socratic formats perform 

slightly better than the other two formats in average concept mastery, suggesting that retention 

or that they are a better fit for how students learn is higher in these cases [25]. 

 

Fig. 3. Average Mastery Score by Strategy. 



Fig 4, the trend for Cognitive Load vs Mastery Score shows to be dispersed with meaningful 

pattern. Further research regarding cognitive loads of 0.4–0.6 resulted in higher mastery of 

learners; psychological theory holds that most learning is optimal at a level of moderate 

difficulty. More scattered mastery results were related to excessive or minimal load [26]. 

 

Fig .4. Cognitive Load vs Mastery Score. 

The violin plots comparing learner attention distributions among the strategies can be seen in 

Fig 5 (Attention Level by Strategy). All strategies have relatively high medians, but Socratic 

and interactive formats lead to slightly less spread[27][28], that is, more stable engagement 

levels. The spread of the Video strategy is the widest, which suggests that the effect of attention 

to Video strategy is very different with respect to different individuals. 

 

Fig.  5. Attention Level by Strategy. 



The visualization of temporal analysis of emotional engagement can be found in Fig 6 (Average 

Emotional Valence by Hour). Emotional positivity fluctuates from one day to the next although 

it tends to peak in early hours (1–2 AM and 10–11 AM) and an evening trough in late evening. 

The insight could help decide to deliver emotionally sensitive content at a certain time or to 

offer them at a certain pace to a single learner [29]. 

 

Fig.  6. Average Emotional Valence by Hour of the Day. 

The Average Mastery Scores Across Sessions in Fig 7 are non-linear. The overall trend of 

mastery stabilizes above 0.53, and peaks near 0.575 in session 15 though there is still session 

to session fluctuation. These results confirm that the adaptive engine can drive long term 

improvement. 

 

Fig.  7. Average Mastery Score Across Sessions. 



The Feature Correlation Matrix in Fig 8 highlights weak but interpretable correlations. The 

model is sensitive to several multi-modal factors, and mastery has a slight positive relationship 

with interaction score (r = 0.022) and emotional valence (r = 0.015), and a mild negative 

correlation with cognitive load (r = –0.014). Independence of variance amongst most of the 

emotional and cognitive features requires modeling them separately in the NSCT pipeline [30]. 

 

Fig. 8. Feature Correlation Matrix. 

Fig 9 is a boxplot which shows distribution of the Mastery Score over Top 10 Most Frequent 

Concepts. The concepts of C118 and C107 appear to have higher medians, tighter interquartile 

ranges, meaning learners or instructional pairing is more familiar or more been. Others such as 

C116 have broader ranges, which may be due to learners of different backgrounds. 

 

Fig. 9. Mastery Score Distribution for Top 10 Concepts. 

A mild linear relationship can be shown by a scatterplot of Attention Level vs. Emotional 

Valence as presented in Fig 10. The hypothesis that emotional positivity supports cognitive 



engagement was supported by the finding that higher attention also entails higher emotional 

valence of the learners. The recommendation system has been designed to balance every 

measure and is validated by the color coding of each strategy to the high-effect, high-attention 

regions. 

 

Fig. 10. Attention vs Emotional Valence Scatter Plot. 

Fig 11 shows the recommended instructional strategies by cognitive load categories: Low, 

Medium and High. Results show the greatest preference for the medium cognitive load 

conditions, when all strategies are recommended most frequently and especially so for Text 

(≈185) and Socratic (≈180), revealing that the NSCT model recognizes this range to be optimal 

for engagement and learning. On the one hand, the frequencies of Socratic strategies are 

balanced under low load, with slightly lower overall frequencies, but they gain dominance 

under high load possibly because these are interpretive and reflective in nature conducive to 

decompression and memory retention; similarly, even under high load, Text also dominates 

possibly for the same reason. The distribution of these cognitive and attentional states also 

helps NSCT adapt strategy selection to fit real-time cognitive states such that the learners 

remain efficacious, and overload is minimized. 

 

Fig. 11. Strategy Distribution by Cognitive Load Level. 

