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Abstract. Automatically classifying waste into recyclable and disposable categories is 

crucial for improving waste management and reducing environmental impact. This study 

introduces a deep learning system to classify household waste using publicly available 

datasets across various categories. We evaluate the performance of MobileNetV2, 

EfficientNet-B3, and Vision Transformer (ViT) in terms of accuracy and efficiency for 

image classification. To improve the model's reliability and prevent overfitting, standard 

preprocessing and data augmentation techniques are applied. Assessment of the reliability 

and performance of the system in handling waste from different categories. The findings 

show that these advanced neural networks can effectively identify recyclable materials and 

provide real-time solutions for waste sorting. This method can be integrated into smart 

bins, recycling centers, and mobile systems, supporting more sustainable waste 

management practices 
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1 Introduction 

Due to an increase in global waste generation, proper waste management is necessary. 

Conventional manual sorting of waste is generally inefficient and error prone, resulting in low 

reliability for the classification process. Automatizing this process can increase precision and 

productivity for waste sorting, utilizing deep learning and computer vision. Vision-based 

classification systems have proved to be very successful in recognizing different types of waste 

using neural networks. 

In this paper an intelligent system capable of classifying household waste as recyclable or waste 

is introduced, using state-of-the-art deep learning. The system minimizes human involvement 

and saves waste sorting time by learning models on labelled images. Neural networks like 

MobileNetV2 or EfficientNet-B3 are great contenders, as they are accurate and efficient. 

Because of its compact architecture, they are suitable for smart bins and mobile deployment, 

since they are able to extract meaningful features with lower complexity. In this paper, after pre-

processing the DNN-based and the CNN-based models are trained using skillfully processed 

dataset with grayscale conversion and normalization. These procedures streamline the data, 

improve image quality, and guarantee reliable real-life use. 

Although CNNs are good at capturing local features on the image, recent work on ViTs has 
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shown that attention mechanisms used in transformers are able to capture the global visual 

structures that can be used for better classification of images. This enables them to differentiate 

more accurately between visually similar waste categories. While ViTs are computationally 

more expensive, they can work well with medium-sized data when some pre-processing is done. 

Consequently, we combine CNN and Vision Transformer (ViT) models for computational 

efficiency and classification accuracy. 

The training data for this study is a labeled waste images dataset of several categories. Existing 

datasets were usually based on a binary classification, and the limited the diversity and 

complexity of the datasets. Preprocessing methods including normalization, graying, and 

controlled augmentation are exploited in our study to alleviate distortion and facilitate the 

enhancement of learning quality. The performance of each classifier is measured for separating 

different waste categories. The results show that ViT is promising for complex/ambiguous 

images, while MobileNetV2 and EfficientNet-B3 are applicable as efficient and stable solutions 

for real world applications. By creating field-deployable, smart waste [sorting] machines, this 

research helps put a scientific and technical basis behind an automated recycling technology and 

a mobile-based application. 

2 Literature Review 

The rapid growth of waste in the world has led to the popularity of deep learning-based automatic 

detection of recyclable waste methods. It's been shown in recent works that Convolutional 

Neural Network (CNN) and transformer architectures greatly enhance the classification 

accuracy of waste materials. 

Ahmad et al. [1] demonstrated the potential of deep learning for large-scale waste management 

with an intelligent waste sorting system for urban sustainability. Similarly, a strong detection 

and classification model is presented in [2] that utilized state of art CNNs to improve the 

recycling scheme. In [3], a CNN based recyclable waste recognition model was presented with 

strong results on real datasets. 

For real time solutions, object detection frameworks such as YOLO have been popular choice. 

A YOLOv12-based detector was presented in [4], which achieved the highest accuracy in 

dynamic waste classification. In [5], a comparative study of YOLO models was presented, which 

demonstrated that lightweight instances are able to combine efficiency with accuracy. Optimized 

CNNs for waste recycling classification were presented in [6] and enabled taking the next big 

step into image-based waste sorting. 

Benchmarking of pretrained deep models has also been explored. A comprehensive comparison 

of pretrained CNNs for landfill waste classification was reported in [7], while an evolutionary 

optimization approach for CNN parameters was proposed in [8]. In another study [9], 

enhancements to ResNet-50 through feature fusion and depth-separable convolutions improved 

overall accuracy in garbage classification. 

