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Abstract. In the potential high-risk and threat cataloguing world of increasing cyber
sophistication and behaviour, user activity anomaly detection is one tool from the
protection arsenal to call upon. In this paper, we propose a multi-stage anomaly detection
pipeline, which integrates unsupervised learning techniques, deep features and adaptive
inference to reveal abnormal behaviour in a network environment, without relying on the
raw attack labels. The method starts with the pre-processing and clustering of the data by
K-means to divide similar behaviour profiles. Local Outlier Factor (LOF) is used
afterwards to separate anomalies by local density differences. A ResNet-like deep learning
model, enriched with Efficient Channel Attention (ECA), leverages hierarchical
behavioural features, whilst Test-Time Training (TTT) supports instant model adaptation
to progressive patterns at the inference time. The presented method was tested under
different contamination levels, with best performance in the range of 20%-25% anomaly,
yielding up to 96.8% accuracy, 97% precision, 97% recall, and with F1-score slightly over
95%, all with zero second detection delay. These findings demonstrate the capability of
the system to detect insider threats and other behaviour-based anomalies in real time. The
modular and transparent design of the framework enables it to be easily applied to various
cybersecurity tasks.
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1 Introduction

Given that cyber threats are steadily becoming more and more advanced, the need for detecting
abnormal user behaviors is increasingly taking more prominence in a proactive security defense
system. Conventional signature-based security system fails to prevent new and emerging threats
like insider threats and behavior-based anomaly [1]. Since cyber attackers continuously evolve
the methods they use to imitate normal user actions, the development of advanced detector
mechanisms capable of detecting deviations without any prior knowledge about exact attack
signatures is necessary.

While there have been advancements made in the field of anomaly detection, there are still some
limitations in the existing body of research. First of all, most of the mainstream methods are
heavily based on the supervised method, which in practice needs huge labeled samples to detect
attacks. However, building such datasets for an insider threat is difficult in practice because it
is rare and very sensitive [2]. Second, although unsupervised techniques such as clustering and
density-based anomaly detection have exhibited potential, they tend to suffer from the difficulty
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of capturing the subtle behavioral anomalies amidst the normal activities. Moreover, many
algorithms do not generalize well to fast evolving user behavior, and need to be retrained
periodically or do not capture the evolve pattern well [3].

It is the main focus of this work to fill these gaps, and we propose a multi-stage anomaly
detection framework which combines unsupervised learning, deep neural network, and adaptive
inference. The method is intended to identify abnormal user activity in time for a suitable
response without requiring predefined labeled data on attack and thus loosen the dependency on
supervised training. The model can be training in several steps, where it starts with the data pre-
processing step and the causes the K-Means clustering stage, a traditional unsupervised approach
models to cluster common user behavior profiles [4]. This process defines a profiling of normal
behavior that can be used to detect anomalies in an efficient way.

Then Local Outlier Factor (LOF) algorithm is employed to detect anomalies by local density
changes and outlier instances where they represent outlier clusters, which are possibly threats
[5]. 5) to achieve higher detection performance, a ResNet-like deep neural network is used to
learn hierarchical motion pattern features from the clustered data [6]. We also extend the neural
network with the Efficient Channel Attention (ECA) that refines the model’s capability to
concentrate on the most important features for anomaly detection [7]. Moreover, we introduce
Test-Time Training (TTT) to allow the model to quickly respond to the emergent realistic user
behaviour online and adapt so that the model does not have to be re-trained [8].

The main contribution of our model is to give a reliable real-time detection system developed
for detecting insider threats and other behaviour-based anomalies. Our universal superhighway
for threat data in flight Our goal with our pipe breaking detection vision is to have 100%
detection rate and we promise 0 second detection delay Text based detection with the highest
accuracy rates you can be sure that as a SOC team you can see and handle the threats in real
time. The modular nature of the framework facilitates easy customization to different
cybersecurity use-cases (e.g., Privilege access monitoring and proactive threat detection in
dynamic environment).

By addressing these literature gaps especially, the issues of labeled data scarcity, real-time
adaptation and detecting subtle anomalies, this work contributes a full-fledged and customizable
framework to the community on anomaly detection in the domain of cybersecurity.

Related work is listed in the Section 2. The proposed approach is detailed in Section 3. The
results are shown in Section 4. The conclusion is given in section 5. We summarize the result
in section 6.

