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Abstract. In particular, this review gives a complete study of Explainable Artificial 

Intelligence (XAI) in deep learning applied to medical imaging diagnostics, which are of 

key importance in AI powered clinical decisions. The study presents an exhaustive yet 

practical exploration of a range of XAI methodologies such as gradient based visualization 

techniques, perturbation-based models, attribution mechanisms, attention-based networks, 

surrogate models and hybrids in applying to understand and trust medical XAI. The 

explainability significantly increases model interpretability and clinician acceptance and 

its practical use case on disease detection, segmentation, and prognostic analytics are then 

discussed. In addition to main challenges such as balance accuracy with interpretability, 

data quality constraints, algorithmic bias and the regulatory barriers, the paper addresses 

how data holes can be addressed. Furthermore, areas in multimodal data fusion, human in 

the loop AI, privacy preserving learning and federated AI are also explored to see how 

they may increase the model robustness and scalability. Performance, interpretability, 

computational efficiency and clinical utility of XAI techniques are compared among each 

other, and are presented to aid in the selection of suitable models for specific medical 

imaging applications. Finally, the paper concludes with some future research directions 

also specifying, regulatory compliance, computational optimization, and clinician centered 

AI framework as the need for such trustworthy, interpretable AI solutions to be adopted 

panprecise medicine. 

Keywords: Explainable AI, Deep Learning, Medical Imaging, Interpretability, Clinical 

Decision Support. 

1 Introduction 

Modern medicine significantly advanced through medical imaging because it provides 

opportunities to identify diseases early and track their advancement and supports treatment 

preparations. Medical practice depends heavily on four imaging modalities including X-rays 

together with computed tomography (CT) and magnetic resonance imaging (MRI) and 

ultrasound for gaining detailed pictures of both anatomical features and pathological conditions 

[1]. Medical imaging methods benefit from artificial intelligence (AI) deployment and deep 

learning technology specifically which helps doctors achieve better diagnosis quality and 

automatic task performance [2]. Remains challenging for deep learning models to provide 

transparent decision-making since their operational functions remain unclear to healthcare 

professionals [3]. To address these concerns, Explainable AI (XAI) emerges in the hope of 

offering mechanisms that facilitate the model interpretability, allowing healthcare professionals 
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to understand and validating AI driven diagnosis [4]. It is critical to ensure an accuracy balance 

and transparency achieved in medical imaging for the purpose of fostering trust in AI assisted 

clinical workflows and to inform decision making [5]. Despite significant advancements, 

several challenges impede the widespread adoption of interpretable AI in medical imaging. 

Among these challenges are the lack of transparency in such models, limited trust in clinicians 

as a consequence, as well as the issue of balancing between accuracy and interpretability [6]. 

Besides, data scarcity, quality of annotations and algorithmic biases create a substantial 

challenge in developing and validating the models [7]. Technically, more complexity arises 

from integration of data sources from imaging, genomics, and clinical records. In addition, 

contributing to the area of real time explainability in the critical care needs innovation [9]. The 

final factor is that such medical systems anchored on AI definitely need to conform to ethical 

and regulatory frameworks in order to keep AI driven medical systems fair, private and 

accountable [10]. 

1.1 Key Contributions of the Paper 

This paper constitutes a Systematic review of XAI techniques for medical imaging diagnostics 

combined with deep learning, with the following key contributions. 

• Comprehensive Survey of XAI Techniques: Considering existing explainability 

methodologies including the model-specific, the model-agnostic and the hybrid approaches 

to enhance the transparency of the deep learning models on medical imaging. 

• Evaluation of Practical Applications: Describes disease detection, segmentation and 

prognosis use cases where explainable AI improves clinical decision making and model 

interpretability. 

• Analysis of Technical and Ethical Challenges: Identifies key barriers such as data quality 

issues, algorithmic bias, and the trade-offs between accuracy and interpretability, offering a 

critical assessment of limitations in current explainability frameworks. 

• Exploration of Emerging Trends: Investigates recent advancements in multimodal data 

integration, human-in-the-loop frameworks, and federated learning, highlighting promising 

directions for future research. 

• Comparative Analysis of Explainability Models: A structured review compares current 

XAI methods based on their performance levels and their interpretability, computational 

efficiency, and clinical usefulness capabilities for assisting medical imaging task selection. 

• Recommendations for Future Research: The article suggests methods to achieve ethical 

alignment while securing patient privacy through AI medical imaging while solving 

regulatory problems and trust issues for scalability. 