Device-level implementations have also emerged, with [10] presenting the design of an 

intelligent waste classification device, demonstrating the practicality of embedded AI systems. 

Focused research on specific categories, such as plastic waste, was performed in [11], where a 

dataset-driven approach achieved high accuracy. In addition, an alternative sensing approach 



using thermal imaging was proposed in [12], enabling differentiation between metallic and non-

metallic e-waste fractions. 

Beyond the technical aspects, social and behavioural dimensions of waste classification have 

been studied. For example, [13] examined how public education influences residents’ 

willingness to participate in waste classification. More recent frameworks have emphasized 

sustainable and scalable solutions, such as enhanced CNNs with advanced preprocessing [14] 

and federated deep learning approaches for smart city deployments [15]. 

Overall, prior works highlight significant advancements in waste classification through deep 

learning, ranging from CNN optimization and object detection to device-level implementations 

and socio-technical integration. However, challenges remain in dealing with visually ambiguous 

waste, limited dataset diversity, and ensuring robustness in real-world conditions, motivating 

further research in automated recyclable waste detection. 

3 Proposed Methodology 

This study focuses on the smart classification of household waste images using modern image 

recognition methods. As described within the initial drift diagram, this system starts off evolved 

by means of maintaining a set of pix in corporations that prescribe a diffusion of substances 

which include plastic boxes, glass fragments, steel objects, paper applications, and biomass 

materials. Each image is resized to a standard resolution, and data augmentation techniques such 

as rotation and flipping are applied. This increases dataset diversity and improves the model’s 

ability to recognize objects from different angles. The dataset is split into two parts: one for 

training and the other for validating the model's reliability. Fig. 1 shows the methodology of 

proposed work. 

To gather huge information from visuals, we use slight identification and high-capacity designs 

which includes MobileNetV2, performance EfficientNet-B3 and vision Transformer. These 

models are initially trained on a larger set of images and then fine-tuned to classify different 

waste categories. This approach minimizes the need for new data and accelerates the learning 

process. Eventually, the system is tested for its performance for its potential, that is suitable for 

actual time in computerized recycling systems, along with clever disposal units and 

environmental collection points. 

 

Fig. 1. Methodology of the proposed work 



3.1 Dataset Specification 

This study uses a comprehensive collection of images representing various categories of 

household waste, including plastic, metal, glass, paper, cans, and biodegradable materials. The 

raw images were originally available in different dimensions and formats. To standardize them, 

all images were resized and reformatted to ensure consistency across the dataset. 

 

Fig. 2. Random images from the Dataset. 

Fig. 2 Snap shots are taken from an expansion of lights situations and distinct angles, which 

improves the compatibility of the machine for the everyday scenes that stumble on waste. For 

this work, the collection of images is split into two parts: one for training and the other for 

evaluating its performance. To maintain balance, the dataset was curated so that each category 

is represented evenly, preventing model bias toward a single waste type. Images were captured 

under different lighting conditions and angles, which improves the system’s adaptability to real-

world scenarios. Before training, all images were resized to 224 × 224 pixels and their pixel 

values normalized to a range between 0 and 1. 

To further enhance diversity and robustness, data augmentation techniques such as rotation, 

flipping, and brightness adjustments were applied. This process increases variability and 

strengthens the model’s ability to generalize when classifying waste materials in diverse 

environments. 

3.2 Data Preprocessing 

Before training, several preprocessing steps were applied to prepare the images for effective 

classification. Each image was resized to 224 × 224 pixels to meet the input requirements of 

MobileNetV2, EfficientNet-B3, and Vision Transformer (ViT). Pixel values were normalized to 

the range [0, 1], which improves stability and accelerates training. 



To simulate real-world variations, data augmentation methods such as random rotation, 

horizontal and vertical flipping, and adjustments in brightness and contrast were performed. 

These augmentations replicate changes in perspective and lighting conditions. In addition, 

grayscale versions of the images were tested in some experiments to reduce visual complexity 

and highlight structural features. 

These preprocessing steps ensured that the training data was diverse, balanced, and 

representative of real-world waste classification scenarios. 

3.3 Data Splitting 

After preprocessing, the complete dataset is divided into two subsets: one for training the models 

and the other for evaluating their performance on unseen data. Approximately 80% of the images 

are used for training, while the remaining 20% are reserved for testing. 

