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Abstract. Global Navigation Satellite System (GNSS) signals are highly susceptible to 

intentional radio-frequency jamming, threatening safety- and time-critical services. We 

propose a data-efficient monitoring pipeline that converts raw GNSS snapshots into time–

frequency spectrograms and employs a Variational Autoencoder (VAE) for unsupervised 

feature learning. Trained exclusively on nominal data, the VAE captures a latent 

distribution that enables faithful reconstructions; jamming is flagged whenever the 

reconstruction error exceeds a learned threshold. On a synthetic dataset covering six 

representative jammer classes—AM, chirp, FM, pulse, narrowband and Distance-

Measuring-Equipment (DME) — the approach reached an overall anomaly-detection 

accuracy of 90.0 %, correctly identifying 97 % of all jammed examples. It consistently 

surpassed CNN and SVM baselines, yielding a precision of 93.25 % and an F1-score of 

91.39 %. Detection was perfect for DME jammers (100 %) and exceeded 92 % for both 

AM and FM jammers, underscoring the model’s ability to isolate structured interference. 

Latent-space visualization further reveals clear separability between normal and jammed 

signals. The proposed framework therefore offers an interpretable, real-time solution for 

GNSS interference surveillance and provides a foundation for recognizing emerging 

jamming patterns without expensive annotation effort. 

Keywords: GNSS, Jamming, Time–frequency image, Variational autoencoder, Anomaly 

detection. 

1 Introduction 

Global Navigation Satellite System (GNSS) is the corner stone of many states of the art 

technologies from navigation, aviation, autonomous driving to synchronization of critical 

infrastructure. However, because of the nature of the GNSS signals, which are couple of orders 

of magnitude weaker than any intended (or not) transmitted signal and are also freely available, 

also called ‘open’, they can be jammed effectively. As the dependence of GNSS-based systems 

on critical applications grows, the detection and classification of jamming attacks in an 

accurate, reliable and real-time manner has become a necessity for maintaining the signal 

integrity and supporting continuous operation. 

Machine learning has recently been proposed in literature as an efficient tool for GNSS jammer 

detection. An early attempt from Ferre et al. [1] formulated the jammer classification problem 

as a black-and-white image recognition problem to generate optical spectral time-frequency-
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channel-reliability (TFCR) based visualization of GNSS signals using Short-Time Fourier 

Transform (STFT). Then they used support vector machines (SVM) and convolutional neural 

networks (CNNs) to classify them and achieving significant improvement in accuracy. Building 

on this, Elango et al. [2] used scalogram-based representations and transfer learning on CNNs 

with MobileNet-V2 style to approach perfect classification of different jamming types and 

power in jamming scenarios. Wu et al. [3] also generalized these works by proposing a 

federated learning approach that allowed decentralized and privacy-preserving multi-jammer 

classification for the six types of jammers with similar quality compared to the best central 

model. 

Although Gloss-based algorithms obtain high classification rate, they are restricted by several 

practi- cal requirements. These comprise dependency on large labeled datasets, susceptibility 

to overfitting in case of imbalanced data and high training cost. Moreover, traditional CNNs are 

discriminative-only models and are not able to be generative models for capturing new or OOD 

jamming patterns, which is the major requirement in dynamic and adversarial scenes. 

In order to address these challenges, we propose a new GNSS jammer classification framework 

relying on Variational Autoencoders (VAEs). VAEs provide a principled procedure for learning 

features in a probabilistic manner, where a latent space in which intrinsic data distribution is 

learned is compressed. This allows the model to learn to reconstruct normal GNSS signals and 

to classify deviations, a signal of jamming, as anomalies. The VAE framework proved to be 

very effective in low-data or imbalanced scenarios, ensuring a trade-off between good detection 

rates and interpretability (by analyzing the reconstruction error in particular). The VAE-based 

learning model achieved a 90.0% overall accuracy and 97% detection rate with respect to five 

different jamming types in the comparative analysis against CNN and SVM classifiers with 

respect to precision, recall, and robustness. These findings confirm the capability as a data-

efficient and adaptive solution to monitor GNSS interference in realistic conditions. 