2 Related Works

Anomaly detection has been a cornerstone in cybersecurity, as the discovery of abnormal user
behaviour may be crucial for finding possible threats like insider attacks. A number of
conventional approaches for anomaly detection are supervised learning approaches and they
need huge labeled datasets to be able to detect anomalous behaviour accurately. It is still
difficult, however, for the insider threat, i.e., an anomalous behaviour that is rare and scarce
labeled. For example, Khan et al. [9] provided an extensive overview of anomaly detection



approaches for information security. They evaluated a number of supervised and unsupervised
approaches and noted the difficulty to apply supervised models in situations where there is not
enough labeled data, like insider threats. Similarly, Candela et al. [15] described the difficulties
of a supervised approach in the context of anomaly detection, especially in the cybersecurity
field since the anomalous behaviour is sporadic and infrequent.

This is because unsupervised learning has been attracting much attention as the data labelling
task is a challenge for practical applications. Clustering, a popular approach, will the data points
according to the similarity. Zhang and Li [10] featured K-Means clustering for characterizing
behaviour, so that “if ... a behaviour takes much longer or shorter time to finish than it does on
average, then there must be something wrong with the client”. Although effective, K-Means
may have difficulty handling noise or overlapping between normal and anomalous data, which
can in turn hamper the ability to detect subtle deviations indicative of insider threats. What's
more, clustering methods typically perform poorly on high-dimensional data, when the
relationship between the features becomes more difficult to model. Ahmed et al. raised similar
issues. [16], where scalable and robust clustering methods were proposed and applied to
cybersecurity.

Brewing et al. [11] proposed the Local Outlier Factor (LOF), a density-based approach for
anomaly detection. LOF evaluates the local density of a point with respect to its neighbours and
flags those points that have a substantially lower density as outlying points. This technique has
been used widely in anomaly detection such as cybersecurity, where behaviours of a user that
deviate their average peers are considered potential threats. Although LOF is capable of
detecting local anomalies, it encounters a challenge in adapting to new real-time situations such
as when user behaviour changes rapidly over time. Schoellkopf et al. [17] developed a One-
Class SVM as an alternative unsupervised method, which has also been popularly used
nowadays for the anomaly detection problem, because of its separating capacity of normal data
and abnormal one in high dimension space.

The deep learning methods, in particular Convolutional and residual networks (ResNet), have
been successful in the anomaly detection. He et al. [12] showed that ResNet is capable of
learning to detect complex patterns within data and can mitigate vanishing gradients, and
increase the performance of the model over high dimensional datasets. These deep learning
models have been employed in cybersecurity to detect nuances of behaviours which go
unnoticed by conventional methods. The residual learning architecture bypasses on user
behaviour simultaneously captures hierarchical patterns and leads to better detection of subtle
deviations that point to potential insider threats by such models. Similarly, Kim et al. [18]
demonstrated the use of deep autoencoders to learn compressed representations of user activity
for more accurate outlier detection in complex system scales.

For further feature learning privilege, Wang and Chen [13] introduced an efficient channel
attention (ECA) to intensify model attention on the most critical features for anomaly detection.
With attention mechanisms, the model can make further focus on some parts of user behaviours
that are more relevant to abnormal activities. The proposed ECA method has shown to be useful
in improving detection performance in dynamic scenes where the appearance of relevant
features can change over time. Since these attention mechanisms enable more effective
learning, the model can better adapt to new threats. Li et al. [19] also applied attention-based



feature learning in their hybrid anomaly detection framework and showed better performance
in detecting user-level anomalies from network logs.

Another important feature of real-time anomaly detection system is the ability to learn from
new data without retraining. Chen et al. [14] proposed Test-Time Training (TTT), which allows
models to update dynamically using new data during testing. This method has multiple
advantages in cases of user behaviour drift, as it prevents the model from having to be retrained
which is valuable. TTT offers a practical solution to preserving accurate real-time detection in
a changing environment, and keeps the model's detection capability up to date with user
behaviour variations. Recent work by Liu et al. [20] also upholds such an adaptive perspective
and demonstrates that lifelong learning frameworks could bring substantial performance gain
and robustness on model longevity in cybersecurity applications.

