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Abstract. Automated music transcription has emerged as a crucial field in Optical Music 

Recognition (OMR) and digital signal processing, enabling seamless conversion of sheet 

music into machine-readable formats. This paper presents a comprehensive system for 

automated music sheet-to-MIDI conversion and spectrogram analysis, leveraging 

advanced image processing techniques, deep learning models, and MIDI synthesis 

algorithms. The proposed framework first processes scanned sheet music by detecting 

and extracting musical symbols using contour analysis, morphological operations, and the 

Hough Transform. A deep learning-based approach is employed for note head 

recognition, pitch estimation, and rhythm extraction, ensuring accurate musical 

interpretation. The extracted notes are converted into MIDI format, which is further 

synthesized into WAV audio for playback and spectrogram visualization. The system 

incorporates a user-defined playback duration feature, optimizing real-time applications 

for composers, researchers, and musicians. The generated spectrogram provides a time-

frequency representation, facilitating detailed harmonic analysis. This frame- work 

integrates computer vision, artificial intelligence, and digital signal processing to enhance 

music transcription, performance evaluation, and AI-assisted composition. 

Keywords: Optical Music Recognition (OMR), Deep Learning, MIDI Generation, Image 

Processing, Spectrogram Analysis, Digital Signal Processing (DSP), Music Transcription, 

Computer Vision. 

1 Introduction 

Across many genres and cultures, music notation has been essential to the preservation and 

transmission of musical compositions.  Although traditional sheet music is a vital tool for 

composers and musicians, its dependence on human interpretation restricts its adaptability, 

accessibility, and compatibility with contemporary digital music technologies. The 

development of digital signal processing, artificial intelligence (AI), and optical music 

recognition (OMR) has created new opportunities for automating the transformation of sheet 

music into machine-readable, structured formats. The goal of this project is to bridge the gap 

be- tween digital music processing and traditional notation by developing an Automated Music 

Sheet to MIDI Conversion and Spectrogram Analysis for Multi-Instrument and Multi-Genre 

Composition. 

A popular standard for expressing musical data, MIDI (Musical Instrument Digital Interface) 
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enables smooth interaction with virtual instruments, digital audio workstations (DAWs), and 

music analysis software. In contrast to audio recordings, MIDI allows for flexible editing and 

manipulation by storing performance data such note pitch, length, velocity, and instrument 

selection. In computational musicology, automated transcription, and digital music creation, 

the ability to transform sheet music into MIDI offers substantial benefits. Additionally, 

spectrogram analysis helps with instrument identification, performance evaluation, and music 

genre classification by providing a visual depiction of a composition’s harmonic structure. 

Accurately extracting and converting musical elements from sheet music is still difficult 

because of differences in notation methods, staff-line distortions, and symbol complexity, even 

with advances in music recognition and digital transcription. Current OMR techniques 

frequently have trouble detecting notes and interpreting rhythms in handwritten or deteriorated 

sheet music. To accomplish accurate note extraction and transcription, this study suggests a 

combined strategy that makes use of deep learning models, image processing techniques, and 

MIDI generating algorithms. The system’s broad applicability in music education, performance 

analysis, and AI-assisted composition is ensured by its capacity to accommodate multi-

instrument compositions across a variety of musical genres. 

The goal of this project is to improve the usability and accessibility of musical compositions in 

digital contexts by automating the conversion process from music sheet to MIDI. To extract 

significant musical aspects, the produced MIDI files can be further processed, synthesized into 

audio, and examined via spectrogram visualization. By offering a strong foundation for music 

transcription, synthesis, and genre-specific adaption, this study advances computational music 

analysis. The study’s conclusions have important ramifications for digital archiving of musical 

heritage, music technology, and artificial intelligence in music. 

 

2 Literature Survey 

I. -C. Wei, C. -W. Wu and L. Su in [1] employed CRNN, fully convolutional networks, Sample 

CNN, and WaveNet-style architectures respectively for drum transcription automatically. The 

models performed accurately in transcribing major drum components such as kick, snare, and 

hi-hat based on large-scale audio-to-MIDI aligned datasets. However, the draw- backs are 

generalization problems in noisy or polyphonic settings, excessive computational cost, and 

lower accuracy on uncommon drum events or non-standard drum kits. 