The paper divides into two parts: Section 2 explains explainable AI principles and deep learning 

integration with medical imaging technology. Section 3 evaluates present day explainability 

methods across three main categories such as model-specific and model-agnostic and hybrid 

approaches. A review of disease detection practices along with segmentation along with 

predictive analytics applications takes place in Section 4 through clinical examples. The 

implementation of explainable AI models encounters barriers from technical limitations and 

adoption issues while also encountering problems from data-related sources according to 



Section 5. The discussion of future directions in Section 6 explores three emerging trends about 

multimodal integration of systems and privacy-preserving AI methods as well as human-in-the-

loop systems. A comparative study of current methods appears in Section 7 to evaluate both 

their performance capabilities as well as interpretability metrics between different methods. A 

summary of conclusions along with research direction suggestions for the future marks the 

termination of this paper in Section 8. 

2 Foundations of Explainable AI Integrating with Deep Learning in 

Medical Imaging 

2.1 Definition and Importance 

The fundamental requirements for AI applications extend to deep learning in medical imaging 

due to need for both explainability and interpretability. The degree of human understanding in 

AI model decision processes is called interpretability but explainability describes the ability to 

show internal AI decision mechanisms [11]. Many clinicians view deep learning models as 

black boxes because their complicated nature creates challenges for prediction validation which 

then questions both safety and reliability in patient care [12]. Healthcare professionals hold back 

from implementing AI diagnostic tools because these systems lack interpretability which leads 

them to hesitate [13]. Medical imaging and healthcare facilities need explainable AI models 

because these features create trust between practitioners and patients while maintaining 

transparency in diagnostic operations [14]. 

2.2 Historical Context 

AI applications in healthcare started with initial expert systems then transitioned into machine 

learning operating on healthcare datasets. During the 1960s AI served in medical diagnosis 

through expert systems which used predetermined rules that attempted to reproduce physician 

decision processes. The groundbreaking systems which emerged at that time showed limited 

clinical usefulness because they possessed neither learning capabilities nor adaptive features 

[15]. Machine learning entered the scene in the late twentieth century to allow AI models use 

statistical techniques on massive datasets thus boosting predictive accuracy [16]. The 

implementation of these models caused medical institutions to face two major hurdles because 

their decisions became harder to understand which made them hard to accept in standard clinical 

workflows [17]. The latest research has brought forward AI models which provide maintenance 

of both interpretability and predictive accuracy in their operations. Deep neural networks receive 

improved explainability through model-agnostic interpretability frameworks together with self-

attentive deep learning models according to research conducted in [18]. These diagnostic 

methods enable medical staff to track the reasoning behind AI diagnoses therefore making AI 

more trustworthy and clinically relevant. XAI has gained prominence because it demonstrates 

the need for transparent AI applications in healthcare to create accountable medical decision 

tools [19]. 

2.3 Ethical and Legal Considerations 

XAI for medical imaging demands closest evaluation of ethical and legal aspects that determine 

clinical deployments. AI-driven medical imaging systems require patient data privacy and 

security to be primary considerations because their operations depend on massive sensitive 

health-related information databases. The protection of personal data must follow standards 

based on GDPR and HIPAA directives to reduce exposure risks arising from unauthorized 



access breaches [20]. Deep learning models present such complex systems that fault detection 

for diagnostic errors becomes difficult to trace during diagnostic processes. Medical imaging 

XAI implementation faces regulatory barriers because courts are actively debating which party 

bears responsibility when diagnostic issues occur [21]. This lack of legal precision forces 

institutions to determine between healthcare providers developers or deployment organizations 

[21]. Existing laws want improvement to provide proper regulations to AI technologies because 

modern standards do not fully handle complex artificial intelligence operational demands [22]. 

Meanwhile, achieving transparency stands as an ongoing technical challenge. The goal of XAI 

systems is to improve interpretability yet sustaining optimal model performance while 

maintaining easy understanding presents ongoing difficulties. For healthcare professionals and 

patients to trust AI-generated explanations they need assurances that explained information is 

clinically important and easy to understand [23]. Fully addressing healthcare ethical and legal 

points requires a team of medical professionals, lawyers and AI experts who will establish 

transparent and accountable AI systems in healthcare. 

3 Techniques for Explain ability in Deep Learning for Medical Imaging 

Healthcare specialties of radiology, oncology and cardiology have achieved major diagnostic 

improvement through deep learning application in medical imaging. The black-box 

characteristic of deep learning models creates crucial obstacles for understanding model 

operations and obtaining transparency and clinical acceptability [24]. The adoption of AI 

decision-making systems requires explainability to successfully implement them in critical 

healthcare operations since these systems ensure regulatory acceptance and improve both 

clinical and patient outcomes [25]. Research teams have designed multiple explainability 

methods which offer understanding into how deep learning models’ function. This portion 

examines the major explainability methods together with their particular medical imaging uses 

as illustrated in fig 1. 

 

Fig. 1. Explainability Techniques in Deep Learning for Medical Imaging. 