To ensure fairness and prevent bias, all waste categories are proportionally represented in both 

subsets. This balanced approach allows the models to learn from a wide variety of examples and 

ensures reliable performance across different types of waste. By maintaining diversity in both 

the training and testing sets, the system is better equipped to generalize and deliver accurate 

results in real-world scenarios. 

3.4 Model Architecture 

The proposed model architecture is compact and well-suited for efficient visual recognition 

tasks. The system accepts input images of size 128 × 128 pixels with three color channels. These 

inputs are processed through multiple 3 × 3 convolutional filters, which capture local visual 

patterns and structural details. To reduce the spatial dimensions while retaining important 

features, 2 × 2 pooling operations are applied. 

This design ensures that the model extracts meaningful representations of waste images while 

minimizing computational complexity. The resulting feature maps form the foundation for 

subsequent classification tasks performed by the selected deep learning models. 

3.5 MobileNetV2 Architecture 

The MobileNetV2 model is designed to achieve efficient image classification with minimal 

computational cost. It uses depthwise separable convolutions, which process each feature map 

individually before combining them, thereby reducing the number of parameters while still 

capturing important visual information. 

In this architecture, the input images are progressively reduced from 64 × 64 pixels to 4 × 4 

feature maps through a series of convolutional and pooling operations. The extracted features 

are then consolidated into a single feature vector. This vector is passed to the final classification 

layer, which assigns the image to the appropriate waste category. 

Figure 3 illustrates the overall architecture of the MobileNetV2 model. This design ensures a 

balance between accuracy and efficiency, making it well-suited for real-time applications such 

as smart bins and mobile-based waste classification systems. 



 

Fig. 3. MobileNetV2 Architecture. 

3.6 EfficientNet-B3 Architecture 

The EfficientNet-B3 model is employed to enhance waste classification by balancing accuracy 

and computational efficiency. Input images of size 256 × 256 pixels are passed through multiple 

convolutional layers, with normalization techniques applied at each stage to stabilize training 

and optimize performance. The network progressively reduces the spatial dimensions while 

retaining key visual features, enabling it to capture detailed patterns present in waste images. 

During training, dropout layers are introduced to prevent overfitting and improve the model’s 

generalization ability. The extracted features are then flattened and passed through a series of 

dense layers, where the final classification is determined. This architecture provides a reliable 

framework for identifying various waste categories, offering strong accuracy even in 

environments with limited computational resources. The final step of the technique assigns the 

proper label based totally at the traits of the picture as shown below in Fig 4. This framework is 

sufficient for conditions with restricted pc energy, supplying a balanced solution that isn't 

compromised with identity nice. 

 

Fig. 4. EfficientNet-B3 architecture. 



3.7 Vision Transformer (ViT) Architecture 

The photograph of the shape used on this process starts off evolved by using dividing the photo 

into smaller sections in same quantities. Each image is divided into smaller sections, converted 

into numerical representations, and marked with additional markers to help the system identify 

key areas of the image. The sequence of these sections flows thru a gadget, that may estimate 

the long-distance connections in the entire film. Within these layers, the mechanism focuses on 

precise regions to fit their importance, enhancing the advent of visible information. Once 

processed, the very last output passes through a layer of decision to determine the most 

appropriate category. This strategy is powerful inside the description of images that appear like 

complex or very excessive to each different. Fig.5 shows the vision transformer architecture. 

 

Fig. 5. Vision Transformer (ViT) architecture. 

3.8 Performance Metrics 

In this study, performance measurements are used to evaluate the accuracy of different types of waste 

sample classifications. The evaluation is mainly carried out using standard assessment metrics and the 

confusion matrix. These metrics help determine whether the models are performing reliably and 

provide insight into areas where classification errors occur. 

3.8.1 Evaluation Metrics 

Accuracy: Measures the proportion of correctly predicted samples to the total number of 

predictions, as shown in Equation (1). 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
        (1) 



Precision: Precision focuses on the reliability of positive classifications, measuring the 

proportion of correctly predicted positive instances out of all instances predicted as positive, as 

shown in formula (2). 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                        (2) 

Recall (Sensitivity): Recall measures the system’s ability to correctly identify actual 

positive cases, minimizing false negatives, as defined by the recall formula (3). 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
            (3) 

F1-Score: The F1-score combines both precision and recall, providing a balanced measure of 

the model’s classification performance. It is calculated using formula (4). 