J. Ling and M. Fu in [2] introduced a ResNet-18 inspired deep neural network architecture for 

precise audio-to-MIDI conversion. The model was trained to process mono-instrument tracks 

and showed remarkable performance, with over 90 percent accuracy on clean and well-aligned 

datasets. It successfully employed convolutional layers to extract temporal and spectral features 

from the audio input and project them to MIDI representations. Nonetheless, the model was 

limited when used with noisy or polyphonic music, where overlapping sounds of instruments 

led to transcription errors. Moreover, the method also had difficulty generalizing across various 

musical genres and unseen instruments, and demanded consider- able computational resources 

for training and inference. 

P. J. Donnelly and V. Ebert in [3] The authors suggested a system for polyphonic piano music 

transcription to MIDI via deep learning. They used Convolutional Neural Networks (CNNs) 



 

and Bidirectional Long Short-Term Memory (BiLSTM) networks to recognize note onsets and 

categorize pitches. The model had 94 percent precision and 93 percent recall. One major 

limitation is that the system is particularly designed for piano sound, and potentially won’t 

generalize as well to other instruments or multi-genre audio data since the training data is 

mostly piano-dominated. 

D. M. Dhanalakshmy, H. P. Menon and V. Vinaya In [4] Musical Notes to MIDI Conversion 

The process of translating musical notes from sheet music to MIDI includes extracting musical 

symbols and interpreting them from images. Conventional techniques depend on image 

processing methods such as staff line removal, symbol segmentation, and note recognition. 

This paper introduces a system that improves the process by using projection pro- files, 

morphological operations, and integration of the DSP toolbox. Even with 88 percent accuracy, 

difficulties remain in dealing with complicated notations and handwritten scores. Future 

enhancements may tap into deep learning to enhance automation and precision. 

N. J. Sieger and A. H. Tewfik in [5] presented a model for converting audio signals into MIDI 

format based on deep learning and signal processing methods. The model combined an STFT 

for pre-processing and CNNs for pitch derivation and instrument recognition. The 

performance of the system achieved 78 % of pitch extraction and 81% of instrument 

identification. However, the method had weaknesses in handling overlapping notes, 

background noise, and polyphony, which affected the quality of the resulting transcription and 

MIDI output consistency. 

Z. Nie and S. Yang in [6] proposed a method to convert Erhu music in the form of WAV into 

MIDI format using methods of signal processing. Feature extraction was performed using 

Short-Time Fourier Transform (STFT) and note extraction with a pitch extraction algorithm 

such as YIN for exact notes. The technique attained high accuracy in pitch detection for Erhu 

music due to the monophonic nature of the instrument. But the system was limited in its ability 

to tackle polyphonic or multi-instrumental pieces, and had problems with noise interference in 

poor-quality recordings. 

G. Chen and W. Zhang in [7] suggested a watermarking algorithm to insert MIDI information 

directly into digital music scores by quantization-based methods. They utilized musical note 

characteristics to preserve transparency and utilized a watermark key to guarantee robustness. 

The algorithm demonstrated good accuracy in preserving watermark information after printing 

and scanning. It is, however, restricted to printed or scanned music scores and will not 

generalize to complicated multi-instrument sheets or changing font styles. 

M. Marolt In [8] proposed a neural network-based method for polyphonic piano music 

transcription using bidirectional long short-term memory (BLSTM) models. Their architecture 

simulates both frame-wise pitch detection and note onset/offset prediction and obtains 

remarkable improvements over conventional methods. The model was tested on the MAPS 

dataset and obtained an F-measure of around 76.4 percent for note transcription. While the 

system works well with known data sets, limitations involve sensitivity to unheard recording 

conditions and dependence on supervised learning, which needs labeled data. Additionally, 

real-time transcription is still challenging due to computational complexity. 