3.1 Gradient-Based Visualization Methods 

Gradient-based methods leverage the gradients of the model’s output with respect to input 

features to highlight important regions in medical images that contribute most to AI predictions. 

These methods include: 

• Gradient-weighted Class Activation Mapping (Grad-CAM): Grad-CAM computes 

heatmaps by extracting the gradients of the model’s output concerning feature maps from 

the final convolutional layers [26]. These heatmaps overlay the original image, visually 

highlighting critical areas, such as lesions in chest X-rays or tumors in MRI scans, providing 

crucial insights for radiologists. 

• Saliency Maps: Saliency maps identify the most relevant pixels influencing the model’s 

prediction, enhancing interpretability by directly mapping feature contributions [27]. 

However, their effectiveness is often challenged due to noise sensitivity and a lack of 

robustness in complex medical images. 

3.2 Perturbation-Based Techniques 

Perturbation-based methods systematically alter portions of an image and analyze changes in 

the model’s predictions to determine feature importance. These include: 

• Local Interpretable Model-Agnostic Explanations (LIME): LIME perturbs input images by 

masking different regions and constructs an interpretable, surrogate model to approximate 

feature relevance [28]. This technique has proven useful in tumor boundary detection and 

fracture identification in radiographs. 

• Occlusion Sensitivity Analysis: This method selectively occludes parts of an image to 

measure how much the occlusion affects AI predictions, validating whether models focus 

on clinically significant areas, such as cardiac regions in echocardiograms or lung nodules 

in chest X-rays [29]. 

3.3 Attribution-Based Techniques 

Attribution-based methods assign importance scores to individual pixels or image regions, 

providing a quantitative measure of their contribution to the model’s final decision. 

• Shapley Additive Explanations (SHAP): Derived from game theory, SHAP values quantify 

the contribution of each feature toward model predictions [30]. In medical imaging, SHAP 

has been applied to tumor classification and disease progression analysis. 

• Integrated Gradients: This technique computes an integrated path of gradients between a 

baseline and the input image, ensuring that the importance assigned to features is robust [31]. 

Applications include diabetic retinopathy detection in fundus images and pulmonary fibrosis 

progression analysis. 

3.4 Attention Mechanisms 

Attention mechanisms, initially developed for natural language processing, have been 

increasingly utilized in medical imaging to assign varying importance to different regions within 

an image. 



• Attention Maps: These provide visualization of regions where the model focuses during 

decision-making. For example, in brain MRI scans, attention maps effectively highlight 

tumor-affected areas, improving explain ability for radiologists [32]. 

• Self-Attention Mechanisms: Transformer-based self-attention models enable long-range 

spatial dependencies to be captured in medical imaging applications, aiding in organ 

segmentation and multi-lesion analysis in CT and ultrasound images [33]. 

3.5 Model-Agnostic Surrogate Models 

Surrogate models simplify complex deep learning architectures by approximating their behavior 

using interpretable rule-based models. 

• Decision Trees and Rule-Based Systems: By training a decision tree on the predictions of a 

deep learning model, surrogate models generate explicit, interpretable decision rules [34]. 

These methods have been successfully used to audit AI predictions for pneumonia detection 

and melanoma classification. 

3.6 Hybrid Techniques 

Hybrid methods integrate multiple explainability approaches to provide comprehensive and 

multi-faceted insights into model behavior. 

• Grad-CAM + SHAP: Combining these two techniques enhances both localized and global 

explanations, providing clinicians with detailed visual and quantitative justifications for 

model decisions in chest X-ray analysis and multi-label disease classification [35]. 

• Attention Mechanisms + Occlusion Sensitivity: By arranging MI tasks in this order, the MI 

models will learn to focus on the relevant anatomical regions for segmentation properly, 

which increases the model reliability in the oncological and cardiovascular imaging. 

Table 1 provides explanations of explainability approaches that examine their interpretability 

along with computational complexity and robustness while presenting specific applications. 

Table 1. Comparative Study of Explainability Techniques in Medical Imaging. 

Technique Type Interpretability 
Computational 

Complexity 
Robustness 

Example 

Applications 

Grad-CAM[26] 
Gradient-

Based 

High (Visual 

Heatmaps) 
Moderate Moderate 

Lesion detection in 

X-rays, MRI tumor 
localization 

Saliency 

Maps[27] 

Gradient-

Based 
Moderate Moderate Low 

Feature 
highlighting in 

chest X-rays 

LIME[28] Perturbation High (Localized) High Moderate 
Tumor boundary 

identification, 

fracture detection 

Occlusion 

Sensitivity[29] 
Perturbation Moderate High High 

Pulmonary region 
analysis in X-rays 

SHAP[30] Attribution 
High 

(Quantitative) 
Very High High 

Disease 

progression, tumor 
classification 

Integrated 

Gradients[31] 
Attribution High (Robust) High High 

Diabetic 

retinopathy 
detection 



Attention 

Maps]32] 