2 Jamming Types 

Each jamming type introduces a distinct distortion pattern in the time frequency domain, which 

can be visually observed as variations in the spectrogram images. Fig 1 shows representative 

examples of spectrograms generated from GNSS signals under various interference conditions, 

including No Jam, DME, SingleAM, SingleChirp, SingleFM, and Narrowband jamming. 

 

Fig. 1. Time-frequency image representations of different jamming types: DME, NB, NoJam, SingleAM, 

SingleChirp, and SingleFM. 



 

2.1 Amplitude-Modulated (AM) jammers 

An AM jammer is a single-tone or multi-tone interferer whose carrier amplitude is itself 

sinusoidally modulated. A typical waveform is 

𝑠(𝑡)  =  𝐴𝑚[1 + 𝑚 cos(2π𝑓𝑚𝑡)] cos(2π𝑓𝑐𝑡)         (1) 

where 𝐴𝑚 is the carrier amplitude, 𝑚 ∈ [0, 1] the modulation index, 𝑓𝑚 the modulation 

frequency and 𝑓𝑐 the carrier. By injecting high-power sinusoids at precisely chosen GNSS 

bands, AM jammers can severely degrade signal-to-noise ratios and preclude reliable code 

acquisition. 

2.2 Linear-chirp jammers 

A linear-chirp (or swept-frequency) jammer linearly modulates its instantaneous frequency over 

time: 

𝑠(𝑡)  =  𝐴 cos(2π[𝑓0 + (𝐵/𝑇) 𝑡] 𝑡)          (2) 

with amplitude 𝐴, start frequency 𝑓0, swept bandwidth 𝐵 and chirp duration 𝑇. Because the 

jammer energy traverses a broad band, matched-filter dispreading becomes difficult, making 

such signals a preferred choice in military electronic-warfare systems.  

2.3 Frequency-modulated (FM) jammers 

Continuous-wave FM jammers modulate the phase of a carrier according to a sinusoid, 

𝑠(𝑡)  =  𝐴 cos[2π𝑓𝑐𝑡 + β sin(2π𝑓𝑚𝑡)]         (3) 

where 𝐴 is the amplitude, 𝑓𝑐 the carrier, 𝑓𝑚 the modulation frequency and 𝛽 the modulation 

index. The resulting rapid carrier deviation forces GNSS tracking loops outside their pull-in 

range, rendering code and carrier lock impossible. 

2.4 Pulse (sporadic) jammers 

Pulse jammers alternate between ‘on’ and ‘off’ states according to a duty cycle. A general model 

is 

𝑠(𝑡)  =  ∑ 𝐴𝑛
𝑁
𝑛=0 cos(2π𝑓𝑐𝑡 + ϕ𝑛)  𝑡 − 𝑛𝑇         (4) 

where 𝑝(𝑡) is a rectangular pulse of width 𝜏 ≤ 𝑇 (the pulse-repetition interval), and 𝜙𝑛 a random 

phase. Such high-power bursts are common in Distance-Measuring Equipment (DME) and can 

momentarily saturate front-end analogue-to-digital converters. 

2.5 Narrowband (NB) jammers 

NB jammers confine their energy to a very small spectral window. A convenient idealized 

power-spectral density (PSD) is Gaussian, 

𝑃(𝑓)  =  𝑃0 exp [−
(𝑓−𝑓0)

2

2𝜎2
]                                                                (5) 



 

with peak power 𝑃0, centre frequency 𝑓0 and standard deviation 𝜎 proportional to the jammed 

bandwidth. Because only the targeted sub-band is affected, NB interferers can be difficult to 

detect until receiver channels tuned to 𝑓0 abruptly lose lock. 

2.6 Wideband (WB) jammers 

Wideband jammers distribute their power over a broad frequency span, often approximated by 

a Lorentzian PSD, 

𝑃(𝑓)  =  
𝑃0

1+[(𝑓−𝑓0)/Δ𝑓]
2                                                                                                                   (6) 

where 𝑃0 is the peak, 𝑓0 the centre and Δ 𝑓 the half-power bandwidth. By masking satellite 

signals across several GNSS bands simultaneously, WB jammers thwart conventional analogue 

or digital notch-filter countermeasures. 

3 Variational Autoencoder (VAE) Background  

Variational autoencoders, first introduced by Kingma and Welling [5], are a family of 

probabilistic generative models designed to learn compact, informative representations of data 

while permitting efficient sampling and inference via variational Bayesian techniques. 