S. Lui, A. Horner and L. Ayers in [9] suggested a transcoding algorithm for translating 



 

standard MIDI files to SP-MIDI by applying phrase stealing methods intelligently. They 

employed heuristics and optimization techniques to determine which notes to omit while 

preserving the musical content. Their approach attained more than 90 percent fidelity in 

perceptual quality tests but did not support dynamic polyphony and real-time requirements, 

which restricted its application in live playback systems or more intricate compositions. 

Z. Huang and C. Zhou in [10] introduced the Sci-MIDI toolbox, an extensive Python-based 

platform for symbolic music research, including support for MIDI parsing, corpus filtering, 

feature extraction, and MIDI generation. Although the research was not specifically on deep 

learning models, it allowed for the creation of tailored machine learning pipelines for music 

information retrieval. The toolbox is open-source and modular, and it enables reproducible 

research. Nevertheless, it does not have inherent support for newer neural architectures such as 

transformers or GANs for symbolic music creation and must be integrated manually by users. 

Also, the system only supports MIDI-based symbolic data and does not accept audio or 

scanned sheet music input. 

K. N. Kim, U. P. Chong and J. H. Choi in [11] suggested an algorithm for format conversion of 

CD-DA (Compact Disc Digital Audio) into MIDI without compromise on sound quality. They 

first converted the sound into WAVE format, extracted pitch, duration of notes, and velocity in 

an autocorrelation-based procedure. The process worked fairly well for solo notes of piano and 

produced nearly correct pitch (for example, 436–445 Hz for A4 vs. standard 440 Hz). Yet, 

when dealing with multiple simultaneous notes (such as C4 and A4), the model struggled with 

interfering frequencies, confining polyphonic transcription precision. The research is promising 

but presently limited to monophonic piano music. 

E. Donati and C. Chousidis In [12] proposed a CNN-based model for voice classification with 

92 percent accuracy in separating vocal activities but was not able to handle background noise 

interference in real-time scenarios. LSTM-based system for MIDI conversion with 89 percent 

accuracy but had issues with polyphonic vocal inputs. Kumar et al. hybrid CNN- RNN model 

with 94 percent accuracy but had latency issues on low-resource hardware. Williams et al. 

investigated a Transformer-based method for AI voice classification with a 95 percent accuracy 

but the heavy computational requirements restricted usage on low-power embedded platforms. 

E. A. Suarez Guarnizo and L. M. Ramirez Rios in [13] investigated different percussion sound 

synthesis approaches and gesture identification in MIDI controllers. Rossing studied the 

acoustics of percussion instruments without concentrating on real-time processing. Wanderley 

and Depalle utilized motion tracking models for gesture perception with high accuracy but 

suffered from latency and calibration. Kapur used machine learning classifiers such as SVM 

and Neural Networks for identification of percussion and increased accuracy at the cost of 

dataset generalizability. Smith created digital waveguide synthesis for real-time sound 

reproduction of percussion sounds, producing lifelike sound but being insensitive to varying 

playing styles. 

T. J. Tsai, D. Yang, M. Shan, T. Tanprasert and T. Jenrungrot In [14] suggested an ap- proach 

for extracting MIDI passages from cell phone images of sheet music through Optical Music 

Recognition (OMR) along with deep learning-based image processing. The method employed 

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) for the 

improvement of musical symbol recognition up to an accuracy of approximately 85 per- cent. 



 

Yet, the method was disrupted in cases involving distorted or low-resolution images, resulting 

in mis-aligned and missing note extraction. Moreover, real-time performance was constrained 

by processing speed and handwritten annotation variations. 

Z. Su, G. Zhang, Z. Shi, D. Hu and W. Zhang [15] proposed a message-driven generative 

music steganography algorithm based on MIDI-GAN, which utilizes generative adversarial 

networks (GANs) for embedding secret messages in MIDI sequences. The framework utilizes 

deep learning methodologies to ensure musical coherence alongside secret data embedding, 

ensuring high imperceptibility. The strategy exhibited efficient message recovery rates but was 

challenged with optimal musical quality and embedding capacity balancing. The system also 

had trouble generalizing across various genres of music, restricting its applicability in varied 

applications. 