3 Methodology

Architecture of Proposed Anomaly Detection Framework The multi-phase anomaly detection
pipeline combines unsupervised learning, deep learning, adaptive inference as illustrated in Fig
1. It starts with the preprocessing of logs, then clustering with K-Means and calculating the
anomaly score through Local Outlier Factor (LOF). Finally, the refined data is inputto a ResNet
structure with Efficient Channel Attention (ECA) module to achieve deep feature learning.
Lastly, Test-Time Training (TTT) allows the model to adjust itself on the fly while testing to
maintain reliable anomaly detection even when data characteristics change.
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Fig.1. Architecture of the Proposed Anomaly Detection Framework.



3.1 Data Preprocessing and Behavioral Structuring

The first step in the methodology, Data Preprocessing, involves the creation of a rigorous set of
hypotheses, typically this is realised through a rigorous data preprocessing phase that translates
raw behavioural logs data into structured data appropriate to analysis. From these logs that
contain timestamps, user id, access resource events, session duration, type of access, and if, we
first clean the data by removing noise and entries that are irrelevant to the analysis. Time is
normalized to guarantee the uniformity across all records and user actions are session zed by
splitting continuous user activity stream into coherent behavioural windows based on temporal
thresholds. These transactions are then grouped to model high-level user activity patterns across
fixed time periods and facilitate a contextualized understanding of behaviour along the temporal
dimension. We fill in missing values if any and then convert the categories like resource types
and access operation to numerical status' using one-hot encoding or embeddings. Through the
process of feature scaling, numerical columns are normalized, bringing them into a common
level of interaction among the learning model. The result is a well-organized data that preserves
the temporal and the contextual and categorical components of the user activities and which can
be used for unsupervised learning and anomaly detection method in the next steps.

3.2 Unsupervised behavior Grouping using K-Means Clustering

After structuring the data, the second step is unsupervised behavioural grouping by K-Means
clustering algorithm. K-Means is used to separate user sessions data into multiple clusters such
that all user sessions within the same cluster share common behavioural trends. The best number
of clusters (k) are found using techniques such as elbow method or silhouette score, with the
help make sure that clusters are sufficiently separated. Through streaming in each session to the
closest bag centre (as measured in the space of the features) the method creates a behavioural
norm for a crowd of users. Sessions or users that lie substantially outside the bounds of the
cluster to which they have been assigned, are treated as potential anomalies. This clustering
mechanism allows locating anomalous activity without labeled training samples, so it is
particularly effective for detecting unusual activity in the environment where constantly
emerging or unknown attack types are found.

3.3 Local Density-Based Outlier Detection with LOF

To further improve anomaly detection beyond what is achieved by clustering-only, the Local
Outlier Factor (LOF) algorithm is also used on the clustered data. Italic™ et al., 2018), which
calculates the abnormality of each data point by comparing its local density to that of its
neighbours within a given radius. Any session located in a region with much lower density than
the surrounding data points is assigned with a high outlier score that indicates it is a potential
anomaly. This local view enables the model to pick up on subtle, context-specific irregularities
not tractable by global thresholding methods. LOF is especially appropriate for detecting
stealthy or low-volume insider threats, which can reflect the normal behaviour but with small
deviation on a small set of activity clusters. Through combination of LOF and K-Means we
gain a two-layered anomaly detection: LOF identifies gross deviations whereas K-Means
identifies fine-grained anomalies.



3.4 Feature Enhancement using Efficient Channel Attention (ECA)

To strengthen the representational capability of the detection model, particularly in high-
dimensional behavioural datasets, the ECA module is embedded into the deep learning
framework. ECA iteratively strengthens the most discriminatory features (channels) by learning
attention weights that indicate their relative importance for anomaly detection. In contrast with
conventional attention mechanisms, ECA has no dimensionality-reduced computation burden,
and can efficiently model the channel interaction via lightweight 1D convolution operations.
This enables the network to automatically pay attention to important behavioural signals as the
access frequency of privileged resources or unusual time of login with no substantial
computation burden. The model is now more sensitive to critical but rare signals of insider
threats which enhances the performance of detection as well as interpretability. The
incorporation of ECA therefore guarantees that the deep learning part of the architecture stays
efficient as well as injects high-level focus on the important behavioural characteristics of the
framework.