3.1 Theoretical Structure 

A VAE assumes a latent variable 𝑧 drawn from a prior 𝑝(𝑧) (usually N (0, 𝐼)) and an observation 

model 𝑝𝜽 (𝑥 | 𝑧) linking the latent space to data 𝑥. Since the marginal likelihood 

𝑝θ(𝑥) = ∫ 𝑝θ( 𝑥 ∣ ! 𝑧 )  𝑝(𝑧) 𝑑𝑧         (7) 

is generally intractable, optimization proceeds by maximizing the evidence lower bound 

(ELBO) 

log 𝑝θ (𝑥) ≥ 𝐸𝑞ϕ(𝑧∣𝑥 )[log 𝑝θ ( 𝑥 ∣ 𝑧 )]⏟              
reconstruction

− 𝐷KL (𝑞ϕ( 𝑧 ∣ 𝑥 ) | 𝑝(𝑧))⏟              
regularisation

                   (8) 

 

Fig. 2. Canonical encoder-decoder structure of a VAE. 



 

3.2 Architecture 

The canonical VAE comprises two neural networks (Fig. 2) 

• Encoder 𝑞𝝓 (𝑧 | 𝑥): maps an input to the mean 𝜇(𝑥) and (log-)variance log 𝜎2 (𝑥) of 

a Gaussian in latent space. 

• Decoder 𝑝𝜽 (𝑥 | 𝑧): reconstructs the input from a sampled latent vector. 

3.3 Reparameterization trick 

Sampling 𝑧 ∼ 𝑞𝝓 (𝑧 | 𝑥) naively would obstruct gradient flow. Instead, we express 

𝑧 =  μ(𝑥)  +  σ(𝑥) ⊙ ε,   ε ∼ 𝒩(0, 𝐼),                       (9) 

which isolates the stochasticity in 𝜀 and leaves 𝜇 and 𝜎 differentiable (Fig. 3). 

 

Fig. 3. Computation graph illustrating the reparameterization trick. 

3.4. Training Objective 

Combining reconstruction and regularization yields the per-sample loss 

ℒ(𝑥) = 𝐸𝑞ϕ(𝑧∣𝑥 )[− log 𝑝θ ( 𝑥 ∣ 𝑧 )]⏟                
reconstruction error

+ 𝐷KL (𝑞ϕ( 𝑧 ∣ 𝑥 ) | 𝑝(𝑧))⏟              
latent regularisation

     (10) 

3.5 Why VAES suit GNSS anomaly detection 

• Compact feature learning 

• Unsupervised training 

• Intrinsic anomaly scoring 



 

4 Related work 

The growing frequency of intentional radio interference incidents has made GNSS jamming 

signal classification an increasingly critical area of research. Early work in this space by Ferre 

et al. [1] laid a foundational approach by transforming GNSS signals into time-frequency 

spectrograms, treating them as black-and-white images. These visual representations were then 

classified using support vector machines (SVMs) and convolutional neural networks (CNNs), 

demonstrating that image-based models significantly outperformed traditional statistical 

methods in interference classification. 

Expanding on this concept, Elango et al. [2] applied scalogram-based time-frequency 

representations in conjunction with multiple pre-trained CNN architectures such as MobileNet-

V2. Their transfer learning-based model achieved near-perfect accuracy (up to 99.8%) in 

identifying not only jamming but also spoofing and multipath scenarios, further validating the 

potential of deep learning for GNSS signal integrity analysis. 

Wu et al. [3] further advanced this area by proposing a federated learning framework which 

allows collaborative training across multiple nodes while maintaining the data privacy. Their 

model took spectrogram inputs and was on par with centralized CNN classifiers, suggesting 

that decentralized learning was a potential solution for security challenging GNSS networks. 

Time-frequency analysis in signal classification is also advanced by other researchers. 

Specifically, Parlak [4] compared a set of time-frequency transform methods, including STFT, 

Continuous Wavelet Transform (CWT), and WignerVille distributions, with deep neural 

network-based methods in non-stationary signal classification. While it was not specific to 

GNSS, the results demonstrated solid performance of the time-frequency representations for 

various signal processing applications. 