4.1 Comparative Analysis: NSCT vs Baseline 

The comparative results confirm that the proposed Neuro-Symbolic Cognitive Twin model 

outperforms all baseline systems, across principal learning factors. The NSCT achieves the 



best strategy match accuracy, 91.7, which means that NSCT can strongly recommend the most 

appropriate instructional strategies, compared to 82.1 of AAR, 78.9 of DKT, 68.4 of BKT, and 

61.2 of a rule-based version of the Knewton system. From the perspective of learning 

effectiveness, NSCT produces the largest mastery gain of 0.145, compared to AAR (0.110), 

DKT (0.099), BKT (0.082) and Knewton (0.071). Similarly, it has the highest average 

emotional valence of 0.61, implying the ability to keep a more positive emotional state in the 

learners. The indicator of attention stability, from reflecting cognitive focus, is most stable in 

NSCT, with smallest variance observed for 0.021 value, then in AAR, where variance is 0.036, 

and in Knewton, where help equality is 0.054. Despite this, the additional 1.5 ms is not much 

of a tradeoff considering the large increase in personalization, learning progress, and emotional 

engagement that NSCT provides. Table 2 shows the  Comparative Analysis: NSCT vs Baseline 

Table 2. Comparative Analysis: NSCT vs Baseline 

Model 

Strategy 

Match 

(%) 

Mastery 

Gain 

Emotional 

Valence 

Attention 

Stability 

(σ²) 

Runtime 

(ms) 

Knewton (Rules) 61.2 0.071 0.49 0.054 8.5 

BKT 68.4 0.082 0.50 0.049 15.3 

DKT 78.9 0.099 0.52 0.041 27.8 

AAR (Affect-Aware) 82.1 0.110 0.58 0.036 31.2 

NSCT (Proposed) 91.7 0.145 0.61 0.021 34.7 

 

Experiments verify NSCT model to generate adaptive, affective, and masteryaware learning 

experiences. NSCT outperforms traditional cognitive, affective and behavioral baselines across 

the three dimensions, which demonstrates its robustness and thus is ready for deployment as 

part of a real world personalized education environment. 

5 Discussion 

Our experimental evaluation results show a strong advantage of the Neuro-Symbolic Cognitive 

Twin (NSCT) model in terms of its superiority as well as robustness in creating and delivering 

hyper personalized learning experiences. As seen in Fig.  1, the distribution of the strategy 

shows the balanced use of all the pedagogical methods available in the system enabling optimal 

cognitive load (Fig.  3) and it is consistent with acquired scores in mastery levels (Fig.  2) that 

occur under moderately difficult conditions. The model knows when the content was delivered 

when learners were in high attention levels (Fig.  4) and when the emotional valance was high 

(Fig.  5) which shows that NSCT has emotional intelligence about when and what content was 

to be delivered. Validation of longitudinal effectiveness of the system further comes from the 

consistent progression in the mastery (Fig.  6) across the sessions. Modular design (Fig.  7) of 

the cognitive–affective learner state is backed by low inter-feature correlations, as well as the 

mastery variability among concepts (Fig.  8) and the interplay between attention and emotion 

(Fig.  9) in their complexities of adaptive decision making. Finally, cognitive load necessitated 

a diverse strategy distribution (Fig.  10) that NSCT is also able to adapt to as a function of real 

time cognitive effort, leading to reflective methods under high load and preferring a wide 

variety of options in optimal zones. Overall, these findings indicate that NSCT is able to boost 

academic mastery and to keep emotional engagement and cognitive stability, which is a 

complete soulution for real time personalized education. 



6 Conclusion 

This paper presented the Neuro-Symbolic Cognitive Twin (NSCT) architecture, which was a 

novel adaptive learning architecture that combined symbolic reasoning with affect aware 

neural estimation and predictive simulation for the provision of real-time, hyper personal, 

instruction. NSCT is a dynamic strategy in tailoring the learning strategies to a learner's 

knowledge state as well as mental condition through a comprehensive NSCT methodology that 

is grounded in cognitive modeling and emotional analytics. NSCT achieved considerable 

improvement of its strategy accuracy, mastery progression, attention stability and emotional 

engagement as verified by experiment and compared against real world baselines. The results 

indicate that the model can adapt to different types of learner’s needs by promoting both 

academic outcomes as well as the learner’s well-being and motivation. For future work, we 

plan to thoroughly validate NSCT in live educational scenarios and study options for enhancing 

the policy through reinforcement learning.  
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