3.5 Adaptive Fine-Tuning via Test-Time Training (TTT)

The last part of the approach tackles the problem of behaviour drift and discovery of new type
of insiders by proposing Test-Time Training (TTT) which is a self-supervised learning approach
which enables the model to be fine-tuned at the time of inference. TTT works by formulating
an auxiliary pretext task (e.g., predicting transformations, inverting masked features,
reconstructing partial input) that leverages the test data to update model parameters without
ground-truth labels. As this auxiliary task scores each session, the model gets updated slightly,
and can adapt to changes in patterns of user behaviour or shifts in the environment as they occur.
This on-the-fly optimization strengthens the model’s generalization capability, making the
model stably work out well even in dynamically changing usage scenarios. Building in
adaptability to the inference stage itself, TTT leaves the system (nearly) immune to zero-day
anomalies, unknown adversarial strategies, or deviations from the distribution observed during
training.

4 Results and Evaluation

The anomaly detection framework is developed and the final performance shows that the
system can well detect anomalies under different levels of contamination. The best result was
achieved at the contamination range of 20%-25% where the trade-off between accuracy,
precision, recall, Fl-score, and real-time detection was at its best. For low levels of
contamination (1 — 5%), the model had high accuracy and precision, yet lower recall. This
behaviour demonstrates the conservative detection approach in the model: it is more geared
toward avoiding false positives, even if it means missing some real anomalies. The F1-score
was also reduced, but that was expected in view of the precision and recall trade-off. But there
was one strong element: the detection delay had stayed at 0 seconds, which meant the model
could respond to anomalies as they occurred.



Contamination Accuracy Precision Recall Fl Score Avg Precision

001 08327 09372 09327  0.9002 0.9389

002 09333 09378 09333  0.9011 0.9571

003 0934 09396 09304  0.9042 0.9574

004 09403 09438 09403 0913 0.9438

0.00 09425 09454 09425 09146 0.9601

Fig.2. Evaluation Metrics for Contamination Values Range (1-5) %.

Fig. 2 illustrates this behaviour, where accuracy and precision both hovered above 90%, while
recall lagged slightly behind, confirming that the system was highly cautious at this
contamination level, flagging fewer anomalies but ensuring minimal false positives.

The performance of the model was significantly better in the case of 10%-15% contamination.
This led to an increase up to 95% in precision, recall, and accuracy, while the fl-score reported
a more respectable 93%. This demonstrated the evolution of the system from a "safe" system
to a more balanced detection system that could detect more true anomalies that did not in turn
cause an excess of false positives. The detection delay was a constant 0 second, maintaining
the model’s real-time behaviour, even as anomaly density increased.

Contamination Accuracy Precision Recall F1 Score Avg Precision
0.10 0.9570 0.9589 0.9570 0.9360 0.9773
0.1 0.9581 0.9598 0.9581 0.9376 0.9718

0.12 0.9591 0.9608 0.9591 0.9391 0.9819

0.13 0.9617 0.9632 0.9617 0.9429 0.9808

0.14 0.9628 0.9642 0.9628 0.9445 0.9807

0.15 0.9639 0.9652 0.9639 0.9463 0.9777

Fig.3. Evaluation Metrics for Contamination Values Range (10-15) %.



This performance jump is clearly shown in Fig. 3, where the evaluation metrics demonstrate the
model’s increased ability to handle more complex datasets while sustaining both precision and
recall at near-equal levels, proving its reliability as contamination levels rise.

The system's most outstanding performance was observed in the 20%—-25% contamination
range. Accuracy ranged from 96% to 96.8%, and both precision and recall stayed strong between
96%—-97%. The F1-score peaked between 94.5% and 95.2%, confirming that the model achieved
the best possible balance between detecting true anomalies and avoiding false positives. The
average precision hit its highest point at 98.63%, signalling superior confidence in
distinguishing anomalous behaviours from normal patterns.

Contamination Accuracy Precision Recall F1 Score Avg Precision

020 09633 09647 09633  0.9453 0.9846
021 09646 09658 09646  0.9472 0.9789
022 09658 09670 09658  0.9490 0.9839
023 09654 09666 09654  0.9484 0.9780
024 09667 09678 09667  0.9503 0.9861

025 09680 09691 09680  0.9523 0.9832

Fig.4. Evaluation Metrics for Contamination Values Range (20-25) %.