More recently, a few works have taken it as their primitives and extended the SOTA Integration 

of attention into hybrid learning architectures has recently been successfully deployed on these 

mechanisms. Reda et al. [5] introduced a GNSS jamming detection model based on the 

principal components and Bayesian optimization for feature selection, and then a BiLSTM 

network with attention layers is proposed. They obtained an accuracy of 98.95% and a reduction 

in model complexity as well as training time. Likewise, Reda and Mekkawy [6] applied a 

mutual information-based feature selection approach together with an attention-based A-

DBiLSTM architecture achieving a detection accuracy of 98.82% and demonstrating the 

effectiveness of attention mechanisms in learning complex spectral patterns. 

Anomaly Detection frameworks have also been increasingly popular instead of made based 

solely supervised classifiers. Lebrun et al. [7] presented a GNSS anomaly detection model that 

relied on statistical modeling of the reference station signals and demonstrated a high sensitivity 

to both malicious and non-malicious interferers. This progression towards unsupervised 

learning is in accordance with the increasing demand to identify new jamming threats, which 

do not appear in training datasets. 

However, CNN-based method is not all roses. Their dependence on large labeled datasets and 

vulnerability to overfitting make them difficult to implement in practical GNSS scenarios where 



 

labeled data is limited, and the jamming patterns are nonstationary. Moreover, the conventional 

CNNs are discriminative models and hold weak generalization capabilities to new jamming 

types. 

To overcome these shortcomings, in this paper, we develop a GNSS jammer classification 

framework using Vanilla Variational Autoencoder (VAE). VAEs are generative models that 

learn a compact code in the latent space to capture the underlying distribution of the input data. 

In contrast to CNNs, VAEs can work efficiently in few-label settings and are suitable for 

anomaly detection via reconstruction loss. Experimental results showed that the VAE based 

model outperformed the SVM and CNN baselines using different performance metrics such as 

accuracy, precision and recall. These results demonstrate that the VAE is a promising low-data, 

interpretable, and generalizable solution for GNSS interference monitoring. 

5 Methodology 

The proposed paradigm for GNSS jammer detection combines time-frequency signal processing 

and unsupervised deep learning with a Variational Autoencoder (VAE). The overall 

methodology is illustrated in Fig 4, illustrating data flow from raw GNSS signals to end anomaly 

detection or classification. 

5.1 Signal Preprocessing 

Raw GNSS signals are initially recorded under normal and jammed conditions. The time domain 

signals are converted to time frequency representations through the Short Time Fourier 

Transform (STFT). The obtained spectrograms capture frequency evolution over time and 

expose patterns indicative of various jamming types. Each spectrogram is mapped to a grayscale 

image of size 32 × 32 normalized to the [0, 1] range. These images are the main input to all 

learning models, allowing the treatment of signal classification as an image-based learning 

problem., 

5.2 Learning Models 

Three model types were investigated for classification: 

• SVM: A linear baseline classifier trained on flattened pixel intensities. 

• CNN: A supervised-trained deep convolutional neural network on labeled categories 

of jamming. 

• VAE: A Variational Autoencoder trained only on No-Jam images to learn the 

distribution of normal signals. It has a low-dimensional latent representation and 

reconstructs from this latent space. 

The VAE employs the standard ELBO loss function, combining reconstruction loss with KL-

divergence to promote a smooth latent space. The model architecture includes convolutional 

layers in the encoder and decoder, and a latent dimension with a size of 8. 

 

 



 

5.3 Anomaly Detection via VAE 

We train the VAE on normal (No-Jam) data first. Then, test samples belonging to all classes are 

forwarded through the model. The Mean Squared Error (MSE) between the input and its 

reconstructed version is calculated for every sample. A dynamic threshold is established as: 

Threshold = μtrain + 𝑘 ⋅ σtrain,  𝑘 = 1.8                    (11) 

Samples with reconstruction error higher than the threshold are labeled as anomalies. This 

enables the model to recognize unknown jamming patterns without explicit supervision. 

5.4 Evaluation Metrics 

Model performance is measured using accuracy, precision, recall, F1-score, and confusion 

matrix evaluation. For the VAE case, binary classification (normal or jammed) is done based 

on the anomaly threshold. 