P. Wiriyachaiporn, K. Chanasit, A. Suchato, P. Punyabukkana and E. Chuangsuwanich In [16] 

performed comparative research on algorithmic music generation techniques, comparing rule-

based approaches, evolutionary algorithms, and machine learning techniques. The research 

underlined the success of genetic algorithms in evolving musical form and increasing influence 

of deep learning in producing stylistically consistent music. Although machine learning 

systems were able to produce high-quality outputs, they needed extensive training datasets and 

had no control over musical creativity at a fine-grained level. Rule-based methods provided 

interpretability but lacked flexibility, and evolutionary methods generated creative works but 

were computationally intensive. The research highlighted the importance of hybrid methods to 

strike a balance between creativity, control, and efficiency in algorithmic music composition. 

M. Akbari and H. Cheng in [17] suggested a computer vision-based real-time piano music 

transcription system, which used deep learning methods to identify and recognize movements 

of piano keys. The system utilized convolutional neural networks (CNNs) and optical flow 

analysis to monitor key presses, with high transcription accuracy in controlled settings. While 

the method indicated acceptable online processing performance, it was sensitive to occlusions, 

light variations, and hand motion. In addition, the system struggled in the case that the music 

played was complicated, with the different notes playing at the same time as others, leading to 

lower quality of transcription. 

L. Chen and K. Duan in [18] proposed a mixture of MIDI with computer vision-based 

methods to aid in sheet music transcription as well. The approach leverages deep learning-

based OMR models to detect the musical symbols and utilizes MIDI alignment for error 

minimization to improve transcription quality. It performed well under controlled conditions 

but was susceptible to occlusion. Also, the method struggled to respond to handwritten 

manuscripts and intricate notations, thereby constraining its usability in heterogeneous musical 

environments. 

3 Workflow 

The method of transforming multi-instrumental and multi-genre music sheet images into 

workable MIDI and spectrogram outputs is described in the flowchart. To extract musical 

symbols, preprocessing is done first, then staff lines are removed. For precise pitch 

identification, note heads are then detected once symbols have been retrieved. Before MIDI 

files are converted to WAV format, the user can specify how long they should play. The 



 

creation of spectrograms for visual analysis follows the compilation of readable notes for 

interpretation. The automated conversion process is then finished when the converted MIDI 

file is played back. The Fig 1 shows Workflow of the Automated Music Sheet to MIDI 

Conversion Process. 

 

Fig. 1. Workflow of the Automated Music Sheet to MIDI Conversion Process. 

4  Methodology 
 

4.1 Dataset Preparation 

In this work, we collected a dataset of 100 music note sheets of different instrumental and 

genre- specific songs. Piano, violin, percussion and flute multi-instrument sheet music is 



 

present in the dataset, ensuring a comprehensive coverage across various music patterns and 

instrumental tones. Also, the dataset includes multiple genres (jazz, pop, classical), hence 

preserving the complexities and stylistic differences of different musical cultures. In this 

manner, a robust automatic transcription system that precisely interprets a wide range of types 

of musical material into MIDI representation can be developed and tested using such a diverse 

set. 

 

4.2 Preprocessing 

Input music note sheet images undergo several transformations during the preprocessing stage 

to enhance the quality for further analysis. To reduce data complexity and computational cost 

the images are converted to greyscale. Gaussian blurring that smoothes the image and reduces 

noise to facilitate better feature extraction follows. The background (the musical notes) and the 

foreground are then separated through binary thresholding process to enhance note separation. 

The output of this process is further optimized by the use of morphological operations to get 

rid of noise or extraneous complexity understandably while retaining salient melodic 

constituents. 

 

4.3 Staff Line Removal 

One sub-step of plenty import to regards to accuracy note detection is the removal of stave 

lines. Morphological methodologies such as morphological filtering or Hough Transform for 

horizontal line detection, which may hinder symbol extraction, are also applied. In order to 

leave the note heads and other markings of the music untouched, the algorithm searches for 

horizontal strings that are long and eliminates them. This step ensures accurate pattern 

recognition and enhances the clarity of the collected symbologies. 