Attention-

Based 

High (Focused 

Regions) 
Moderate Moderate 

Brain MRI tumor 

identification 

Decision 

Trees[33] 

Surrogate 

Model 

High (Simple 

Rules) 
Low High 

Pneumonia 

detection, 

melanoma 
classification 

Hybrid 

Techniques[34] 
Mixed Very High Very High Very High 

Multi-label disease 

classification 

Research by table 1 compares explainability approaches in deep learning medical imaging by 

assessing interpretability as well as computational complexity and robustness and clinical 

applications. The interpretability of Gradient-based approaches using Grad-CAM and Saliency 

Maps is improved through visual heatmaps yet these methods have moderate robustness 

together with substantial computational needs. The use of perturbation-based explanations such 

as Local Interpretable Model-Agnostic Explanations (LIME) and Occlusion Sensitivity 

provides localized feature significance understanding though they demand increased computing 

resources. Shapley Additive Explanations (SHAP) and Integrated Gradients prove best for 

disease analysis and diagnostic tasks using quantitative robust interpretations but their 

processing requirements remain high. With their Attention Maps assistive systems generators 

achieve targeted interpretability of feature relevancies yet their computational processing needs 

are considered average. Decision Trees as surrogate models enable straightforward explanation 

of interpretation rules at low computational costs that makes them easily understandable to 

clinicians. Multi-explanation frameworks combining SHAP and Grad-CAM demonstrate the 

best explainability quality because they balance interpretability with robustness to achieve 

clinical applicability for multiple disease categorization combined with critical care diagnostics. 

The evaluation process guides the selection of explainability techniques through diagnostic 

assessments of needs, computational resources analysis and clinician performance 

specifications within medical imaging AI systems. 

4 Applications of XAI Integrating with Deep Learning in Medical Imaging 

Diagnostics 

XAI provides clear explanations to medical imaging diagnostics through its substantial 

contribution which enhances diagnosis accuracy and brings increased transparency coupled with 

trust-building measures. XAI integrated with deep learning models generates predictions which 

medical staff can understand clearly while providing clinical value in decision-making 

processes. The next part thoroughly analyzes how XAI functions to support diagnostic tasks 

within medical imaging applications as depicted in fig 2. 



 

Fig. 2. Applications of XAI in Deep Learning for Medical Imaging. 

4.1 Disease Detection and Classification 

XAI technology improves disease recognition algorithms by making them more understandable 

which creates better conditions for both user confidence and operational control. Key 

applications include: 



• Cancer Diagnosis: The imaging modalities of mammograms together with CT scans and 

MRI benefit from widespread application of Grad-CAM and SHAP techniques which assist 

in both cancer classification and tumor region visualization. Listening systems produce 

visualization outputs which help locate tumor areas for radiologists to confirm AI diagnosis 

results [36]. 

• Neurological Disorders: Medical professionals can utilize LIME and attention-based 

mechanisms to examine MRI scans for Alzheimer’s disease diagnosis while showing 

important brain areas affected by neurodegeneration. [37]. 

• Retinal Imaging: Fundus imaging research utilizes Integrated Gradients analysis to 

determine which visual components aid medical diagnosis of diabetic retinopathy alongside 

other retinal problems. [38]. 

4.2 Segmentation and Localization 

XAI techniques enable medical image region visibility through visual interpretation which 

ensures the reliability of segmentation and localization functions. Applications include: 

• Tumor Segmentation: Grad-CAM and Saliency Maps have been extensively applied to 

delineate tumor boundaries in radiological images, offering visual evidence to confirm AI-

driven segmentation results [39]. 

• Organ Localization: Self-attention mechanisms in transformer-based models have been used 

for organ localization in CT and ultrasound imaging, ensuring precise anatomical 

identification [40]. 

4.3 Prognostic and Predictive Analytics 

The integration of XAI in predictive analytics and prognosis estimation has facilitated 

personalized treatment planning and risk assessment in healthcare. 

• Patient Outcome Predictions: SHAP values and surrogate models help identify key risk 

factors affecting patient outcomes, improving the personalization of treatment strategies 

[41]. 

• Disease Progression Analysis: AI-based prognostic tools, employing temporal XAI 

techniques, assisting in tracking the progression of chronic diseases such as cancer and 

cardiovascular disorders, allowing for early intervention and improved clinical management 

[42]. 

4.4 Case Studies 

Several real-world case studies highlight the impact of XAI-integrated deep learning models in 

medical imaging: 

• Breast Cancer Detection: A study utilizing ResNet-50 with Grad-CAM demonstrated that 

AI-based mammogram analysis could improve the identification of malignant regions, 

increasing clinician confidence in model predictions [43]. 