As shown in Fig. 4, this contamination range produced the most stable and impressive results,
highlighting the framework’s ability to maintain high detection performance while responding
instantly, thanks to the constant 0-second detection delay. This real-time adaptability was largely
due to the combined effects of the Test-Time Training (TTT) mechanism and the Efficient
Channel Attention (ECA) module, which allowed the model to dynamically adjust to incoming
data during inference.

Beyond the 25% contamination threshold, the model began to experience diminishing returns.
Recall continued to increase, meaning more anomalies were detected, but this came at the
expense of precision, as more false positives began slipping into the results. This trade-off is



expected in high-contamination environments, where the boundary between normal and
anomalous behaviour becomes increasingly blurred.
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Fig.5. Plotting of Evaluation Metrics.

To give a holistic view, Fig. 5 presents a consolidated plot of all evaluation metrics across
contamination levels. This figure clearly shows the steady rise in performance as contamination
increases, peaking around the 20%—25% mark before tapering off. The graphical representation
reinforces that moderate contamination offers the sweet spot for model performance, while very
high contamination can reduce precision despite high recall.

In conclusion, the system consistently achieved real-time detection with 0-second delay, and the
combination of K-means, LOF, ResNet with ECA, and TTT ensured robust anomaly detection
even as contamination levels varied. The optimal operating point was clearly in the 20%-25%
contamination range, and future research could explore hybrid approaches to address
performance drops at higher contamination levels, making the system even more versatile for
diverse cybersecurity scenarios.

5 Discussion

Results of experiments verify the performance of the multi-stage anomaly detection framework
under various anomaly contamination rates. The system was proved to perform well especially
in the range of 20%-25% contamination, for which it reported best results, e.g., 96.8% accuracy,
97% precision, 97% recall, and F1-score over 95%. These results suggest that the model has a
high true anomaly detection capability with a low false positive rate. At the lower
contamination rates (1%-5%) both accuracy and precision were maintained high, while the
recall turned out to be significantly less, which indicated a conservative method of detection
where avoiding false-positives is highly preferred over the coverage of outliers. The model



achieved a well-balanced precision-recall trade-off at contamination levels between 10% and
15% indicating its potential applicability in moderately noisy studies. This sub second response
time is particularly important in cases such as insider threat monitoring where early detection
can mitigate damage. In conclusion, the results illustrate that in real-world settings (in dynamic
populations, in the presence of few or no attacks) the framework is flexible, with a high degree
of accuracy and generalizability, compared to existing approaches.

6 Conclusion

This paper presents a resilient and adaptive anomaly detection approach specifically designed
for behavioural threat detection in dynamic environments. Through embedding the K-Means
clustering, Local Outlier Factor (LOF), a ResNet-based neural network equipped with Efficient
Channel Attention (ECA), and Test-Time Training (TTT), the framework is capable of high
precision and generalization without the signalling of labeled datasets. Extensive preprocessing
warrant data quality, while clustering, outlier filtering, attention based deep learning, and self-
supervised adaptation make possible real-time accurate anomaly detection. The model works in
the best way at a contamination factor between 20%-25% with best overall accuracy, precision,
recall and F1-score of 96.8%, 97%, 97% with F1 scores reaching higher than 95% respectively.
The system operates with zero-second detection latency, demonstrating real-time response
which is particularly important in sensitive outcomes, such as insider threat detection, or fraud
prevention.

Upcoming work will detail several extensions to more advance the applications and scalability
of the model. First, we plan to extend this research to include temporal behaviour Modeling
exploiting sequential learning architectures e.g. LSTMs or Transformers, so as to better capture
time-based patterns on user actions. Second, the inclusion of explainable Al (XAIl) modules
could enhance interpretability and trust, which in turn may enable analysts to understand why
certain behaviour has been detected as anomalous. Third, we consider to extent the approach to
cope with streaming data in distributed environment to allow on-the-fly and continuous
detection in large scale enterprise systems. Last, but not least, testing the system on a wider
variety of real-world datasets in disparate domains such as health care, urban computing, and
industrial 10T will help to attest the generality and practical impact of the system.

In conclusion, the proposed framework provides a powerful foundation for real-time behavioral
anomaly detection and opens promising pathways for building intelligent, explainable, and
scalable security systems of the future.
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