 

4.4 Symbol Extraction 

The next stage is the recognition of other classical music symbols: note heads, rests, clefs, 

accidentals when there is no staff line. These symbols are identified in an edge-detected 

content as contours and edges and thus can be detected with edge detection such as Canny edge 

detection. With the help of connected component analysis, different symbols could be 

classified in size and shape. The extracted symbols are then labelled to support MIDI 

conversion and to allow accurate rendering of the musical composition. 

 

4.5 Note Head Identification 

The primary source of pitch in musical notation is notes heads. To find circle-like shapes 

representing note heads use the Hough Circle Transform. Size and position of each detected 

note head is recorded to map them to MIDI pitches. The duration is found by using the 

distinction between note heads: filled vs. empty note head, and assisted by other filtering 

algorithms. This stage enhances transcription accuracy, by ensuring fine-grain pitch coverage 

 

4.6 User Defined MIDI Playback 

The application allows to generate MIDI file with a time limit; in this way the user can play 



 

back those created files for the duration they would like. After determining the notes, we have 

a fixed time-per-note value (e.g., 0.5 seconds per note) to compute total expected length of the 

notes. The notes are thrown away if the total length exceeds the user specified limit. This 

ensures that the generated MIDI is musically sound and conforms to the specified length 

constraint. 

4.7 MIDI to WAV Conversion 

Once generated, the MIDI file is converted into WAV format for audio reproduction. The 

MIDI file is synthesized using Pretty MIDI, which transforms discrete representations of notes 

into a digital sound waveform. The generated MIDI is there for research and listening because 

of the conversion, making it clear that its audio can be examined. The WAV file is just a 

temporal step in the trajectory of the spectrogram's formation. 

 

4.8 Generating Readable Notes 

The identified notes are plotted on a re-synthesized music staff to enhance interpretation. To 

facilitate verification by a human, this step converts the captured MIDI events back to a virtual 

piece of sheet music. To ensure that the transcription is accurate, it lays out the recognized 

symbols and builds up staff. With this method, the automatic transcription will always adhere 

standard music notation. 

 

4.9 Spectrogram Generation 

 

The time-frequency content of the resulting.WAV file is displayed as a spectrogram. The 

system creates a complete spectrogram by converting amplitude to decibels and computing the 

Short-Time Fourier Transform (STFT) in Librosa. The harmonic structure may be clearly seen 

because the x-axis indicates time and the y-axis shows frequency. This stage helps with quality 

assessment by offering a more thorough examination of the musical content. 

 

4.10 Midi Playback 

The final output includes an option for direct MIDI playback, enabling users to listen to the 

synthesized version of the music sheet. MIDI playback allows real-time verification of the 

transcription accuracy before conversion to WAV. This step ensures that the generated MIDI 

maintains musical coherence and corresponds accurately to the original sheet music. 

 

5 Architecture 

The design of the project is based on a well-defined pipeline to transform music note sheets 

into playable MIDI and WAV format. It starts with an input image of a multi-instrument, 

multi-genre music sheet, which is passed through Gaussian filtering to eliminate noise and 

make symbols clear. Symbol extraction is then applied, where separate musical entities are 

detected, followed by staff line removal to separate the notes. Once the staff lines have been 

eradicated, note head identification comes into play and picks up pitch and duration for 

reconstitution of the musical composition. Fig 2 shows Architecture of the Automated Music 

Sheet to MIDI Conversion Process. The Musical Information that was derived is later refined 

to produce a MIDI file (.mid) which is digitally representational of the notes. Ultimately, the 



 

resulting MIDI file is transformed to an audio waveform (.wav), opening the stage for further 

analysis via spectrograms. This computerized pipeline allows easy transcription of sheet music 

into digital forms, promoting multi-instrument and multi-genre composition. 

 
Fig. 2. Architecture of the Automated Music Sheet to MIDI Conversion Process. 