• COVID-19 Diagnosis: XAI techniques such as Grad-CAM and LIME have been applied to 

chest X-ray and CT scan analysis, providing interpretable insights into COVID-19 detection, 

ultimately improving trust and reliability during the pandemic [44]. 

• Lung Nodule Classification: Using SHAP-based feature importance analysis, researchers 

identified critical CT scan features that contributed to lung nodule classification, aiding early 

detection and treatment planning [45]. 

5 Challenges in Implementing Explainable AI and Deep Learning for 

Medical Imaging 

Despite the transformative potential of XAI and deep learning in medical imaging, their 

implementation faces numerous challenges that must be addressed to ensure widespread 

adoption and efficacy in clinical settings. These challenges span technical, data-related, and 

adoption barriers. As shown in fig 3 

 

Fig. 3. Challenges in Implementing XAI and Deep Learning in Medical Imaging. 

5.1 Technical Challenges 

One of the most significant technical challenges in implementing explainable AI is achieving a 

balance between interpretability and performance: 

• Balancing Accuracy and Interpretability: State-of-the-art deep learning models achieve 

their best predictive accuracy by reducing interpretability of their operations. The 

implementation of explainability mechanisms frequently leads to reduced performance 

levels causing potential negative consequences on clinical results. 

• Managing Model Complexity and Scalability: An increase in model complexity results in 

increased complexity of understanding decisions. Extensive computing power consumption 

of SHAP and Grad-CAM analysis tools diminishes their potential for real-time 

implementation. 

5.2 Data-Related Challenges 

AI model development requires excellent data quality together with clear access to information 

for generating trustworthy and understandable systems. However, several barriers exist: 



• Data Availability and Annotation: Many medical disciplines operate with restricted access 

to diverse datasets which have high quality standards. The development of strong computer 

models faces barriers because medical imaging annotation consumes lengthy amounts of 

time from specialists who serve as experts. 

• Bias, Variability, and Generalizability: Medical image datasets demonstrate several types 

of bias because they contain imbalances between different groups or show variations 

between different healthcare institutions. The biases present in clinical datasets reduce 

interpretability through explainability techniques and produce erroneous outcomes caused 

by existing systematic errors. 

5.3 Adoption Barriers 

Drastic barriers exist for the integration of deep learning models with XAI because both 

clinicians and regulatory bodies resist this approach: 

• Building Trust among Clinicians and Stakeholders: Medical professionals show doubt 

regarding AI recommendations because they find a lack of transparency and need 

explanations to support their use. The development of trust between users and systems 

demands explainable methods that offer both practical and medically significant 

information. 

• Overcoming Regulatory and Legal Barriers: The process of integrating XAI into medical 

devices becomes more complex due to stringent regulatory requirements enforced by both 

FDA and EMA agencies. The delay in XAI adoption is partly due to both legal requirements 

about patient privacy along with strict standards for accountability. 

6 Emerging Trends and Future Directions 

The field of Explainable Artificial Intelligence (XAI) integrated with deep learning keeps 

developing because of methodology enhancements and multi-sectorial teamwork and ethical 

frameworks. Future research will enable XAI to reach its maximum potential in medical 

imaging diagnostic practice through new developments. 

Table 2. Comparative Analysis of Emerging Trends in XAI for Medical Imaging. 

Refer

ences 
Trend 

Key 

Advancements 
Advantages Challenges 

Technical 

Considerations 

Example 

Applications 

[46], 

[47], 

[48], 

[49] 

Advances in 

XAI and 

Deep 

Learning 

Algorithms 

Vision 

Transformers 

(ViTs) leverage 

self-attention 

mechanisms for 

long-range 

feature 

dependencies. 

 

Hybrid models 

integrate 

machine 

learning 

techniques 

(Random 

Forest, Logistic 

Regression, 

Decision Trees) 

with deep 

Improved 

transparency in AI 

predictions. 

 

Enhanced feature 

interpretability 

compared to 

CNNs. 

 

Better 

generalization with 

hybrid approaches. 

High 

computational 

costs due to 

transformer 

architecture. 

 

Limited 

availability of 

labeled medical 

data for training 

complex deep 

learning 

models. 

 

Overfitting risks 

when training 

ViTs on small 

datasets. 

Requires high-

performance 

computing (HPC) 

resources. 

 

Needs large-scale 

pretraining datasets 

for generalization. 

Tumor 

detection and 

classification in 

radiology. 

 

Early-stage 

disease 

identification 

using 

explainable 

deep learning. 



learning for 

explainability.  

 

Graph Neural 

Networks 

(GNNs) are 

being used for 

structured data 

analysis in 

medical 

imaging. 

[50], 

[51], 

[52], 

[53] 

Integration 

with 

Multimodal 

Data 

Fusion of 

imaging, 

genomic, and 

clinical data 

improves AI-

driven risk 

stratification. 