𝐹1 =  2 ×
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
         (4) 

Confusion Matrix:   The confusion matrix is a visual tool used to compare the predicted 

classifications with the actual categories, helping to identify where errors occur. By analyzing 

the matrix, it is possible to observe how well different classes are recognized and where 

misclassifications arise, providing insights for improving future performance. Fig 6 shows the 

confusion matrix. 

 

Fig. 6. Confusion Matrix. 

4 Results and Discussion 

4.1 Evaluation Metrics 

The evaluation of the proposed system, which uses deep neural networks for automated waste 

detection, shows significant progress in accurately identifying and classifying different 

categories of household waste. Among the models tested, EfficientNet-B3 produced the best 

results, achieving an overall accuracy of 91%, with precision of 0.91, recall of 0.90, and an F1-

score of 0.90. 



These values demonstrate its strong capability to classify recyclable and disposable substances 

consistently and reliably. The Vision Transformer (ViT) closely followed, achieving 90% across 

all metrics, reflecting its strength in handling visually complex or overlapping waste categories 

due to its attention-based architecture. Meanwhile, MobileNetV2 delivered stable performance 

with 87% accuracy, 0.88 precision, 0.87 recall, and 0.87 F1-score, making it a practical option 

for real-time applications where efficiency and low computational cost are critical. 

Although all three models performed effectively, EfficientNet-B3 provided the best overall 

balance between accuracy and computational efficiency. The results also show that ViT is 

especially powerful in managing visually challenging classifications. Together, these models 

highlight the potential for integration into smart bins and mobile applications to support real-

world waste management systems. 

Table 1. Methods of Algorithm evaluation. 

Model Precision Recall  F1-Score Accuracy 

MobileNetV2 0.88 0.87 0.87 0.87 

EfficientNetB3 0.91 0.9 0.9 0.91 

Vision Transformer 

(ViT) 
0.9 0.9 0.9 0.9 

 

4.2 Matrix for confusion  

The confusion matrices of the proposed models illustrate how effectively each algorithm 

classified the different waste categories. 

 

Fig. 7. Confusion Matrix of Transformer Vision (VIT). 

Vision Transformer (ViT): As shown in Figure 7, ViT achieved high accuracy in recognizing 

categories such as carton, glass, and organic waste. However, it showed some confusion between 



visually similar classes, such as plastic and paper, as well as plastic and metal. Despite these 

overlaps, ViT demonstrated strong overall performance, particularly in handling complex or 

ambiguous images. 

MobileNetV2: Figure 8 shows that MobileNetV2 correctly identified most categories, 

especially glass, organic, and carton. However, misclassifications occurred between plastic and 

metal, as well as occasional errors in the scrap category. While less accurate than EfficientNet-

B3 and ViT, MobileNetV2 remains a reliable model for real-time applications due to its 

efficiency and low computational cost. 

 

Fig. 8. Confusion Matrix of MobileNetV2. 

EfficientNet-B3: Figure 9 highlights that EfficientNet-B3 achieved the best balance across all 

categories, with minimal misclassifications. It performed strongly in identifying metallic, 

organic, and paper waste. Although minor confusion was observed between plastic and carton, 

these errors were less frequent compared to other models. Overall, EfficientNet-B3 

demonstrated the highest reliability and robustness, making it the most suitable model for 

practical deployment in automated waste sorting systems. 



 

Fig. 9. Confusion Matrix of EfficientNet-B3. 

5 Conclusion 

This study demonstrates the potential of deep learning for automating the classification of 

household waste into recyclable and non-recyclable categories. Among the tested models, 

EfficientNet-B3 achieved the highest performance, with 91% accuracy, precision, recall, and 

F1-score, making it the most effective choice for real-world applications. The Vision 

Transformer (ViT) also performed strongly, especially in distinguishing visually complex waste 

categories, while MobileNetV2 provided efficient results suitable for real-time deployment in 

resource-constrained environments. 

The evaluation metrics and confusion matrices confirm the robustness of these models, with 

fewer misclassifications and consistent accuracy across different waste categories. These results 

highlight the promise of deep learning in reducing manual effort, improving classification 

efficiency, and contributing to sustainable waste management practices. 

Future work will focus on expanding the dataset to include additional waste categories, 

improving classification of visually similar materials, and implementing real-time solutions in 

smart bins and recycling centers. This research provides a strong foundation for developing 

intelligent, scalable, and environmentally impactful waste sorting systems. 
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