 

6 Results 

The proposed system effectively automates the process of converting music sheet images to 

MIDI files with spectrogram analysis. The results prove that the system can effectively capture 

musical symbols, process them in MIDI form, and create audio and visual outputs. 

6.1 Accuracy Metrics and Results 

The system was evaluated on a ground truth dataset of 100 multi-instrumental sheet music 

images, spanning piano, violin, percussion, and flute compositions in various genres. The 

musical note extraction and transcription accuracy was measured using a manually annotated 

ground truth dataset. 

 

6.1.1 Staff Line Removal Accuracy 

Staff line removal is crucial for isolating musical symbols and ensuring accurate note 

recognition. The accuracy is computed in Equation (1): 

                 𝑆𝑡𝑎𝑓𝑓 𝐿𝑖𝑛𝑒 𝑅𝑒𝑚𝑜𝑣𝑎𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑆𝐿

𝑇𝑃𝑆𝐿 +𝐹𝑃𝑆𝐿+𝐹𝑁𝑆𝐿
 ×  100%                       (1) 

where: 

• TPSL: True Positives (Correctly removed staff lines) 

• FPSL: False Positives (Incorrectly removed valid musical symbols) 

• FNSL: False Negatives (Unremoved staff lines) 

A higher accuracy indicates better isolation of musical elements without loss of relevant 

information. 

 

6.1.2 Note Head Detection Accuracy 

Detecting note heads accurately is fundamental for pitch and duration extraction. The accuracy 

is given in equation (2): 

               𝑁𝑜𝑡𝑒 𝐻𝑒𝑎𝑑 𝐷𝑒𝑡𝑒𝑐𝑡𝑖𝑜𝑛 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃𝑁𝐻

𝑇𝑃𝑁𝐻+𝐹𝑃𝑁𝐻+𝐹𝑁𝑁𝐻
 ×  100%                  (2) 

where: 

• TPNH : True Positives (Correctly detected note heads) 

• FPNH : False Positives (Incorrectly detected non-note symbols as note heads) 

• FNNH : False Negatives (Missed note heads) 

This metric ensures that musical notes are extracted reliably for MIDI conversion. 

Staff line removal accuracy: 97.02  



 

Note head detection accuracy: 96.44  

Symbol recognition accuracy: 95.12 

Total sheet-to-MIDI conversion accuracy: 97.24 

In spite of high accuracy, small errors were noted in handwritten sheet music and low- quality 

images, which could be addressed with additional deep learning improvements. The fig 3 

shows Accuracies of the Automated Music Sheet to MIDI Conversion Process. 

 

 

Fig. 3. Accuracies of the Automated Music Sheet to MIDI Conversion Process. 

6.2 MIDI file Quality and Playback Assessment 

The created MIDI files were evaluated by automated software and human listeners alike: Time-

aligned playback: The MIDI notes properly obeyed the timing and layout of the sheet music. 

Rhythmic accuracy: The majority of extracted notes preserved the original rhythm, with a 95 

percent alignment score against professionally transcribed MIDI files. 

6.3 User Defined MIDI playback 

To provide flexibility in play duration, the system includes user-specified play duration con- 

strain to the generated MIDI file. In execution, upon running the software, the user is asked for 

the desired playback duration in terms of minutes. In our case, here the system indicated the 

prompt to the user and received an input of 20 minutes. Accordingly, the system changed the 

numbers of musical notes chosen for transposition to comply with this time constraint in order 

to produce final MIDI output within this limit. 

Implementation Details: The system approximates the overall length of the sheet music in 

terms of note length and tempo. If the total time is more than the user input (20 minutes here, 

for example), the additional notes beyond the count are automatically cut without losing 

musical integrity. This option is especially beneficial in segmenting long pieces of music into 

palatable chunks to play and study. 

 

6.4 Spectrogram Analysis 

Spectrograms were generated from the synthesized MIDI-to-WAV conversion, allowing for 

frequency-domain analysis. The system produced clear and structured spectrograms, which 



 

helped in: 

Instrument frequency identification: Different instrument timbres were visible in frequency 

components. 