 

Contrastive 

learning & 

multimodal 

transformers 

enable feature 

alignment 

across different 

data types. 

 

Self-supervised 

learning is 

applied for 

data-efficient 

multimodal 

representation 

learning. 

Comprehensive 

patient profiling 

improves 

personalized 

treatment. 

 

- Cross-validation 

of medical data 

sources ensure 

diagnostic 

accuracy. 

 

- Enables precision 

medicine through 

integrated insights. 

Data 

standardization 

issues across 

institutions. 

 

Privacy 

concerns when 

merging 

genomic and 

clinical datasets. 

 

Complex 

multimodal 

feature fusion 

can lead to 

information 

loss. 

Requires feature 

engineering for 

aligning different 

modalities. 

 

Dimensionality 

reduction 

techniques needed 

to manage high-

dimensional data. 

Hereditary 

disease 

detection using 

genomic-

imaging fusion. 

 

Risk assessment 

in 

cardiovascular 

diseases 

through EHR-

imaging 

integration. 

[54], 

[55], 

[56] 

Human-in-

the-Loop 

(HITL) 

Approaches 

Interactive AI 

models allow 

clinicians to 

refine model 

outputs in real-

time. 

 

Active learning 

techniques 

adapt models 

based on 

clinician 

feedback. 

 

Hybrid HITL-

AI systems 

integrate 

human 

expertise with 

machine 

intelligence for 

iterative 

learning. 

Improves clinical 

trust by allowing 

expert intervention. 

 

Reduces AI 

hallucinations 

(incorrect 

predictions without 

logical basis). 

 

Ensures regulatory 

compliance by 

including expert 

oversight. 

Time-intensive 

process 

requiring 

radiologist 

involvement. 

 

Expensive to 

implement due 

to iterative 

learning cycles. 

 

Potential inter-

observer 

variability 

among medical 

experts. 

Requires model 

retraining pipelines 

based on expert 

feedback. 

 

Must support real-

time updates for 

interactive 

refinement. 

Tumor 

segmentation 

refinement in 

radiology 

images. 

 

Pathology slide 

classification 

using expert 

annotations. 

[57], 

[58], 

[59], 

[60] 

Federated 

and Privacy-

Preserving 

AI 

Federated 

Learning (FL) 

enables AI 

model training 

across multiple 

institutions 

without 

centralizing 

patient data. 

 

-Enables secure 

multi-institutional 

collaborations. 

 

Meets GDPR and 

HIPAA compliance 

requirements. 

 

Prevents data 

exposure risks 

during AI training. 

High 

communication 

overhead in 

federated AI 

networks. 

 

Security 

vulnerabilities 

in cryptographic 

AI models. 

Requires secure 

aggregation 

protocols to 

combine model 

updates. 

 

Optimized 

communication 

frameworks 

needed for FL 

scalability. 

Breast cancer 

detection 

models using 

decentralized 

hospital data. 

 

AI-assisted 

neuroimaging 

models 

ensuring patient 

privacy. 



Homomorphic 

Encryption 

(HE) ensures 

AI models 

process 

encrypted data. 

 

Differential 

privacy 

mechanisms 

mitigate data 

leakage risks. 

Scalability 

issues in 

privacy-

preserving deep 

learning. 

[61], 

[62], 

[63], 

[64] 

Explainable 

AI for 

Regulatory 

Compliance 

Interpretable 

AI models are 

being mandated 

by regulators 

(e.g., FDA, 

EMA) to 

ensure 

transparency. 

 

Algorithmic 

auditing 

frameworks 

validate AI 

model decision 

paths. 

 

Fairness-aware 

AI systems 

mitigate bias in 

medical AI 

predictions. 

Increases legal 

accountability for 

AI-driven 

diagnoses. 

 

Reduces bias in AI-

based decision-

making. 

 

Facilitates clinical 

adoption through 

transparent AI 

models. 

Lack of 

universal 

standards for 

explainability in 

AI regulation. 

 

Difficulty in 

defining model 

fairness metrics 

in complex 

medical cases. 

 

Risk of over-

simplification in 

making models 

interpretable. 

Requires XAI 

reporting 

frameworks for 

regulators. 

 

Bias mitigation 

techniques needed 

for AI fairness. 

AI-based 

medical device 

approval by 

regulatory 

agencies. 

 

Bias detection 

in AI-driven 

healthcare 

models. 