6 Experimental Setup 

6.1 Dataset 

The dataset is comprised of black-and-white spectrogram images representing GNSS signals 

under various jamming conditions. Six classes were taken into consideration: 

• No Jam (normal) 

• SingleAM (Amplitude Modulated Jammer) 

• SingleChirp (Chirp Jammer) 

• SingleFM (Frequency Modulated Jammer) 

• DME (Pulse Jammer) 

• NB (Narrowband Jammer) 

There are 150 grayscale images in each class, preprocessed by resizing to 32 × 32 pixels and 

normalized to the [0, 1] range. The training set included only the No Jam images, whereas all 

types of jamming were used for testing. 

 

Fig. 4. System pipeline: From raw GNSS signals to spectrogram-based classification using a VAE 

architecture. 



 

6.2 Training Parameters 

The models were trained with the following parameters: 

• Image size: 32 x 32 pixels 

• Batch size: 32 

• Latent dimension (VAE): 8 

• Epochs: 30 

• Learning rate: 0.0003 (Adam optimizer) 

• Augmentation: Rotation (±10°), horizontal and vertical shifts (±10%) 

6.3 Testing and Inference 

At inference, reconstruction errors of the VAE were calculated and employed for anomaly 

detection. A threshold for anomaly classification was calculated from the training reconstruction 

errors as: 

Threshold = 𝜇 + 1.8𝜎        (12) 

where 𝜇 and 𝜎 are the mean and standard deviation of the reconstruction error on the training 

data. Any test sample with a reconstruction error above this threshold was labeled as a jamming 

anomaly. 

6.4 Evaluation Metrics 

We measured the performance of each method (SVM, CNN, VAE) using: 

• Accuracy 

• Precision 

• Recall 

• F1-score 

• Confusion Matrix 

Besides, visual analysis was done using reconstruction comparisons, MSE distributions, and 

anomaly detection rates by jamming class. 

7 Results 

The VAE-based model presented was assessed across five different GNSS jamming scenarios, 

utilizing reconstruction error for detecting anomalies. A threshold determined from the training 

data was used to identify anomalies by checking if the test sample’s reconstruction error 

surpassed this threshold. 



 

 

Fig. 5. Latent space projection of normal and jamming signals from the VAE encoder. Normal training 

samples cluster along a smooth trajectory (green), while jamming samples (purple) diverge and are 

clearly separable. Red circles indicate detected anomalies using reconstruction error thresholding. 

To further interpret the behavior of the VAE, Fig 5 shows a 2D projection of the learned latent 

space for both normal (training) and jamming (test) signals. The VAE encoder maps normal 

signals (green) into a smooth, continuous region of latent space, while jamming signals (purple) 

deviate significantly. 

Using the reconstruction error threshold (0.028942), 97 out of 100 jamming signals were 

correctly identified as anomalies (red circled points). This clear separation in latent space 

supports the effectiveness of the VAE in modeling GNSS signal distributions and detecting 

deviations in an unsupervised manner. 

7.1 Per-Jamming Type Detection Rates 

The model demonstrated strong anomaly detection performance across all jamming types, as 

shown in Table 1. 

Table 1. Anomaly Detection Results by Jamming Type. 

Jamming Type Mean MSE Anomalies Detected Detection Rate 

SingleAM 0.037125 ± 0.001583 139 / 150 92.7% 

SingleChirp 0.036700 ± 0.001905 119 / 150 79.3% 

SingleFM 0.036900 ± 0.001405 140 / 150 93.3% 

DME 0.038735 ± 0.001862 150 / 150 100.0% 

NB 0.037110 ± 0.001874 129 / 150 86.0% 

Total – 672 / 750 89.6% 

 

7.2 Overall Evaluation 

The global anomaly detection accuracy and classification performance were as follows: 



 

The results demonstrate that the VAE model is effective at identifying GNSS jamming attacks 

with high reliability, particularly for structured interference types like DME and SingleFM. 

Even for more subtle interference types like SingleChirp and NB jamming, the detection rates 

remain robust. Table 2 shows the Performance Comparison of VAE, CNN, and SVM Models. 

Table 2. Performance Comparison of VAE, CNN, and SVM Models. 