 

6.5 Final output Sequence 

When the music sheet processing pipeline is complete, the system produces a sequence of 

output files, making the extracted musical information accessible for playback, visualization 

and additional analysis. Fig 4 shows Final output files sequence with the audio playback of the 

synthesized MIDI file. The outcomes for a 20-minute user-specified MIDI generation are as 

follows: 

• MIDI File: The processed structured musical notation from the sheet music, trans- 

formed into machine-readable MIDI, which can be played back and further composed 

musically. 

• WAV File: The MIDI file is rendered into an audio waveform, allowing direct 

playback without further software dependencies.  

• Spectrogram: Frequency-time plot of the synthesized sound, illustrating the tonal and 

harmonic frameworks.  

• Readable Notes: A text representation of the identified musical notes, usable for 

verification and analysis of the accuracy of the transcription. 

 

Fig. 4. Final output files sequence with the audio playback of the synthesized MIDI file. 

 

6.6 Spectrogram Analysis of Generated Audio 

The system generates a spectrogram representation of the synthesized 20-minute audio out- put 

derived from the processed sheet music. The spectrogram, shown in Fig 5, provides a time-

frequency analysis of the generated MIDI-to-WAV conversion, allowing visualization of the 

harmonic structure and tonal variations over time. 

Key Observations: The x-axis represents time (in minutes), ensuring the duration matches the 

user-defined limit. The y-axis represents frequency (in Hz), spanning from 0 Hz to 16,384 Hz, 

covering a wide musical range. The color gradient represents amplitude (in dB), where lighter 

colors indicate higher intensity sound components, while darker shades represent lower 

amplitude regions. The periodic patterns suggest structured musical elements, confirming the 

accuracy of note extraction and synthesis. 



 

The spectrogram shows clear harmonic overtones and rhythmic patterns, confirming the 

effectiveness of the note segmentation and transcription process. The ordered organization of 

frequency bands shows polyphonic musical elements exist, confirming the system’s ability to 

process multi-instrument pieces. Periodic vertical structures emphasize the onset of music 

notes, showing temporal alignment correctness of detected notes and synthesized sound. The 

system is able to maintain pitch and timbre features well, as shown by the harmonics and 

smooth transitions in the spectrogram presentation. High frequencies relate to percussive 

sounds and sharp attacks, and low frequencies reflect bass and harmonic foundation elements. 

The spectral energy distribution among various frequency bands highlights the system’s 

capacity to deal with various tonal ranges of multi-genre pieces. Gradual intensity variations in 

the spectrum imply dynamic changes in note speed, supporting the system’s ability for 

expressive musical synthesis. The homogeneity and simplicity of the spectrogram guarantee 

the absence of artifacts or distortions, attesting to high-quality MIDI-to-WAV conversion. On 

the whole, the representation matches well theoretical predictions for organized musical 

compositions, supporting the robustness and reliability of the suggested automated pipeline. 

 

Fig. 5. Spectrogram of the generated 20-minute MIDI-to-WAV audio, illustrating the frequency spectrum 

of detected musical components. 

 

7 Conclusion 

This article introduced a new method of automatic music sheet-to-MIDI conversion and 

spectrogram analysis that allows effective transcription of multi-instrument and multi-genre 

music pieces. The system proposed here effectively retrieves musical notes from images of 

sheets, eliminates staff lines, and translates the notation into MIDI files, which are then 

converted into WAV sound and displayed as spectrograms. The user-specified time limit 

allows only the needed amount of music to be processed, improving computational efficiency. 

The resulting spectrograms offer a useful representation of harmonic structure and tonal 

changes, confirming the precision of note extraction and synthesis. Experimental results 

illustrate that the system successfully maintains musical structure, with high-quality MIDI 

interpretations. Future research will concentrate on enhancing note detection accuracy, dealing 

with intricate polyphonic arrangements, and applying deep learning methodologies for better 

music transcription. The suggested framework is a useful tool for musicologists, composers, 

and researchers in need of automated approaches to digital music processing. 
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