Table 2 gives a comparison of emerging trends in explainable AI (XAI) for medical imaging 

with regards to key advancements, benefits, challenges, and applications. However, 

improvements in explainability are made with technologies such as Vision Transformers (ViTs), 

Hybrid Deep Learning Models, and Graph Neural Networks (GNNs) which have either high 

computational demands or limited data. Competition between imaging and clinical records, 

genomics and precision diagnostics can be enhanced by combining imaging with genomics and 

the clinical records, but data standardization and privacy continue to be concerns. Trust (and 

regulatory compliance) is enhanced but complexity is introduced with human in the loop (HITL) 

methods. However, all privacy focused AI techniques include potentially scalable (Federated 

Learning (FL) and Homomorphic Encryption (HE)) but suffer from the scalability problem. The 

use of interpretable AI and fairness aware models is being driven by increasing regulatory 

demands to reduce the bias and end up with accountable models. By doing this, one can 

demonstrate how the misuse of XAI can also pose ethical concerns in medical imaging; and that 

there is a need for ethical efficient frameworks, scalable solutions, and regulatory alignment of 

the use of XAI in medical imaging. 

7 Comparative Analysis 

The explainable AI (XAI) techniques in the deep learning for medical imaging are quite diverse 

in terms of interpretability, computational efficiency, robustness and applicability in clinic. 

These methods must be compared systematically and the selection of the most appropriate 

explainability models directed according to particular diagnostic need and computational 

constraint. In this section we compare all of XAI techniques in terms of their capabilities of 

improving transparency and clinical decision making. 



7.1 Performance and Interpretability Trade-offs 

Since the effectiveness of an explainability method depends on its capacity to provide 

meaningful insights along with high diagnostic accuracy, they vary in difficulty to implement 

but all have one thing in common: how we view a sample data instance is altered once an 

explanation has been generated. There exist some techniques for explaining the model that 

involve visual explanations, such as Gradient-weighted Class Activation Mapping (Grad-CAM) 

and Saliency Maps, which rely on no modification of the original model [65]. On the other hand, 

quantitative attributions towards model decisions are available using approaches such as 

Shapley Additive Explanations (SHAP), and Local Interpretable Model Agnostic Explainers 

(LIME) [66] [67]. Though visualization-based methods are easy for clinicians to understand, 

they tend to be less fine grained with attribution details than feature based techniques such as 

SHAP which give precise importance scores to input variables in order to explain model 

predictions [68]. To attain high robustness combined with interpretability, hybrid techniques 

that combine multiple explainability approaches have started to be considered as a promising 

solution [69]. 

7.2 Metrics for Evaluating Explainability and Clinical Utility 

Several evaluation metrics are used to systematically assess the effectiveness of XAI models 

into which these metrics are grouped by interpretability, clinical relevance, and computational 

efficiency. 

7.2.1 Interpretability Metrics 

• Fidelity: It measures the accuracy of the explainability method relating the actual decision 

of the model. [70]. 

• Consistency: Checks that the explanations are stable in similar cases. [71]. 

• Localization Accuracy: It measures the accuracy with which the marked areas match to 

ground truth annotations in medical images. [72]. 

• Human-Understandability: Easy to interpret the provided explanations by the clinicians 

assessed. [73]. 

7.2.2 Clinical Utility Metrics 

• Diagnostic Relevance: Decides if the explanations match with pathologically relevant parts. 

[74]. 

• Actionability: It determines whether the explanation would lead to more clinically 

appropriate or treatment planning decisions. [75]. 

• Trustworthiness: Seeks to determine whether explanations raised radiologists and 

physicians’ confidence in AI generated diagnoses [76]. 

7.2.3 Computational Efficiency Metrics 

• Processing Time: In order to target real time applications, measures the computational cost 

to generate explanations. [77]. 



• Scalability: It tells how such method performs in dealing with large datasets and complex 

neural architectures. [78]. 

In Table 3, following are a comparative evaluation of existing XAI techniques on the basis of 

interpretability, computation complexity, clinical relevance and example apps. 

Table 3. Comparative Analysis of Explainability Techniques in Deep Learning for Medical Imaging. 

References 
Explainability 

Method 
Interpretability 

Computational 

Complexity 

Clinical 

Relevance 

Example 

Applications 

[65] Grad-CAM High (Visual) Moderate High 

Lesion 

detection in X-

rays, MRI 

tumor 

localization 

[66] Saliency Maps Moderate Moderate Moderate 

Feature 

highlighting in 

retinal imaging 

[67] LIME 
High 

(Localized) 
High High 

Tumor 

boundary 

identification, 

fracture 

detection 

[68] SHAP 
High 

(Quantitative) 
Very High High 

Disease 

progression 

analysis, risk 

stratification 

[69] 
Integrated 

Gradients 
High (Robust) High High 

Diabetic 

retinopathy 

detection 

[70] Attention Maps 
High (Focused 

Regions) 
Moderate High 

Brain MRI 

tumor 

identification 

[71] 

Decision Trees 

(Surrogate 

Models) 

High (Simple 

Rules) 
Low Moderate 

AI model 

auditing, 

explainable 

diagnostics 

[72] 