Model Accuracy (%) Precision (%) Recall (%) F1 Score (%) 

VAE 90.0 93.25 89.6 91.39 

CNN 91.6 92.6 89.4 90.97 

SVM 88.6 90.4 86.7 88.49 

8 Discussion 

The comparison between SVM, CNN, and VAE models uncovers some fundamental insights 

into GNSS jammer classification based on time frequency image representations. Although the 

SVM classifier was found to be efficient and easy to use, it had difficulty generalizing well in 

complex jamming patterns. 

This is due to the fact that it utilizes flattened pixel values, which have no spatial context. The 

opposite is true for the CNN model, which performed better utilizing local features with 

convolutional layers to support better classification. However, CNNs are reliant on labeled data 

and hence are less effective in situations where there is an imbalanced or small dataset. 

The VAE-based system, however, excelled with its higher detection accuracy and reliability. 

Through learning the distribution of normal GNSS signals, the VAE could detect anomalies 

based on reconstruction errors without the need for labeled examples of jammers. This 

generative method is especially useful for detecting new types of interference, an important 

strength in real world settings where new jamming methods can arise unexpectedly. 

Quantitative findings revealed that the VAE outperformed CNN and SVM models in terms of 

precision and recall. It also yielded higher interpretability using a reconstruction-based anomaly 

threshold, providing an organized means of distinguishing between normal and jammed signals. 

Visual inspection of reconstructed images and mean squared error (MSE) distributions further 

verified the VAE’s ability to maintain typical patterns while emphasizing distortions due to 

interference. 

Overall, VAE architecture depends less on large annotated datasets and is more tolerant in 

dynamic scenes, hence the best for GNSS jammer classification in data constrained or dynamic 

scenarios. Perhaps future exploration would see integration of hybrid models combining the 

strength of discriminative and generative approaches for yet improved performance and 

robustness. 

 

 



 

9 Conclusion 

This study presented a novel framework for GNSS jammer classification using time-frequency 

spectrograms and a Variational Autoencoder (VAE). By leveraging the generative modeling 

capabilities of VAEs, the system effectively learned latent representations of normal GNSS 

signals and identified jamming patterns through reconstruction error analysis. Experimental 

results on a synthetic dataset covering six jammer types demonstrated the VAE’s strong 

detection capability—achieving an overall anomaly detection accuracy of 90.0% and correctly 

identifying 97% of all jamming signals. 

The model consistently outperformed traditional classifiers, including CNN and SVM, in terms 

of precision (93.25%) and F1-score (91.39%), while maintaining robustness in low-label 

scenarios. Notably, the VAE achieved a perfect detection rate (100%) for DME jammers and 

over 92% for AM and FM jammers, validating its ability to distinguish structured interference. 

Latent space visualizations further confirmed the separability between normal and jammed 

signals, highlighting the interpretability and diagnostic potential of the VAE approach. 

Future work may focus on the following directions: 

• Integration of Attention Mechanisms: Incorporating attention-based architectures 

such as Transformer layers or convolutional attention modules within the VAE 

framework may enhance the model’s ability to focus on subtle and localized patterns 

in time-frequency representations, improving the detection of complex or stealthy 

jamming signals. 

• Hybrid Generative-Discriminative Models: Future implementations could explore 

hybrid architectures, such as VAE-GANs or contrastive VAEs, which combine the 

generalization strength of generative models with the discriminative power of 

supervised classifiers for improved performance in both anomaly detection and 

explicit classification tasks. 

• Transfer and Meta-Learning: Employing transfer learning strategies using pre-trained 

time-frequency feature extractors or exploring meta-learning techniques may allow 

rapid adaptation to new jammer types or environments with limited labeled data. 

• Expansion to Spoofing and Multipath Detection: The current focus on jamming can 

be expanded to encompass GNSS spoofing and multipath interference classification, 

creating a more comprehensive framework for GNSS signal integrity monitoring. 

• Utilization of Real-World Datasets: Evaluating and refining the model using real-

world GNSS interference datasets will be crucial to understanding its robustness in 

operational environments with varying signal conditions, hardware variability, and 

background noise profiles. 

Overall, the proposed system combines data efficiency, high detection accuracy, and 

generalization to new interference types, making it a promising solution for real-time GNSS 

interference monitoring. Its unsupervised learning strategy and generative nature offer valuable 

adaptability in evolving threat environments, setting the foundation for further advances in 

signal integrity and secure navigation. 
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