Hybrid 

Techniques 

(SHAP + Grad-

CAM) 

Very High Very High Very High 

Multi-modal 

disease 

classification, 

critical care 

applications 

Provided in this table 3 is a structured comparison of different explainable AI (XAI) techniques 

used in deep learning for medical imaging regarding their interpretability, computational 

complexity, clinical relevance and examples of their use. Gradient weighted Class Activation 

Mapping (Grad-CAM) and Saliency Maps are high visual interpretation methods that require 

moderate computational resources and thus suitable for real time diagnosis. While SHAP and 

LIME (Local Interpretable Model Agnostic Explanations) based feature, techniques offer 

quantitative and localized attributions for increasing transparency of the model, it comes at the 

expense of increased computational complexity. Furthermore, hybrid approaches that combine 

SHAP with Grad-CAM, are the best for multi-modal disease classification as well as for high 



stakes medical decision making, because they offer the highest levels of interpretability and 

clinical applicability. This comparative analysis provides the insights that will help architects 

choose the suitable explainability method depending upon the diagnostic task and computational 

constraint at hand in AI based medical imaging workflows. 

7.3 Discussion and Implications 

From the comparative analysis, it is evident that no single XAI technique excels in all evaluation 

criteria. Gradient-based methods such as Grad-CAM and Saliency Maps offer intuitive visual 

interpretations but may lack quantitative attribution precision [73]. Feature-based methods, 

including SHAP and LIME, provide granular feature importance scores, enhancing clinical 

interpretability but at the cost of higher computational complexity [74]. Attention-based 

techniques, commonly used in transformer models, achieve a balance between interpretability 

and scalability, but their deployment in real-time clinical environments remains a challenge 

[75]. Hybrid models, such as SHAP combined with Grad-CAM, have emerged as an effective 

approach for enhancing both local and global interpretability, making them ideal for high-risk 

medical applications [76]. The selection of an appropriate XAI technique depends on the 

specific medical imaging task. For real-time applications, methods with low computational 

overhead, such as Grad-CAM, may be preferable. However, for disease progression modeling, 

techniques offering detailed feature attribution, such as SHAP, provide greater clinical insights 

[77]. 

7.4 Future Directions in Comparative Research 

To advance the integration of explainable deep learning models in medical imaging, future 

research should focus on: 

1. Benchmarking Explainability Models: Developing standardized datasets and evaluation 

frameworks to systematically compare XAI methods [78]. 

2. Clinician-Centered Assessments: Investigating here the use of different XAI techniques in 

large scale and incorporating radiologist feedback on their usability. [79]. 

3. Hybrid and Multimodal Approaches: What we did was exploring novel combinations of 

explainability techniques, using multimodal imaging, clinical records, and genomic data. 

[80]. 

4. Computational Optimization: The problem of high complexity model efficiency to enable 

deployment in real time to clinical settings. [81]. 

5. Regulatory and Ethical Considerations: Guidelines for the explainability in AI driven 

medical diagnostics, fairness, privacy and accountability. [82]. 

Explainable AI models can not only be further refined to obtain more transparency, clinical 

utility and adoption in real world healthcare environments, but in addressing these challenges, 

explainable AI models can be developed further. 

8 Conclusion 

I systematically conducted this review by looking into how Explainable Artificial Intelligence 

(XAI) interferes with deep learning in medical imaging and how it expands interpretability, 

transparency, and clinical decision making. Then, a comprehensive analysis of the current 



explainability techniques including gradient based, perturbation based, attribution based, 

attention mechanisms, surrogate models, and hybrid approaches for medical diagnostics was 

presented: each method’s strengths and weaknesses were discussed. Key uses of XAI in disease 

detection, segmentation, and prognostic analytics were reviewed to show that XAI could 

increase trust and usability in healthcare. We also identified additional critical challenges: (1) 

balancing accuracy with interpretability, (2) data quality limitations, (3) algorithmic biases, and 

(4) regulatory compliance barriers, which attest to the challenges in implementation of 

interpretable AI models in clinical settings. We highlighted that such promising ways to scale 

up and ethically adopt XAI driven medical imaging solutions include emerging trends of 

multimodal data integration, human in the loop systems, and privacy preserving AI. However, 

there are gaps in the standardisation of evaluation of explainability metrics in the real world, of 

XAI models, as well as clinician centred frameworks that promote usability and acceptance. 

Future research should assess how to set up the methodologies as benchmarkings, how to 

improve the hybrid interpretability model, how to enhance computational efficiency for realtime 

application, and how to make the regulatory alignment so that it can be used widely clinically. 

These challenges constitute a necessary journey towards developing trustworthy, interpretable, 

ethical and responsible AI driven medical imaging solutions for the purpose of optimizing 

patient outcomes and AI contribution to precision healthcare. 
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